- cxgb3-hw-access-routines.patch removed from -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled
     cxgb3: HW access routines
has been removed from the -mm tree.  Its filename was
     cxgb3-hw-access-routines.patch

This patch was dropped because it was merged into mainline or a subsystem tree

------------------------------------------------------
Subject: cxgb3: HW access routines
From: Divy Le Ray <divy@xxxxxxxxxxx>

Implement the HW access routines for the Chelsio T3 network adapter's driver. 
This patch is split.  This is the first part.

Signed-off-by: Divy Le Ray <divy@xxxxxxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxx>
---

 drivers/net/cxgb3/t3_hw.c | 3354 ++++++++++++++++++++++++++++++++++++
 1 file changed, 3354 insertions(+)

diff -puN /dev/null drivers/net/cxgb3/t3_hw.c
--- /dev/null
+++ a/drivers/net/cxgb3/t3_hw.c
@@ -0,0 +1,3354 @@
+/*
+ * This file is part of the Chelsio T3 Ethernet driver.
+ *
+ * Copyright (C) 2003-2006 Chelsio Communications.  All rights reserved.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
+ * release for licensing terms and conditions.
+ */
+
+#include "common.h"
+#include "regs.h"
+#include "sge_defs.h"
+#include "firmware_exports.h"
+
+ /**
+  *	t3_wait_op_done_val - wait until an operation is completed
+  *	@adapter: the adapter performing the operation
+  *	@reg: the register to check for completion
+  *	@mask: a single-bit field within @reg that indicates completion
+  *	@polarity: the value of the field when the operation is completed
+  *	@attempts: number of check iterations
+  *	@delay: delay in usecs between iterations
+  *	@valp: where to store the value of the register at completion time
+  *
+  *	Wait until an operation is completed by checking a bit in a register
+  *	up to @attempts times.  If @valp is not NULL the value of the register
+  *	at the time it indicated completion is stored there.  Returns 0 if the
+  *	operation completes and -EAGAIN otherwise.
+  */
+
+int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
+			int polarity, int attempts, int delay, u32 *valp)
+{
+	while (1) {
+		u32 val = t3_read_reg(adapter, reg);
+
+		if (!!(val & mask) == polarity) {
+			if (valp)
+				*valp = val;
+			return 0;
+		}
+		if (--attempts == 0)
+ 			return -EAGAIN;
+		if (delay)
+			udelay(delay);
+	}
+}
+
+/**
+ *	t3_write_regs - write a bunch of registers
+ *	@adapter: the adapter to program
+ *	@p: an array of register address/register value pairs
+ *	@n: the number of address/value pairs
+ *	@offset: register address offset
+ *
+ *	Takes an array of register address/register value pairs and writes each
+ *	value to the corresponding register.  Register addresses are adjusted
+ *	by the supplied offset.
+ */
+void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
+		   int n, unsigned int offset)
+{
+	while (n--) {
+		t3_write_reg(adapter, p->reg_addr + offset, p->val);
+		p++;
+	}
+}
+
+/**
+ *	t3_set_reg_field - set a register field to a value
+ *	@adapter: the adapter to program
+ *	@addr: the register address
+ *	@mask: specifies the portion of the register to modify
+ *	@val: the new value for the register field
+ *
+ *	Sets a register field specified by the supplied mask to the
+ *	given value.
+ */
+void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
+		      u32 val)
+{
+	u32 v = t3_read_reg(adapter, addr) & ~mask;
+
+	t3_write_reg(adapter, addr, v | val);
+	t3_read_reg(adapter, addr);	/* flush */
+}
+
+/**
+ *	t3_read_indirect - read indirectly addressed registers
+ *	@adap: the adapter
+ *	@addr_reg: register holding the indirect address
+ *	@data_reg: register holding the value of the indirect register
+ *	@vals: where the read register values are stored
+ *	@start_idx: index of first indirect register to read
+ *	@nregs: how many indirect registers to read
+ *
+ *	Reads registers that are accessed indirectly through an address/data
+ *	register pair.
+ */
+void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
+		      unsigned int data_reg, u32 *vals, unsigned int nregs,
+		      unsigned int start_idx)
+{
+	while (nregs--) {
+		t3_write_reg(adap, addr_reg, start_idx);
+		*vals++ = t3_read_reg(adap, data_reg);
+		start_idx++;
+	}
+}
+
+/**
+ *	t3_mc7_bd_read - read from MC7 through backdoor accesses
+ *	@mc7: identifies MC7 to read from
+ *	@start: index of first 64-bit word to read
+ *	@n: number of 64-bit words to read
+ *	@buf: where to store the read result
+ *
+ *	Read n 64-bit words from MC7 starting at word start, using backdoor
+ *	accesses.
+ */
+int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
+		   u64 *buf)
+{
+	static const int shift[] = { 0, 0, 16, 24 };
+	static const int step[] = { 0, 32, 16, 8 };
+
+	unsigned int size64 = mc7->size / 8;	/* # of 64-bit words */
+	struct adapter *adap = mc7->adapter;
+
+	if (start >= size64 || start + n > size64)
+		return -EINVAL;
+
+	start *= (8 << mc7->width);
+	while (n--) {
+		int i;
+		u64 val64 = 0;
+
+		for (i = (1 << mc7->width) - 1; i >= 0; --i) {
+			int attempts = 10;
+			u32 val;
+
+			t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
+			t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
+			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
+			while ((val & F_BUSY) && attempts--)
+				val = t3_read_reg(adap,
+						  mc7->offset + A_MC7_BD_OP);
+			if (val & F_BUSY)
+				return -EIO;
+
+			val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
+			if (mc7->width == 0) {
+				val64 = t3_read_reg(adap,
+						    mc7->offset +
+						    A_MC7_BD_DATA0);
+				val64 |= (u64) val << 32;
+			} else {
+				if (mc7->width > 1)
+					val >>= shift[mc7->width];
+				val64 |= (u64) val << (step[mc7->width] * i);
+			}
+			start += 8;
+		}
+		*buf++ = val64;
+	}
+	return 0;
+}
+
+/*
+ * Initialize MI1.
+ */
+static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
+{
+	u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
+	u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
+	    V_CLKDIV(clkdiv);
+
+	if (!(ai->caps & SUPPORTED_10000baseT_Full))
+		val |= V_ST(1);
+	t3_write_reg(adap, A_MI1_CFG, val);
+}
+
+#define MDIO_ATTEMPTS 10
+
+/*
+ * MI1 read/write operations for direct-addressed PHYs.
+ */
+static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
+		    int reg_addr, unsigned int *valp)
+{
+	int ret;
+	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
+
+	if (mmd_addr)
+		return -EINVAL;
+
+	mutex_lock(&adapter->mdio_lock);
+	t3_write_reg(adapter, A_MI1_ADDR, addr);
+	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
+	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
+	if (!ret)
+		*valp = t3_read_reg(adapter, A_MI1_DATA);
+	mutex_unlock(&adapter->mdio_lock);
+	return ret;
+}
+
+static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
+		     int reg_addr, unsigned int val)
+{
+	int ret;
+	u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
+
+	if (mmd_addr)
+		return -EINVAL;
+
+	mutex_lock(&adapter->mdio_lock);
+	t3_write_reg(adapter, A_MI1_ADDR, addr);
+	t3_write_reg(adapter, A_MI1_DATA, val);
+	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
+	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
+	mutex_unlock(&adapter->mdio_lock);
+	return ret;
+}
+
+static const struct mdio_ops mi1_mdio_ops = {
+	mi1_read,
+	mi1_write
+};
+
+/*
+ * MI1 read/write operations for indirect-addressed PHYs.
+ */
+static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
+			int reg_addr, unsigned int *valp)
+{
+	int ret;
+	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
+
+	mutex_lock(&adapter->mdio_lock);
+	t3_write_reg(adapter, A_MI1_ADDR, addr);
+	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
+	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
+	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
+	if (!ret) {
+		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
+		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
+				      MDIO_ATTEMPTS, 20);
+		if (!ret)
+			*valp = t3_read_reg(adapter, A_MI1_DATA);
+	}
+	mutex_unlock(&adapter->mdio_lock);
+	return ret;
+}
+
+static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
+			 int reg_addr, unsigned int val)
+{
+	int ret;
+	u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
+
+	mutex_lock(&adapter->mdio_lock);
+	t3_write_reg(adapter, A_MI1_ADDR, addr);
+	t3_write_reg(adapter, A_MI1_DATA, reg_addr);
+	t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
+	ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
+	if (!ret) {
+		t3_write_reg(adapter, A_MI1_DATA, val);
+		t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
+		ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
+				      MDIO_ATTEMPTS, 20);
+	}
+	mutex_unlock(&adapter->mdio_lock);
+	return ret;
+}
+
+static const struct mdio_ops mi1_mdio_ext_ops = {
+	mi1_ext_read,
+	mi1_ext_write
+};
+
+/**
+ *	t3_mdio_change_bits - modify the value of a PHY register
+ *	@phy: the PHY to operate on
+ *	@mmd: the device address
+ *	@reg: the register address
+ *	@clear: what part of the register value to mask off
+ *	@set: what part of the register value to set
+ *
+ *	Changes the value of a PHY register by applying a mask to its current
+ *	value and ORing the result with a new value.
