Study Finds Ancient Warming Greened Antarctica

[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]

 



June 17, 2012

J. D. Harrington 
Headquarters, Washington                                   
202-358-5241 
j.d.harrington@xxxxxxxx 

Alan Buis 
Jet Propulsion Laboratory, Pasadena, Calif. 
818-354-0474 
alan.d.buis@xxxxxxxxxxxx 

Robert Perkins 
University of Southern California, Los Angeles 
213-740-9226 
perkinsr@xxxxxxx 

Zac Lemoine 
Louisiana State University, Baton Rouge 
225-578-1399 
jlemo26@xxxxxxx 

RELEASE: 12-202

STUDY FINDS ANCIENT WARMING GREENED ANTARCTICA

WASHINGTON -- A new university-led study with NASA participation finds 
ancient Antarctica was much warmer and wetter than previously 
suspected. The climate was suitable to support substantial vegetation 
-- including stunted trees -- along the edges of the frozen 
continent. 

The team of scientists involved in the study, published online June 17 
in Nature Geoscience, was led by Sarah J. Feakins of the University 
of Southern California in Los Angeles, and included researchers from 
NASA's Jet Propulsion Laboratory in Pasadena, Calif., and Louisiana 
State University in Baton Rouge. 

By examining plant leaf wax remnants in sediment core samples taken 
from beneath the Ross Ice Shelf, the research team found summer 
temperatures along the Antarctic coast 15 to 20 million years ago 
were 20 degrees Fahrenheit (11 degrees Celsius) warmer than today, 
with temperatures reaching as high as 45 degrees Fahrenheit (7 
degrees Celsius). Precipitation levels also were found to be several 
times higher than today. 

"The ultimate goal of the study was to better understand what the 
future of climate change may look like," said Feakins, an assistant 
professor of Earth sciences at the USC Dornsife College of Letters, 
Arts and Sciences. "Just as history has a lot to teach us about the 
future, so does past climate. This record shows us how much warmer 
and wetter it can get around the Antarctic ice sheet as the climate 
system heats up. This is some of the first evidence of just how much 
warmer it was." 

Scientists began to suspect that high-latitude temperatures during the 
middle Miocene epoch were warmer than previously believed when 
co-author Sophie Warny, assistant professor at LSU, discovered large 
quantities of pollen and algae in sediment cores taken around 
Antarctica. Fossils of plant life in Antarctica are difficult to come 
by because the movement of the massive ice sheets covering the 
landmass grinds and scrapes away the evidence. 

"Marine sediment cores are ideal to look for clues of past vegetation, 
as the fossils deposited are protected from ice sheet advances, but 
these are technically very difficult to acquire in the Antarctic and 
require international collaboration," said Warny. 

Tipped off by the tiny pollen samples, Feakins opted to look at the 
remnants of leaf wax taken from sediment cores for clues. Leaf wax 
acts as a record of climate change by documenting the hydrogen 
isotope ratios of the water the plant took up while it was alive. 

"Ice cores can only go back about one million years," Feakins said. 
"Sediment cores allow us to go into 'deep time.'" 

Based upon a model originally developed to analyze hydrogen isotope 
ratios in atmospheric water vapor data from NASA's Aura spacecraft, 
co-author and JPL scientist Jung-Eun Lee created experiments to find 
out just how much warmer and wetter climate may have been. 

"When the planet heats up, the biggest changes are seen toward the 
poles," Lee said. "The southward movement of rain bands associated 
with a warmer climate in the high-latitude southern hemisphere made 
the margins of Antarctica less like a polar desert, and more like 
present-day Iceland." 

The peak of this Antarctic greening occurred during the middle Miocene 
period, between 16.4 and 15.7 million years ago. This was well after 
the age of the dinosaurs, which became extinct 64 million years ago. 
During the Miocene epoch, mostly modern-looking animals roamed Earth, 
such as three-toed horses, deer, camel and various species of apes. 
Modern humans did not appear until 200,000 years ago. 

Warm conditions during the middle Miocene are thought to be associated 
with carbon dioxide levels of around 400 to 600 parts per million 
(ppm). In 2012, carbon dioxide levels have climbed to 393 ppm, the 
highest they've been in the past several million years. At the 
current rate of increase, atmospheric carbon dioxide levels are on 
track to reach middle Miocene levels by the end of this century. 

High carbon dioxide levels during the middle Miocene epoch have been 
documented in other studies through multiple lines of evidence, 
including the number of microscopic pores on the surface of plant 
leaves and geochemical evidence from soils and marine organisms. 
While none of these 'proxies' is as reliable as the bubbles of gas 
trapped in ice cores, they are the best evidence available this far 
back in time. While scientists do not yet know precisely why carbon 
dioxide was at these levels during the middle Miocene, high carbon 
dioxide, together with the global warmth documented from many parts 
of the world and now also from the Antarctic region, appear to 
coincide during this period in Earth's history. 

This research was funded by the U.S. National Science Foundation with 
additional support from NASA. The California Institute of Technology 
in Pasadena manages JPL for NASA. 

For more information about NASA programs and projects, visit: 

http://www.nasa.gov/ 

	
-end-



To subscribe to the list, send a message to: 
hqnews-subscribe@xxxxxxxxxxxxxxxxxxxxxx
To remove your address from the list, send a message to:
hqnews-unsubscribe@xxxxxxxxxxxxxxxxxxxxxx

[Index of Archives]     [JPL News]     [Cassini News From Saturn]     [NASA Marshall Space Flight Center News]     [NASA Science News]     [James Web Space Telescope News]     [JPL Home]     [NASA KSC]     [NTSB]     [Deep Creek Hot Springs]     [Yosemite Discussion]     [NSF]     [Telescopes]

  Powered by Linux