+ */
+int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
+			unsigned int set)
+{
+	int ret;
+	unsigned int val;
+
+	ret = mdio_read(phy, mmd, reg, &val);
+	if (!ret) {
+		val &= ~clear;
+		ret = mdio_write(phy, mmd, reg, val | set);
+	}
+	return ret;
+}
+
+/**
+ *	t3_phy_reset - reset a PHY block
+ *	@phy: the PHY to operate on
+ *	@mmd: the device address of the PHY block to reset
+ *	@wait: how long to wait for the reset to complete in 1ms increments
+ *
+ *	Resets a PHY block and optionally waits for the reset to complete.
+ *	@mmd should be 0 for 10/100/1000 PHYs and the device address to reset
+ *	for 10G PHYs.
+ */
+int t3_phy_reset(struct cphy *phy, int mmd, int wait)
+{
+	int err;
+	unsigned int ctl;
+
+	err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
+	if (err || !wait)
+		return err;
+
+	do {
+		err = mdio_read(phy, mmd, MII_BMCR, &ctl);
+		if (err)
+			return err;
+		ctl &= BMCR_RESET;
+		if (ctl)
+			msleep(1);
+	} while (ctl && --wait);
+
+	return ctl ? -1 : 0;
+}
+
+/**
+ *	t3_phy_advertise - set the PHY advertisement registers for autoneg
+ *	@phy: the PHY to operate on
+ *	@advert: bitmap of capabilities the PHY should advertise
+ *
+ *	Sets a 10/100/1000 PHY's advertisement registers to advertise the
+ *	requested capabilities.
+ */
+int t3_phy_advertise(struct cphy *phy, unsigned int advert)
+{
+	int err;
+	unsigned int val = 0;
+
+	err = mdio_read(phy, 0, MII_CTRL1000, &val);
+	if (err)
+		return err;
+
+	val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
+	if (advert & ADVERTISED_1000baseT_Half)
+		val |= ADVERTISE_1000HALF;
+	if (advert & ADVERTISED_1000baseT_Full)
+		val |= ADVERTISE_1000FULL;
+
+	err = mdio_write(phy, 0, MII_CTRL1000, val);
+	if (err)
+		return err;
+
+	val = 1;
+	if (advert & ADVERTISED_10baseT_Half)
+		val |= ADVERTISE_10HALF;
+	if (advert & ADVERTISED_10baseT_Full)
+		val |= ADVERTISE_10FULL;
+	if (advert & ADVERTISED_100baseT_Half)
+		val |= ADVERTISE_100HALF;
+	if (advert & ADVERTISED_100baseT_Full)
+		val |= ADVERTISE_100FULL;
+	if (advert & ADVERTISED_Pause)
+		val |= ADVERTISE_PAUSE_CAP;
+	if (advert & ADVERTISED_Asym_Pause)
+		val |= ADVERTISE_PAUSE_ASYM;
+	return mdio_write(phy, 0, MII_ADVERTISE, val);
+}
+
+/**
+ *	t3_set_phy_speed_duplex - force PHY speed and duplex
+ *	@phy: the PHY to operate on
+ *	@speed: requested PHY speed
+ *	@duplex: requested PHY duplex
+ *
+ *	Force a 10/100/1000 PHY's speed and duplex.  This also disables
+ *	auto-negotiation except for GigE, where auto-negotiation is mandatory.
+ */
+int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
+{
+	int err;
+	unsigned int ctl;
+
+	err = mdio_read(phy, 0, MII_BMCR, &ctl);
+	if (err)
+		return err;
+
+	if (speed >= 0) {
+		ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
+		if (speed == SPEED_100)
+			ctl |= BMCR_SPEED100;
+		else if (speed == SPEED_1000)
+			ctl |= BMCR_SPEED1000;
+	}
+	if (duplex >= 0) {
+		ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
+		if (duplex == DUPLEX_FULL)
+			ctl |= BMCR_FULLDPLX;
+	}
+	if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
+		ctl |= BMCR_ANENABLE;
+	return mdio_write(phy, 0, MII_BMCR, ctl);
+}
+
+static const struct adapter_info t3_adap_info[] = {
+	{2, 0, 0, 0,
+	 F_GPIO2_OEN | F_GPIO4_OEN |
+	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
+	 SUPPORTED_OFFLOAD,
+	 &mi1_mdio_ops, "Chelsio PE9000"},
+	{2, 0, 0, 0,
+	 F_GPIO2_OEN | F_GPIO4_OEN |
+	 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
+	 SUPPORTED_OFFLOAD,
+	 &mi1_mdio_ops, "Chelsio T302"},
+	{1, 0, 0, 0,
+	 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
+	 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
+	 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
+	 &mi1_mdio_ext_ops, "Chelsio T310"},
+	{2, 0, 0, 0,
+	 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
+	 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
+	 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
+	 SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
+	 &mi1_mdio_ext_ops, "Chelsio T320"},
+};
+
+/*
+ * Return the adapter_info structure with a given index.  Out-of-range indices
+ * return NULL.
+ */
+const struct adapter_info *t3_get_adapter_info(unsigned int id)
+{
+	return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
+}
+
+#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
+		 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
+#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
+
+static const struct port_type_info port_types[] = {
+	{NULL},
+	{t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
+	 "10GBASE-XR"},
+	{t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
+	 "10/100/1000BASE-T"},
+	{NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
+	 "10/100/1000BASE-T"},
+	{t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
+	{NULL, CAPS_10G, "10GBASE-KX4"},
+	{t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
+	{t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
+	 "10GBASE-SR"},
+	{NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
+};
+
+#undef CAPS_1G
+#undef CAPS_10G
+
+#define VPD_ENTRY(name, len) \
+	u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
+
+/*
+ * Partial EEPROM Vital Product Data structure.  Includes only the ID and
+ * VPD-R sections.
+ */
+struct t3_vpd {
+	u8 id_tag;
+	u8 id_len[2];
+	u8 id_data[16];
+	u8 vpdr_tag;
+	u8 vpdr_len[2];
+	VPD_ENTRY(pn, 16);	/* part number */
+	VPD_ENTRY(ec, 16);	/* EC level */
+	VPD_ENTRY(sn, 16);	/* serial number */
+	VPD_ENTRY(na, 12);	/* MAC address base */
+	VPD_ENTRY(cclk, 6);	/* core clock */
+	VPD_ENTRY(mclk, 6);	/* mem clock */
+	VPD_ENTRY(uclk, 6);	/* uP clk */
+	VPD_ENTRY(mdc, 6);	/* MDIO clk */
+	VPD_ENTRY(mt, 2);	/* mem timing */
+	VPD_ENTRY(xaui0cfg, 6);	/* XAUI0 config */
+	VPD_ENTRY(xaui1cfg, 6);	/* XAUI1 config */
+	VPD_ENTRY(port0, 2);	/* PHY0 complex */
+	VPD_ENTRY(port1, 2);	/* PHY1 complex */
+	VPD_ENTRY(port2, 2);	/* PHY2 complex */
+	VPD_ENTRY(port3, 2);	/* PHY3 complex */
+	VPD_ENTRY(rv, 1);	/* csum */
+	u32 pad;		/* for multiple-of-4 sizing and alignment */
+};
+
+#define EEPROM_MAX_POLL   4
+#define EEPROM_STAT_ADDR  0x4000
+#define VPD_BASE          0xc00
+
+/**
+ *	t3_seeprom_read - read a VPD EEPROM location
+ *	@adapter: adapter to read
+ *	@addr: EEPROM address
+ *	@data: where to store the read data
+ *
+ *	Read a 32-bit word from a location in VPD EEPROM using the card's PCI
+ *	VPD ROM capability.  A zero is written to the flag bit when the
+ *	addres is written to the control register.  The hardware device will
+ *	set the flag to 1 when 4 bytes have been read into the data register.
+ */
+int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
+{
+	u16 val;
+	int attempts = EEPROM_MAX_POLL;
+	unsigned int base = adapter->params.pci.vpd_cap_addr;
+
+	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
+		return -EINVAL;
+
+	pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
+	do {
+		udelay(10);
+		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
+	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
+
+	if (!(val & PCI_VPD_ADDR_F)) {
+		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
+		return -EIO;
+	}
+	pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
+	*data = le32_to_cpu(*data);
+	return 0;
+}
+
+/**
+ *	t3_seeprom_write - write a VPD EEPROM location
+ *	@adapter: adapter to write
+ *	@addr: EEPROM address
+ *	@data: value to write
+ *
+ *	Write a 32-bit word to a location in VPD EEPROM using the card's PCI
+ *	VPD ROM capability.
+ */
+int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
+{
+	u16 val;
+	int attempts = EEPROM_MAX_POLL;
+	unsigned int base = adapter->params.pci.vpd_cap_addr;
+
+	if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
+		return -EINVAL;
+
+	pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
+			       cpu_to_le32(data));
+	pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
+			      addr | PCI_VPD_ADDR_F);
+	do {
+		msleep(1);
+		pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
+	} while ((val & PCI_VPD_ADDR_F) && --attempts);
+
+	if (val & PCI_VPD_ADDR_F) {
+		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
+		return -EIO;
+	}
+	return 0;
+}
+
+/**
+ *	t3_seeprom_wp - enable/disable EEPROM write protection
+ *	@adapter: the adapter
+ *	@enable: 1 to enable write protection, 0 to disable it
+ *
+ *	Enables or disables write protection on the serial EEPROM.
+ */
+int t3_seeprom_wp(struct adapter *adapter, int enable)
+{
+	return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
+}
+
+/*
+ * Convert a character holding a hex digit to a number.
+ */
+static unsigned int hex2int(unsigned char c)
+{
+	return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
+}
+
+/**
+ *	get_vpd_params - read VPD parameters from VPD EEPROM
+ *	@adapter: adapter to read
+ *	@p: where to store the parameters
+ *
+ *	Reads card parameters stored in VPD EEPROM.
+ */
+static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
+{
+	int i, addr, ret;
+	struct t3_vpd vpd;
+
+	/*
+	 * Card information is normally at VPD_BASE but some early cards had
+	 * it at 0.
+	 */
+	ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
+	if (ret)
+		return ret;
+	addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
+
+	for (i = 0; i < sizeof(vpd); i += 4) {
+		ret = t3_seeprom_read(adapter, addr + i,
+				      (u32 *)((u8 *)&vpd + i));
+		if (ret)
+			return ret;
+	}
+
+	p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
+	p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
+	p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
+	p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
+	p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
+
+	/* Old eeproms didn't have port information */
+	if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
+		p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
+		p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
+	} else {
+		p->port_type[0] = hex2int(vpd.port0_data[0]);
+		p->port_type[1] = hex2int(vpd.port1_data[0]);
+		p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
+		p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
+	}
+
+	for (i = 0; i < 6; i++)
+		p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
+				 hex2int(vpd.na_data[2 * i + 1]);
+	return 0;
+}
+
+/* serial flash and firmware constants */
+enum {
+	SF_ATTEMPTS = 5,	/* max retries for SF1 operations */
+	SF_SEC_SIZE = 64 * 1024,	/* serial flash sector size */
+	SF_SIZE = SF_SEC_SIZE * 8,	/* serial flash size */
+
+	/* flash command opcodes */
+	SF_PROG_PAGE = 2,	/* program page */
+	SF_WR_DISABLE = 4,	/* disable writes */
+	SF_RD_STATUS = 5,	/* read status register */
+	SF_WR_ENABLE = 6,	/* enable writes */
+	SF_RD_DATA_FAST = 0xb,	/* read flash */
+	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
+
+	FW_FLASH_BOOT_ADDR = 0x70000,	/* start address of FW in flash */
+	FW_VERS_ADDR = 0x77ffc	/* flash address holding FW version */
+};
+
+/**
+ *	sf1_read - read data from the serial flash
+ *	@adapter: the adapter
+ *	@byte_cnt: number of bytes to read
+ *	@cont: whether another operation will be chained
+ *	@valp: where to store the read data
+ *
+ *	Reads up to 4 bytes of data from the serial flash.  The location of
+ *	the read needs to be specified prior to calling this by issuing the
+ *	appropriate commands to the serial flash.
+ */
+static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
+		    u32 *valp)
+{
+	int ret;
+
+	if (!byte_cnt || byte_cnt > 4)
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
+		return -EBUSY;
+	t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
+	ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
+	if (!ret)
+		*valp = t3_read_reg(adapter, A_SF_DATA);
+	return ret;
+}
+
+/**
+ *	sf1_write - write data to the serial flash
+ *	@adapter: the adapter
+ *	@byte_cnt: number of bytes to write
+ *	@cont: whether another operation will be chained
+ *	@val: value to write
+ *
+ *	Writes up to 4 bytes of data to the serial flash.  The location of
+ *	the write needs to be specified prior to calling this by issuing the
+ *	appropriate commands to the serial flash.
+ */
+static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
+		     u32 val)
+{
+	if (!byte_cnt || byte_cnt > 4)
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
+		return -EBUSY;
+	t3_write_reg(adapter, A_SF_DATA, val);
+	t3_write_reg(adapter, A_SF_OP,
+		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
+	return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
+}
+
+/**
+ *	flash_wait_op - wait for a flash operation to complete
+ *	@adapter: the adapter
+ *	@attempts: max number of polls of the status register
+ *	@delay: delay between polls in ms
+ *
+ *	Wait for a flash operation to complete by polling the status register.
+ */
+static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
+{
+	int ret;
+	u32 status;
+
+	while (1) {
+		if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
+		    (ret = sf1_read(adapter, 1, 0, &status)) != 0)
+			return ret;
+		if (!(status & 1))
+			return 0;
+		if (--attempts == 0)
+			return -EAGAIN;
+		if (delay)
+			msleep(delay);
+	}
+}
+
+/**
+ *	t3_read_flash - read words from serial flash
+ *	@adapter: the adapter
+ *	@addr: the start address for the read
+ *	@nwords: how many 32-bit words to read
+ *	@data: where to store the read data
+ *	@byte_oriented: whether to store data as bytes or as words
+ *
+ *	Read the specified number of 32-bit words from the serial flash.
+ *	If @byte_oriented is set the read data is stored as a byte array
+ *	(i.e., big-endian), otherwise as 32-bit words in the platform's
+ *	natural endianess.
+ */
+int t3_read_flash(struct adapter *adapter, unsigned int addr,
+		  unsigned int nwords, u32 *data, int byte_oriented)
+{
+	int ret;
+
+	if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
+		return -EINVAL;
+
+	addr = swab32(addr) | SF_RD_DATA_FAST;
+
+	if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
+	    (ret = sf1_read(adapter, 1, 1, data)) != 0)
+		return ret;
+
+	for (; nwords; nwords--, data++) {
+		ret = sf1_read(adapter, 4, nwords > 1, data);
+		if (ret)
+			return ret;
+		if (byte_oriented)
+			*data = htonl(*data);
+	}
+	return 0;
+}
+
+/**
+ *	t3_write_flash - write up to a page of data to the serial flash
+ *	@adapter: the adapter
+ *	@addr: the start address to write
+ *	@n: length of data to write
+ *	@data: the data to write
+ *
+ *	Writes up to a page of data (256 bytes) to the serial flash starting
+ *	at the given address.
+ */
+static int t3_write_flash(struct adapter *adapter, unsigned int addr,
+			  unsigned int n, const u8 *data)
+{
+	int ret;
+	u32 buf[64];
+	unsigned int i, c, left, val, offset = addr & 0xff;
+
+	if (addr + n > SF_SIZE || offset + n > 256)
+		return -EINVAL;
+
+	val = swab32(addr) | SF_PROG_PAGE;
+
+	if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
+	    (ret = sf1_write(adapter, 4, 1, val)) != 0)
+		return ret;
+
+	for (left = n; left; left -= c) {
+		c = min(left, 4U);
+		for (val = 0, i = 0; i < c; ++i)
+			val = (val << 8) + *data++;
+
+		ret = sf1_write(adapter, c, c != left, val);
+		if (ret)
+			return ret;
+	}
+	if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
+		return ret;
+
+	/* Read the page to verify the write succeeded */
+	ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
+	if (ret)
+		return ret;
+
+	if (memcmp(data - n, (u8 *) buf + offset, n))
+		return -EIO;
+	return 0;
+}
+
+/**
+ *	t3_get_fw_version - read the firmware version
+ *	@adapter: the adapter
+ *	@vers: where to place the version
+ *
+ *	Reads the FW version from flash.
+ */
+int t3_get_fw_version(struct adapter *adapter, u32 *vers)
+{
+	return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
+}
+
+/**
+ *	t3_check_fw_version - check if the FW is compatible with this driver
+ *	@adapter: the adapter
+ *
+ *	Checks if an adapter's FW is compatible with the driver.  Returns 0
+ *	if the versions are compatible, a negative error otherwise.
+ */
+int t3_check_fw_version(struct adapter *adapter)
+{
+	int ret;
+	u32 vers;
+
+	ret = t3_get_fw_version(adapter, &vers);
+	if (ret)
+		return ret;
+
+	/* Minor 0xfff means the FW is an internal development-only version. */
+	if ((vers & 0xfff) == 0xfff)
+		return 0;
+
+	if (vers == 0x1002009)
+		return 0;
+
+	CH_ERR(adapter, "found wrong FW version, driver needs version 2.9\n");
+	return -EINVAL;
+}
+
+/**
+ *	t3_flash_erase_sectors - erase a range of flash sectors
+ *	@adapter: the adapter
+ *	@start: the first sector to erase
+ *	@end: the last sector to erase
+ *
+ *	Erases the sectors in the given range.
+ */
+static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
+{
+	while (start <= end) {
+		int ret;
+
+		if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
+		    (ret = sf1_write(adapter, 4, 0,
+				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
+		    (ret = flash_wait_op(adapter, 5, 500)) != 0)
+			return ret;
+		start++;
+	}
+	return 0;
+}
+
+/*
+ *	t3_load_fw - download firmware
+ *	@adapter: the adapter
+ *	@fw_data: the firrware image to write
+ *	@size: image size
+ *
+ *	Write the supplied firmware image to the card's serial flash.
+ *	The FW image has the following sections: @size - 8 bytes of code and
+ *	data, followed by 4 bytes of FW version, followed by the 32-bit
+ *	1's complement checksum of the whole image.
+ */
+int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
+{
+	u32 csum;
+	unsigned int i;
+	const u32 *p = (const u32 *)fw_data;
+	int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
+
+	if (size & 3)
+		return -EINVAL;
+	if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
+		return -EFBIG;
+
+	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
+		csum += ntohl(p[i]);
+	if (csum != 0xffffffff) {
+		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
+		       csum);
+		return -EINVAL;
+	}
+
+	ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
+	if (ret)
+		goto out;
+
+	size -= 8;		/* trim off version and checksum */
+	for (addr = FW_FLASH_BOOT_ADDR; size;) {
+		unsigned int chunk_size = min(size, 256U);
+
+		ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
+		if (ret)
+			goto out;
+
+		addr += chunk_size;
+		fw_data += chunk_size;
+		size -= chunk_size;
+	}
+
+	ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
+out:
+	if (ret)
+		CH_ERR(adapter, "firmware download failed, error %d\n", ret);
+	return ret;
+}
+
+#define CIM_CTL_BASE 0x2000
+
+/**
+ *      t3_cim_ctl_blk_read - read a block from CIM control region
+ *
+ *      @adap: the adapter
+ *      @addr: the start address within the CIM control region
+ *      @n: number of words to read
+ *      @valp: where to store the result
+ *
+ *      Reads a block of 4-byte words from the CIM control region.
+ */
+int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
+			unsigned int n, unsigned int *valp)
+{
+	int ret = 0;
+
+	if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
+		return -EBUSY;
+
+	for ( ; !ret && n--; addr += 4) {
+		t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
+		ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
+				      0, 5, 2);
+		if (!ret)
+			*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
+	}
+	return ret;
+}
+
+
+/**
+ *	t3_link_changed - handle interface link changes
+ *	@adapter: the adapter
+ *	@port_id: the port index that changed link state
+ *
+ *	Called when a port's link settings change to propagate the new values
+ *	to the associated PHY and MAC.  After performing the common tasks it
+ *	invokes an OS-specific handler.
+ */
+void t3_link_changed(struct adapter *adapter, int port_id)
+{
+	int link_ok, speed, duplex, fc;
+	struct port_info *pi = adap2pinfo(adapter, port_id);
+	struct cphy *phy = &pi->phy;
+	struct cmac *mac = &pi->mac;
+	struct link_config *lc = &pi->link_config;
+
+	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
+
+	if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
+	    uses_xaui(adapter)) {
+		if (link_ok)
+			t3b_pcs_reset(mac);
+		t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
+			     link_ok ? F_TXACTENABLE | F_RXEN : 0);
+	}
+	lc->link_ok = link_ok;
+	lc->speed = speed < 0 ? SPEED_INVALID : speed;
+	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
+	if (lc->requested_fc & PAUSE_AUTONEG)
+		fc &= lc->requested_fc;
+	else
+		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
+
+	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
+		/* Set MAC speed, duplex, and flow control to match PHY. */
+		t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
+		lc->fc = fc;
+	}
+
+	t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
+}
+
+/**
+ *	t3_link_start - apply link configuration to MAC/PHY
+ *	@phy: the PHY to setup
+ *	@mac: the MAC to setup
+ *	@lc: the requested link configuration
+ *
+ *	Set up a port's MAC and PHY according to a desired link configuration.
+ *	- If the PHY can auto-negotiate first decide what to advertise, then
+ *	  enable/disable auto-negotiation as desired, and reset.
+ *	- If the PHY does not auto-negotiate just reset it.
+ *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
+ *	  otherwise do it later based on the outcome of auto-negotiation.
+ */
+int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
+{
+	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
+
+	lc->link_ok = 0;
+	if (lc->supported & SUPPORTED_Autoneg) {
+		lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
+		if (fc) {
+			lc->advertising |= ADVERTISED_Asym_Pause;
+			if (fc & PAUSE_RX)
+				lc->advertising |= ADVERTISED_Pause;
+		}
+		phy->ops->advertise(phy, lc->advertising);
+
+		if (lc->autoneg == AUTONEG_DISABLE) {
+			lc->speed = lc->requested_speed;
+			lc->duplex = lc->requested_duplex;
+			lc->fc = (unsigned char)fc;
+			t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
+						   fc);
+			/* Also disables autoneg */
+			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
+			phy->ops->reset(phy, 0);
+		} else
+			phy->ops->autoneg_enable(phy);
+	} else {
+		t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
+		lc->fc = (unsigned char)fc;
+		phy->ops->reset(phy, 0);
+	}
+	return 0;
+}
+
+/**
+ *	t3_set_vlan_accel - control HW VLAN extraction
+ *	@adapter: the adapter
+ *	@ports: bitmap of adapter ports to operate on
+ *	@on: enable (1) or disable (0) HW VLAN extraction
+ *
+ *	Enables or disables HW extraction of VLAN tags for the given port.
+ */
+void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
+{
+	t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
+			 ports << S_VLANEXTRACTIONENABLE,
+			 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
+}
+
+struct intr_info {
+	unsigned int mask;	/* bits to check in interrupt status */
+	const char *msg;	/* message to print or NULL */
+	short stat_idx;		/* stat counter to increment or -1 */
+	unsigned short fatal:1;	/* whether the condition reported is fatal */
+};
+
+/**
+ *	t3_handle_intr_status - table driven interrupt handler
+ *	@adapter: the adapter that generated the interrupt
+ *	@reg: the interrupt status register to process
+ *	@mask: a mask to apply to the interrupt status
+ *	@acts: table of interrupt actions
+ *	@stats: statistics counters tracking interrupt occurences
+ *
+ *	A table driven interrupt handler that applies a set of masks to an
+ *	interrupt status word and performs the corresponding actions if the
+ *	interrupts described by the mask have occured.  The actions include
+ *	optionally printing a warning or alert message, and optionally
+ *	incrementing a stat counter.  The table is terminated by an entry
+ *	specifying mask 0.  Returns the number of fatal interrupt conditions.
+ */
+static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
+				 unsigned int mask,
+				 const struct intr_info *acts,
+				 unsigned long *stats)
+{
+	int fatal = 0;
+	unsigned int status = t3_read_reg(adapter, reg) & mask;
+
+	for (; acts->mask; ++acts) {
+		if (!(status & acts->mask))
+			continue;
+		if (acts->fatal) {
+			fatal++;
+			CH_ALERT(adapter, "%s (0x%x)\n",
+				 acts->msg, status & acts->mask);
+		} else if (acts->msg)
+			CH_WARN(adapter, "%s (0x%x)\n",
+				acts->msg, status & acts->mask);
+		if (acts->stat_idx >= 0)
+			stats[acts->stat_idx]++;
+	}
+	if (status)		/* clear processed interrupts */
+		t3_write_reg(adapter, reg, status);
+	return fatal;
+}
+
+#define SGE_INTR_MASK (F_RSPQDISABLED)
+#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
+		       F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
+		       F_NFASRCHFAIL)
+#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
+#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
+		       V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
+		       F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
+#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
+			F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
+			F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
+			F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
+			V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
+			V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
+#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
+			F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
+			/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
+			V_BISTERR(M_BISTERR) | F_PEXERR)
+#define ULPRX_INTR_MASK F_PARERR
+#define ULPTX_INTR_MASK 0
+#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
+			 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
+			 F_ZERO_SWITCH_ERROR)
+#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
+		       F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
+		       F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
+	 	       F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
+#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
+			V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
+			V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
+#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
+			V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
+			V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
+#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
+		       V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
+		       V_RXTPPARERRENB(M_RXTPPARERRENB) | \
+		       V_MCAPARERRENB(M_MCAPARERRENB))
+#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
+		      F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
+		      F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
+		      F_MPS0 | F_CPL_SWITCH)
+
+/*
+ * Interrupt handler for the PCIX1 module.
+ */
+static void pci_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info pcix1_intr_info[] = {
+		{ F_PEXERR, "PCI PEX error", -1, 1 },
+		{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
+		{F_SIGTARABT, "PCI signaled target abort", -1, 1},
+		{F_RCVTARABT, "PCI received target abort", -1, 1},
+		{F_RCVMSTABT, "PCI received master abort", -1, 1},
+		{F_SIGSYSERR, "PCI signaled system error", -1, 1},
+		{F_DETPARERR, "PCI detected parity error", -1, 1},
+		{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
+		{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
+		{F_RCVSPLCMPERR, "PCI received split completion error", -1,
+		 1},
+		{F_DETCORECCERR, "PCI correctable ECC error",
+		 STAT_PCI_CORR_ECC, 0},
+		{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
+		{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
+		{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
+		 1},
+		{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
+		 1},
+		{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
+		 1},
+		{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
+		 "error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
+				  pcix1_intr_info, adapter->irq_stats))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * Interrupt handler for the PCIE module.
+ */
+static void pcie_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info pcie_intr_info[] = {
+		{F_UNXSPLCPLERRR,
+		 "PCI unexpected split completion DMA read error", -1, 1},
+		{F_UNXSPLCPLERRC,
+		 "PCI unexpected split completion DMA command error", -1, 1},
+		{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
+		{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
+		{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
+		{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
+		{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
+		 "PCI MSI-X table/PBA parity error", -1, 1},
+		{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
+				  pcie_intr_info, adapter->irq_stats))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * TP interrupt handler.
+ */
+static void tp_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info tp_intr_info[] = {
+		{0xffffff, "TP parity error", -1, 1},
+		{0x1000000, "TP out of Rx pages", -1, 1},
+		{0x2000000, "TP out of Tx pages", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
+				  tp_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * CIM interrupt handler.
+ */
+static void cim_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info cim_intr_info[] = {
+		{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
+		{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
+		{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
+		{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
+		{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
+		{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
+		{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
+		{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
+		{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
+		{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
+		{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
+		{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
+				  cim_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * ULP RX interrupt handler.
+ */
+static void ulprx_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info ulprx_intr_info[] = {
+		{F_PARERR, "ULP RX parity error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
+				  ulprx_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * ULP TX interrupt handler.
+ */
+static void ulptx_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info ulptx_intr_info[] = {
+		{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
+		 STAT_ULP_CH0_PBL_OOB, 0},
+		{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
+		 STAT_ULP_CH1_PBL_OOB, 0},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
+				  ulptx_intr_info, adapter->irq_stats))
+		t3_fatal_err(adapter);
+}
+
+#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
+	F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
+	F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
+	F_ICSPI1_TX_FRAMING_ERROR)
+#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
+	F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
+	F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
+	F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
+
+/*
+ * PM TX interrupt handler.
+ */
+static void pmtx_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info pmtx_intr_info[] = {
+		{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
+		{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
+		{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
+		{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
+		 "PMTX ispi parity error", -1, 1},
+		{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
+		 "PMTX ospi parity error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
+				  pmtx_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
+	F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
+	F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
+	F_IESPI1_TX_FRAMING_ERROR)
+#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
+	F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
+	F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
+	F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
+
+/*
+ * PM RX interrupt handler.
+ */
+static void pmrx_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info pmrx_intr_info[] = {
+		{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
+		{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
+		{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
+		{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
+		 "PMRX ispi parity error", -1, 1},
+		{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
+		 "PMRX ospi parity error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
+				  pmrx_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * CPL switch interrupt handler.
+ */
+static void cplsw_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info cplsw_intr_info[] = {
+/*		{ F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
+		{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
+		{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
+		{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
+		{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
+				  cplsw_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+/*
+ * MPS interrupt handler.
+ */
+static void mps_intr_handler(struct adapter *adapter)
+{
+	static const struct intr_info mps_intr_info[] = {
+		{0x1ff, "MPS parity error", -1, 1},
+		{0}
+	};
+
+	if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
+				  mps_intr_info, NULL))
+		t3_fatal_err(adapter);
+}
+
+#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
+
+/*
+ * MC7 interrupt handler.
+ */
+static void mc7_intr_handler(struct mc7 *mc7)
+{
+	struct adapter *adapter = mc7->adapter;
+	u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
+
+	if (cause & F_CE) {
+		mc7->stats.corr_err++;
+		CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
+			"data 0x%x 0x%x 0x%x\n", mc7->name,
+			t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
+			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
+			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
+			t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
+	}
+
+	if (cause & F_UE) {
+		mc7->stats.uncorr_err++;
+		CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
+			 "data 0x%x 0x%x 0x%x\n", mc7->name,
+			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
+			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
+			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
+			 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
+	}
+
+	if (G_PE(cause)) {
+		mc7->stats.parity_err++;
+		CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
+			 mc7->name, G_PE(cause));
+	}
+
+	if (cause & F_AE) {
+		u32 addr = 0;
+
+		if (adapter->params.rev > 0)
+			addr = t3_read_reg(adapter,
+					   mc7->offset + A_MC7_ERR_ADDR);
+		mc7->stats.addr_err++;
+		CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
+			 mc7->name, addr);
+	}
+
+	if (cause & MC7_INTR_FATAL)
+		t3_fatal_err(adapter);
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
+}
+
+#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
+			V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
+/*
+ * XGMAC interrupt handler.
+ */
+static int mac_intr_handler(struct adapter *adap, unsigned int idx)
+{
+	struct cmac *mac = &adap2pinfo(adap, idx)->mac;
+	u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
+
+	if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
+		mac->stats.tx_fifo_parity_err++;
+		CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
+	}
+	if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
+		mac->stats.rx_fifo_parity_err++;
+		CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
+	}
+	if (cause & F_TXFIFO_UNDERRUN)
+		mac->stats.tx_fifo_urun++;
+	if (cause & F_RXFIFO_OVERFLOW)
+		mac->stats.rx_fifo_ovfl++;
+	if (cause & V_SERDES_LOS(M_SERDES_LOS))
+		mac->stats.serdes_signal_loss++;
+	if (cause & F_XAUIPCSCTCERR)
+		mac->stats.xaui_pcs_ctc_err++;
+	if (cause & F_XAUIPCSALIGNCHANGE)
+		mac->stats.xaui_pcs_align_change++;
+
+	t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
+	if (cause & XGM_INTR_FATAL)
+		t3_fatal_err(adap);
+	return cause != 0;
+}
+
+/*
+ * Interrupt handler for PHY events.
+ */
+int t3_phy_intr_handler(struct adapter *adapter)
+{
+	static const int intr_gpio_bits[] = { 8, 0x20 };
+
+	u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
+
+	for_each_port(adapter, i) {
+		if (cause & intr_gpio_bits[i]) {
+			struct cphy *phy = &adap2pinfo(adapter, i)->phy;
+			int phy_cause = phy->ops->intr_handler(phy);
+
+			if (phy_cause & cphy_cause_link_change)
+				t3_link_changed(adapter, i);
+			if (phy_cause & cphy_cause_fifo_error)
+				phy->fifo_errors++;
+		}
+	}
+
+	t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
+	return 0;
+}
+
+/*
+ * T3 slow path (non-data) interrupt handler.
+ */
+int t3_slow_intr_handler(struct adapter *adapter)
+{
+	u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
+
+	cause &= adapter->slow_intr_mask;
+	if (!cause)
+		return 0;
+	if (cause & F_PCIM0) {
+		if (is_pcie(adapter))
+			pcie_intr_handler(adapter);
+		else
+			pci_intr_handler(adapter);
+	}
+	if (cause & F_SGE3)
+		t3_sge_err_intr_handler(adapter);
+	if (cause & F_MC7_PMRX)
+		mc7_intr_handler(&adapter->pmrx);
+	if (cause & F_MC7_PMTX)
+		mc7_intr_handler(&adapter->pmtx);
+	if (cause & F_MC7_CM)
+		mc7_intr_handler(&adapter->cm);
+	if (cause & F_CIM)
+		cim_intr_handler(adapter);
+	if (cause & F_TP1)
+		tp_intr_handler(adapter);
+	if (cause & F_ULP2_RX)
+		ulprx_intr_handler(adapter);
+	if (cause & F_ULP2_TX)
+		ulptx_intr_handler(adapter);
+	if (cause & F_PM1_RX)
+		pmrx_intr_handler(adapter);
+	if (cause & F_PM1_TX)
+		pmtx_intr_handler(adapter);
+	if (cause & F_CPL_SWITCH)
+		cplsw_intr_handler(adapter);
+	if (cause & F_MPS0)
+		mps_intr_handler(adapter);
+	if (cause & F_MC5A)
+		t3_mc5_intr_handler(&adapter->mc5);
+	if (cause & F_XGMAC0_0)
+		mac_intr_handler(adapter, 0);
+	if (cause & F_XGMAC0_1)
+		mac_intr_handler(adapter, 1);
+	if (cause & F_T3DBG)
+		t3_os_ext_intr_handler(adapter);
+
+	/* Clear the interrupts just processed. */
+	t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
+	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
+	return 1;
+}
+
+/**
+ *	t3_intr_enable - enable interrupts
+ *	@adapter: the adapter whose interrupts should be enabled
+ *
+ *	Enable interrupts by setting the interrupt enable registers of the
+ *	various HW modules and then enabling the top-level interrupt
+ *	concentrator.
+ */
+void t3_intr_enable(struct adapter *adapter)
+{
+	static const struct addr_val_pair intr_en_avp[] = {
+		{A_SG_INT_ENABLE, SGE_INTR_MASK},
+		{A_MC7_INT_ENABLE, MC7_INTR_MASK},
+		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
+		 MC7_INTR_MASK},
+		{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
+		 MC7_INTR_MASK},
+		{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
+		{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
+		{A_TP_INT_ENABLE, 0x3bfffff},
+		{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
+		{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
+		{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
+		{A_MPS_INT_ENABLE, MPS_INTR_MASK},
+	};
+
+	adapter->slow_intr_mask = PL_INTR_MASK;
+
+	t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
+
+	if (adapter->params.rev > 0) {
+		t3_write_reg(adapter, A_CPL_INTR_ENABLE,
+			     CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
+		t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
+			     ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
+			     F_PBL_BOUND_ERR_CH1);
+	} else {
+		t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
+		t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
+	}
+
+	t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
+		     adapter_info(adapter)->gpio_intr);
+	t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
+		     adapter_info(adapter)->gpio_intr);
+	if (is_pcie(adapter))
+		t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
+	else
+		t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
+	t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
+	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
+}
+
+/**
+ *	t3_intr_disable - disable a card's interrupts
+ *	@adapter: the adapter whose interrupts should be disabled
+ *
+ *	Disable interrupts.  We only disable the top-level interrupt
+ *	concentrator and the SGE data interrupts.
+ */
+void t3_intr_disable(struct adapter *adapter)
+{
+	t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
+	t3_read_reg(adapter, A_PL_INT_ENABLE0);	/* flush */
+	adapter->slow_intr_mask = 0;
+}
+
+/**
+ *	t3_intr_clear - clear all interrupts
+ *	@adapter: the adapter whose interrupts should be cleared
+ *
+ *	Clears all interrupts.
+ */
+void t3_intr_clear(struct adapter *adapter)
+{
+	static const unsigned int cause_reg_addr[] = {
+		A_SG_INT_CAUSE,
+		A_SG_RSPQ_FL_STATUS,
+		A_PCIX_INT_CAUSE,
+		A_MC7_INT_CAUSE,
+		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
+		A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
+		A_CIM_HOST_INT_CAUSE,
+		A_TP_INT_CAUSE,
+		A_MC5_DB_INT_CAUSE,
+		A_ULPRX_INT_CAUSE,
+		A_ULPTX_INT_CAUSE,
+		A_CPL_INTR_CAUSE,
+		A_PM1_TX_INT_CAUSE,
+		A_PM1_RX_INT_CAUSE,
+		A_MPS_INT_CAUSE,
+		A_T3DBG_INT_CAUSE,
+	};
+	unsigned int i;
+
+	/* Clear PHY and MAC interrupts for each port. */
+	for_each_port(adapter, i)
+	    t3_port_intr_clear(adapter, i);
+
+	for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
+		t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
+
+	t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
+	t3_read_reg(adapter, A_PL_INT_CAUSE0);	/* flush */
+}
+
+/**
+ *	t3_port_intr_enable - enable port-specific interrupts
+ *	@adapter: associated adapter
+ *	@idx: index of port whose interrupts should be enabled
+ *
+ *	Enable port-specific (i.e., MAC and PHY) interrupts for the given
+ *	adapter port.
+ */
+void t3_port_intr_enable(struct adapter *adapter, int idx)
+{
+	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
+
+	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
+	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
+	phy->ops->intr_enable(phy);
+}
+
+/**
+ *	t3_port_intr_disable - disable port-specific interrupts
+ *	@adapter: associated adapter
+ *	@idx: index of port whose interrupts should be disabled
+ *
+ *	Disable port-specific (i.e., MAC and PHY) interrupts for the given
+ *	adapter port.
+ */
+void t3_port_intr_disable(struct adapter *adapter, int idx)
+{
+	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
+
+	t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
+	t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
+	phy->ops->intr_disable(phy);
+}
+
+/**
+ *	t3_port_intr_clear - clear port-specific interrupts
+ *	@adapter: associated adapter
+ *	@idx: index of port whose interrupts to clear
+ *
+ *	Clear port-specific (i.e., MAC and PHY) interrupts for the given
+ *	adapter port.
+ */
+void t3_port_intr_clear(struct adapter *adapter, int idx)
+{
+	struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
+
+	t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
+	t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
+	phy->ops->intr_clear(phy);
+}
+
+/**
+ * 	t3_sge_write_context - write an SGE context
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@type: the context type
+ *
+ * 	Program an SGE context with the values already loaded in the
+ * 	CONTEXT_DATA? registers.
+ */
+static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
+				unsigned int type)
+{
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
+	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+			       0, 5, 1);
+}
+
+/**
+ *	t3_sge_init_ecntxt - initialize an SGE egress context
+ *	@adapter: the adapter to configure
+ *	@id: the context id
+ *	@gts_enable: whether to enable GTS for the context
+ *	@type: the egress context type
+ *	@respq: associated response queue
+ *	@base_addr: base address of queue
+ *	@size: number of queue entries
+ *	@token: uP token
+ *	@gen: initial generation value for the context
+ *	@cidx: consumer pointer
+ *
+ *	Initialize an SGE egress context and make it ready for use.  If the
+ *	platform allows concurrent context operations, the caller is
+ *	responsible for appropriate locking.
+ */
+int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
+		       enum sge_context_type type, int respq, u64 base_addr,
+		       unsigned int size, unsigned int token, int gen,
+		       unsigned int cidx)
+{
+	unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
+
+	if (base_addr & 0xfff)	/* must be 4K aligned */
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	base_addr >>= 12;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
+		     V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
+		     V_EC_BASE_LO(base_addr & 0xffff));
+	base_addr >>= 16;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
+	base_addr >>= 32;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
+		     V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
+		     V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
+		     F_EC_VALID);
+	return t3_sge_write_context(adapter, id, F_EGRESS);
+}
+
+/**
+ *	t3_sge_init_flcntxt - initialize an SGE free-buffer list context
+ *	@adapter: the adapter to configure
+ *	@id: the context id
+ *	@gts_enable: whether to enable GTS for the context
+ *	@base_addr: base address of queue
+ *	@size: number of queue entries
+ *	@bsize: size of each buffer for this queue
+ *	@cong_thres: threshold to signal congestion to upstream producers
+ *	@gen: initial generation value for the context
+ *	@cidx: consumer pointer
+ *
+ *	Initialize an SGE free list context and make it ready for use.  The
+ *	caller is responsible for ensuring only one context operation occurs
+ *	at a time.
+ */
+int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
+			int gts_enable, u64 base_addr, unsigned int size,
+			unsigned int bsize, unsigned int cong_thres, int gen,
+			unsigned int cidx)
+{
+	if (base_addr & 0xfff)	/* must be 4K aligned */
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	base_addr >>= 12;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
+	base_addr >>= 32;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
+		     V_FL_BASE_HI((u32) base_addr) |
+		     V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
+		     V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
+		     V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
+		     V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
+		     V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
+	return t3_sge_write_context(adapter, id, F_FREELIST);
+}
+
+/**
+ *	t3_sge_init_rspcntxt - initialize an SGE response queue context
+ *	@adapter: the adapter to configure
+ *	@id: the context id
+ *	@irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
+ *	@base_addr: base address of queue
+ *	@size: number of queue entries
+ *	@fl_thres: threshold for selecting the normal or jumbo free list
+ *	@gen: initial generation value for the context
+ *	@cidx: consumer pointer
+ *
+ *	Initialize an SGE response queue context and make it ready for use.
+ *	The caller is responsible for ensuring only one context operation
+ *	occurs at a time.
+ */
+int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
+			 int irq_vec_idx, u64 base_addr, unsigned int size,
+			 unsigned int fl_thres, int gen, unsigned int cidx)
+{
+	unsigned int intr = 0;
+
+	if (base_addr & 0xfff)	/* must be 4K aligned */
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	base_addr >>= 12;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
+		     V_CQ_INDEX(cidx));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
+	base_addr >>= 32;
+	if (irq_vec_idx >= 0)
+		intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
+		     V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
+	return t3_sge_write_context(adapter, id, F_RESPONSEQ);
+}
+
+/**
+ *	t3_sge_init_cqcntxt - initialize an SGE completion queue context
+ *	@adapter: the adapter to configure
+ *	@id: the context id
+ *	@base_addr: base address of queue
+ *	@size: number of queue entries
+ *	@rspq: response queue for async notifications
+ *	@ovfl_mode: CQ overflow mode
+ *	@credits: completion queue credits
+ *	@credit_thres: the credit threshold
+ *
+ *	Initialize an SGE completion queue context and make it ready for use.
+ *	The caller is responsible for ensuring only one context operation
+ *	occurs at a time.
+ */
+int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
+			unsigned int size, int rspq, int ovfl_mode,
+			unsigned int credits, unsigned int credit_thres)
+{
+	if (base_addr & 0xfff)	/* must be 4K aligned */
+		return -EINVAL;
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	base_addr >>= 12;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
+	base_addr >>= 32;
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
+		     V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
+		     V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
+		     V_CQ_CREDIT_THRES(credit_thres));
+	return t3_sge_write_context(adapter, id, F_CQ);
+}
+
+/**
+ *	t3_sge_enable_ecntxt - enable/disable an SGE egress context
+ *	@adapter: the adapter
+ *	@id: the egress context id
+ *	@enable: enable (1) or disable (0) the context
+ *
+ *	Enable or disable an SGE egress context.  The caller is responsible for
+ *	ensuring only one context operation occurs at a time.
+ */
+int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
+{
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
+	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+			       0, 5, 1);
+}
+
+/**
+ *	t3_sge_disable_fl - disable an SGE free-buffer list
+ *	@adapter: the adapter
+ *	@id: the free list context id
+ *
+ *	Disable an SGE free-buffer list.  The caller is responsible for
+ *	ensuring only one context operation occurs at a time.
+ */
+int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
+{
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
+	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+			       0, 5, 1);
+}
+
+/**
+ *	t3_sge_disable_rspcntxt - disable an SGE response queue
+ *	@adapter: the adapter
+ *	@id: the response queue context id
+ *
+ *	Disable an SGE response queue.  The caller is responsible for
+ *	ensuring only one context operation occurs at a time.
+ */
+int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
+{
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
+	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+			       0, 5, 1);
+}
+
+/**
+ *	t3_sge_disable_cqcntxt - disable an SGE completion queue
+ *	@adapter: the adapter
+ *	@id: the completion queue context id
+ *
+ *	Disable an SGE completion queue.  The caller is responsible for
+ *	ensuring only one context operation occurs at a time.
+ */
+int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
+{
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
+	return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+			       0, 5, 1);
+}
+
+/**
+ *	t3_sge_cqcntxt_op - perform an operation on a completion queue context
+ *	@adapter: the adapter
+ *	@id: the context id
+ *	@op: the operation to perform
+ *
+ *	Perform the selected operation on an SGE completion queue context.
+ *	The caller is responsible for ensuring only one context operation
+ *	occurs at a time.
+ */
+int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
+		      unsigned int credits)
+{
+	u32 val;
+
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
+		     V_CONTEXT(id) | F_CQ);
+	if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
+				0, 5, 1, &val))
+		return -EIO;
+
+	if (op >= 2 && op < 7) {
+		if (adapter->params.rev > 0)
+			return G_CQ_INDEX(val);
+
+		t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+			     V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
+		if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
+				    F_CONTEXT_CMD_BUSY, 0, 5, 1))
+			return -EIO;
+		return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
+	}
+	return 0;
+}
+
+/**
+ * 	t3_sge_read_context - read an SGE context
+ * 	@type: the context type
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@data: holds the retrieved context
+ *
+ * 	Read an SGE egress context.  The caller is responsible for ensuring
+ * 	only one context operation occurs at a time.
+ */
+static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
+			       unsigned int id, u32 data[4])
+{
+	if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
+		return -EBUSY;
+
+	t3_write_reg(adapter, A_SG_CONTEXT_CMD,
+		     V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
+	if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
+			    5, 1))
+		return -EIO;
+	data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
+	data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
+	data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
+	data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
+	return 0;
+}
+
+/**
+ * 	t3_sge_read_ecntxt - read an SGE egress context
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@data: holds the retrieved context
+ *
+ * 	Read an SGE egress context.  The caller is responsible for ensuring
+ * 	only one context operation occurs at a time.
+ */
+int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
+{
+	if (id >= 65536)
+		return -EINVAL;
+	return t3_sge_read_context(F_EGRESS, adapter, id, data);
+}
+
+/**
+ * 	t3_sge_read_cq - read an SGE CQ context
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@data: holds the retrieved context
+ *
+ * 	Read an SGE CQ context.  The caller is responsible for ensuring
+ * 	only one context operation occurs at a time.
+ */
+int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
+{
+	if (id >= 65536)
+		return -EINVAL;
+	return t3_sge_read_context(F_CQ, adapter, id, data);
+}
+
+/**
+ * 	t3_sge_read_fl - read an SGE free-list context
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@data: holds the retrieved context
+ *
+ * 	Read an SGE free-list context.  The caller is responsible for ensuring
+ * 	only one context operation occurs at a time.
+ */
+int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
+{
+	if (id >= SGE_QSETS * 2)
+		return -EINVAL;
+	return t3_sge_read_context(F_FREELIST, adapter, id, data);
+}
+
+/**
+ * 	t3_sge_read_rspq - read an SGE response queue context
+ * 	@adapter: the adapter
+ * 	@id: the context id
+ * 	@data: holds the retrieved context
+ *
+ * 	Read an SGE response queue context.  The caller is responsible for
+ * 	ensuring only one context operation occurs at a time.
+ */
+int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
+{
+	if (id >= SGE_QSETS)
+		return -EINVAL;
+	return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
+}
+
+/**
+ *	t3_config_rss - configure Rx packet steering
+ *	@adapter: the adapter
+ *	@rss_config: RSS settings (written to TP_RSS_CONFIG)
+ *	@cpus: values for the CPU lookup table (0xff terminated)
+ *	@rspq: values for the response queue lookup table (0xffff terminated)
+ *
+ *	Programs the receive packet steering logic.  @cpus and @rspq provide
+ *	the values for the CPU and response queue lookup tables.  If they
+ *	provide fewer values than the size of the tables the supplied values
+ *	are used repeatedly until the tables are fully populated.
+ */
+void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
+		   const u8 * cpus, const u16 *rspq)
+{
+	int i, j, cpu_idx = 0, q_idx = 0;
+
+	if (cpus)
+		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
+			u32 val = i << 16;
+
+			for (j = 0; j < 2; ++j) {
+				val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
+				if (cpus[cpu_idx] == 0xff)
+					cpu_idx = 0;
+			}
+			t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
+		}
+
+	if (rspq)
+		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
+			t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
+				     (i << 16) | rspq[q_idx++]);
+			if (rspq[q_idx] == 0xffff)
+				q_idx = 0;
+		}
+
+	t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
+}
+
+/**
+ *	t3_read_rss - read the contents of the RSS tables
+ *	@adapter: the adapter
+ *	@lkup: holds the contents of the RSS lookup table
+ *	@map: holds the contents of the RSS map table
+ *
+ *	Reads the contents of the receive packet steering tables.
+ */
+int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
+{
+	int i;
+	u32 val;
+
+	if (lkup)
+		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
+			t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
+				     0xffff0000 | i);
+			val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
+			if (!(val & 0x80000000))
+				return -EAGAIN;
+			*lkup++ = val;
+			*lkup++ = (val >> 8);
+		}
+
+	if (map)
+		for (i = 0; i < RSS_TABLE_SIZE; ++i) {
+			t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
+				     0xffff0000 | i);
+			val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
+			if (!(val & 0x80000000))
+				return -EAGAIN;
+			*map++ = val;
+		}
+	return 0;
+}
+
+/**
+ *	t3_tp_set_offload_mode - put TP in NIC/offload mode
+ *	@adap: the adapter
+ *	@enable: 1 to select offload mode, 0 for regular NIC
+ *
+ *	Switches TP to NIC/offload mode.
+ */
+void t3_tp_set_offload_mode(struct adapter *adap, int enable)
+{
+	if (is_offload(adap) || !enable)
+		t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
+				 V_NICMODE(!enable));
+}
+
+/**
+ *	pm_num_pages - calculate the number of pages of the payload memory
+ *	@mem_size: the size of the payload memory
+ *	@pg_size: the size of each payload memory page
+ *
+ *	Calculate the number of pages, each of the given size, that fit in a
+ *	memory of the specified size, respecting the HW requirement that the
+ *	number of pages must be a multiple of 24.
+ */
+static inline unsigned int pm_num_pages(unsigned int mem_size,
+					unsigned int pg_size)
+{
+	unsigned int n = mem_size / pg_size;
+
+	return n - n % 24;
+}
+
+#define mem_region(adap, start, size, reg) \
+	t3_write_reg((adap), A_ ## reg, (start)); \
+	start += size
+
+/*
+ *	partition_mem - partition memory and configure TP memory settings
+ *	@adap: the adapter
+ *	@p: the TP parameters
+ *
+ *	Partitions context and payload memory and configures TP's memory
+ *	registers.
+ */
+static void partition_mem(struct adapter *adap, const struct tp_params *p)
+{
+	unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
+	unsigned int timers = 0, timers_shift = 22;
+
+	if (adap->params.rev > 0) {
+		if (tids <= 16 * 1024) {
+			timers = 1;
+			timers_shift = 16;
+		} else if (tids <= 64 * 1024) {
+			timers = 2;
+			timers_shift = 18;
+		} else if (tids <= 256 * 1024) {
+			timers = 3;
+			timers_shift = 20;
+		}
+	}
+
+	t3_write_reg(adap, A_TP_PMM_SIZE,
+		     p->chan_rx_size | (p->chan_tx_size >> 16));
+
+	t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
+	t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
+	t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
+	t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
+			 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
+
+	t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
+	t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
+	t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
+
+	pstructs = p->rx_num_pgs + p->tx_num_pgs;
+	/* Add a bit of headroom and make multiple of 24 */
+	pstructs += 48;
+	pstructs -= pstructs % 24;
+	t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
+
+	m = tids * TCB_SIZE;
+	mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
+	mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
+	t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
+	m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
+	mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
+	mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
+	mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
+	mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
+
+	m = (m + 4095) & ~0xfff;
+	t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
+	t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
+
+	tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
+	m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
+	    adap->params.mc5.nfilters - adap->params.mc5.nroutes;
+	if (tids < m)
+		adap->params.mc5.nservers += m - tids;
+}
+
+static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
+				  u32 val)
+{
+	t3_write_reg(adap, A_TP_PIO_ADDR, addr);
+	t3_write_reg(adap, A_TP_PIO_DATA, val);
+}
+
+static void tp_config(struct adapter *adap, const struct tp_params *p)
+{
+	unsigned int v;
+
+	t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
+		     F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
+		     F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
+	t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
+		     F_MTUENABLE | V_WINDOWSCALEMODE(1) |
+		     V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
+	t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
+		     V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
+		     V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
+		     F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
+	t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
+			 F_IPV6ENABLE | F_NICMODE);
+	t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
+	t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
+	t3_set_reg_field(adap, A_TP_PARA_REG6,
+			 adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND,
+			 0);
+
+	v = t3_read_reg(adap, A_TP_PC_CONFIG);
+	v &= ~(F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL);
+	t3_write_reg(adap, A_TP_PC_CONFIG, v | F_TXDEFERENABLE |
+		     F_MODULATEUNIONMODE | F_HEARBEATDACK |
+		     F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
+
+	v = t3_read_reg(adap, A_TP_PC_CONFIG2);
+	v &= ~F_CHDRAFULL;
+	t3_write_reg(adap, A_TP_PC_CONFIG2, v);
+
+	if (adap->params.rev > 0) {
+		tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
+		t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
+				 F_TXPACEAUTO);
+		t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
+		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
+	} else
+		t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
+
+	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212);
+	t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212);
+	t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212);
+}
+
+/* Desired TP timer resolution in usec */
+#define TP_TMR_RES 50
+
+/* TCP timer values in ms */
+#define TP_DACK_TIMER 50
+#define TP_RTO_MIN    250
+
+/**
+ *	tp_set_timers - set TP timing parameters
+ *	@adap: the adapter to set
+ *	@core_clk: the core clock frequency in Hz
+ *
+ *	Set TP's timing parameters, such as the various timer resolutions and
+ *	the TCP timer values.
+ */
+static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
+{
+	unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
+	unsigned int dack_re = fls(core_clk / 5000) - 1;	/* 200us */
+	unsigned int tstamp_re = fls(core_clk / 1000);	/* 1ms, at least */
+	unsigned int tps = core_clk >> tre;
+
+	t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
+		     V_DELAYEDACKRESOLUTION(dack_re) |
+		     V_TIMESTAMPRESOLUTION(tstamp_re));
+	t3_write_reg(adap, A_TP_DACK_TIMER,
+		     (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
+	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
+	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
+	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
+	t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
+	t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
+		     V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
+		     V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
+		     V_KEEPALIVEMAX(9));
+
+#define SECONDS * tps
+
+	t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
+	t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
+	t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
+	t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
+	t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
+	t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
+	t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
+	t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
+	t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
+
+#undef SECONDS
+}
+
+/**
+ *	t3_tp_set_coalescing_size - set receive coalescing size
+ *	@adap: the adapter
+ *	@size: the receive coalescing size
+ *	@psh: whether a set PSH bit should deliver coalesced data
+ *
+ *	Set the receive coalescing size and PSH bit handling.
+ */
+int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
+{
+	u32 val;
+
+	if (size > MAX_RX_COALESCING_LEN)
+		return -EINVAL;
+
+	val = t3_read_reg(adap, A_TP_PARA_REG3);
+	val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
+
+	if (size) {
+		val |= F_RXCOALESCEENABLE;
+		if (psh)
+			val |= F_RXCOALESCEPSHEN;
+		t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
+			     V_MAXRXDATA(MAX_RX_COALESCING_LEN));
+	}
+	t3_write_reg(adap, A_TP_PARA_REG3, val);
+	return 0;
+}
+
+/**
+ *	t3_tp_set_max_rxsize - set the max receive size
+ *	@adap: the adapter
+ *	@size: the max receive size
+ *
+ *	Set TP's max receive size.  This is the limit that applies when
+ *	receive coalescing is disabled.
+ */
+void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
+{
+	t3_write_reg(adap, A_TP_PARA_REG7,
+		     V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
+}
+
+static void __devinit init_mtus(unsigned short mtus[])
+{
+	/*
+	 * See draft-mathis-plpmtud-00.txt for the values.  The min is 88 so
+	 * it can accomodate max size TCP/IP headers when SACK and timestamps
+	 * are enabled and still have at least 8 bytes of payload.
+	 */
+	mtus[0] = 88;
+	mtus[1] = 256;
+	mtus[2] = 512;
+	mtus[3] = 576;
+	mtus[4] = 808;
+	mtus[5] = 1024;
+	mtus[6] = 1280;
+	mtus[7] = 1492;
+	mtus[8] = 1500;
+	mtus[9] = 2002;
+	mtus[10] = 2048;
+	mtus[11] = 4096;
+	mtus[12] = 4352;
+	mtus[13] = 8192;
+	mtus[14] = 9000;
+	mtus[15] = 9600;
+}
+
+/*
+ * Initial congestion control parameters.
+ */
+static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
+{
+	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
+	a[9] = 2;
+	a[10] = 3;
+	a[11] = 4;
+	a[12] = 5;
+	a[13] = 6;
+	a[14] = 7;
+	a[15] = 8;
+	a[16] = 9;
+	a[17] = 10;
+	a[18] = 14;
+	a[19] = 17;
+	a[20] = 21;
+	a[21] = 25;
+	a[22] = 30;
+	a[23] = 35;
+	a[24] = 45;
+	a[25] = 60;
+	a[26] = 80;
+	a[27] = 100;
+	a[28] = 200;
+	a[29] = 300;
+	a[30] = 400;
+	a[31] = 500;
+
+	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
+	b[9] = b[10] = 1;
+	b[11] = b[12] = 2;
+	b[13] = b[14] = b[15] = b[16] = 3;
+	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
+	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
+	b[28] = b[29] = 6;
+	b[30] = b[31] = 7;
+}
+
+/* The minimum additive increment value for the congestion control table */
+#define CC_MIN_INCR 2U
+
+/**
+ *	t3_load_mtus - write the MTU and congestion control HW tables
+ *	@adap: the adapter
+ *	@mtus: the unrestricted values for the MTU table
+ *	@alphs: the values for the congestion control alpha parameter
+ *	@beta: the values for the congestion control beta parameter
+ *	@mtu_cap: the maximum permitted effective MTU
+ *
+ *	Write the MTU table with the supplied MTUs capping each at &mtu_cap.
+ *	Update the high-speed congestion control table with the supplied alpha,
+ * 	beta, and MTUs.
+ */
+void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
+		  unsigned short alpha[NCCTRL_WIN],
+		  unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
+{
+	static const unsigned int avg_pkts[NCCTRL_WIN] = {
+		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
+		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
+		28672, 40960, 57344, 81920, 114688, 163840, 229376
+	};
+
+	unsigned int i, w;
+
+	for (i = 0; i < NMTUS; ++i) {
+		unsigned int mtu = min(mtus[i], mtu_cap);
+		unsigned int log2 = fls(mtu);
+
+		if (!(mtu & ((1 << log2) >> 2)))	/* round */
+			log2--;
+		t3_write_reg(adap, A_TP_MTU_TABLE,
+			     (i << 24) | (log2 << 16) | mtu);
+
+		for (w = 0; w < NCCTRL_WIN; ++w) {
+			unsigned int inc;
+
+			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
+				  CC_MIN_INCR);
+
+			t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
+				     (w << 16) | (beta[w] << 13) | inc);
+		}
+	}
+}
+
+/**
+ *	t3_read_hw_mtus - returns the values in the HW MTU table
+ *	@adap: the adapter
+ *	@mtus: where to store the HW MTU values
+ *
+ *	Reads the HW MTU table.
+ */
+void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
+{
+	int i;
+
+	for (i = 0; i < NMTUS; ++i) {
+		unsigned int val;
+
+		t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
+		val = t3_read_reg(adap, A_TP_MTU_TABLE);
+		mtus[i] = val & 0x3fff;
+	}
+}
+
+/**
+ *	t3_get_cong_cntl_tab - reads the congestion control table
+ *	@adap: the adapter
+ *	@incr: where to store the alpha values
+ *
+ *	Reads the additive increments programmed into the HW congestion
+ *	control table.
+ */
+void t3_get_cong_cntl_tab(struct adapter *adap,
+			  unsigned short incr[NMTUS][NCCTRL_WIN])
+{
+	unsigned int mtu, w;
+
+	for (mtu = 0; mtu < NMTUS; ++mtu)
+		for (w = 0; w < NCCTRL_WIN; ++w) {
+			t3_write_reg(adap, A_TP_CCTRL_TABLE,
+				     0xffff0000 | (mtu << 5) | w);
+			incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
+				       0x1fff;
+		}
+}
+
+/**
+ *	t3_tp_get_mib_stats - read TP's MIB counters
+ *	@adap: the adapter
+ *	@tps: holds the returned counter values
+ *
+ *	Returns the values of TP's MIB counters.
+ */
+void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
+{
+	t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
+			 sizeof(*tps) / sizeof(u32), 0);
+}
+
+#define ulp_region(adap, name, start, len) \
+	t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
+	t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
+		     (start) + (len) - 1); \
+	start += len
+
+#define ulptx_region(adap, name, start, len) \
+	t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
+	t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
+		     (start) + (len) - 1)
+
+static void ulp_config(struct adapter *adap, const struct tp_params *p)
+{
+	unsigned int m = p->chan_rx_size;
+
+	ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
+	ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
+	ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
+	ulp_region(adap, STAG, m, p->chan_rx_size / 4);
+	ulp_region(adap, RQ, m, p->chan_rx_size / 4);
+	ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
+	ulp_region(adap, PBL, m, p->chan_rx_size / 4);
+	t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
+}
+
+void t3_config_trace_filter(struct adapter *adapter,
+			    const struct trace_params *tp, int filter_index,
+			    int invert, int enable)
+{
+	u32 addr, key[4], mask[4];
+
+	key[0] = tp->sport | (tp->sip << 16);
+	key[1] = (tp->sip >> 16) | (tp->dport << 16);
+	key[2] = tp->dip;
+	key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
+
+	mask[0] = tp->sport_mask | (tp->sip_mask << 16);
+	mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
+	mask[2] = tp->dip_mask;
+	mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
+
+	if (invert)
+		key[3] |= (1 << 29);
+	if (enable)
+		key[3] |= (1 << 28);
+
+	addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
+	tp_wr_indirect(adapter, addr++, key[0]);
+	tp_wr_indirect(adapter, addr++, mask[0]);
+	tp_wr_indirect(adapter, addr++, key[1]);
+	tp_wr_indirect(adapter, addr++, mask[1]);
+	tp_wr_indirect(adapter, addr++, key[2]);
+	tp_wr_indirect(adapter, addr++, mask[2]);
+	tp_wr_indirect(adapter, addr++, key[3]);
+	tp_wr_indirect(adapter, addr, mask[3]);
+	t3_read_reg(adapter, A_TP_PIO_DATA);
+}
+
+/**
+ *	t3_config_sched - configure a HW traffic scheduler
+ *	@adap: the adapter
+ *	@kbps: target rate in Kbps
+ *	@sched: the scheduler index
+ *
+ *	Configure a HW scheduler for the target rate
+ */
+int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
+{
+	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
+	unsigned int clk = adap->params.vpd.cclk * 1000;
+	unsigned int selected_cpt = 0, selected_bpt = 0;
+
+	if (kbps > 0) {
+		kbps *= 125;	/* -> bytes */
+		for (cpt = 1; cpt <= 255; cpt++) {
+			tps = clk / cpt;
+			bpt = (kbps + tps / 2) / tps;
+			if (bpt > 0 && bpt <= 255) {
+				v = bpt * tps;
+				delta = v >= kbps ? v - kbps : kbps - v;
+				if (delta <= mindelta) {
+					mindelta = delta;
+					selected_cpt = cpt;
+					selected_bpt = bpt;
+				}
+			} else if (selected_cpt)
+				break;
+		}
+		if (!selected_cpt)
+			return -EINVAL;
+	}
+	t3_write_reg(adap, A_TP_TM_PIO_ADDR,
+		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
+	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
+	if (sched & 1)
+		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
+	else
+		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
+	t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
+	return 0;
+}
+
+static int tp_init(struct adapter *adap, const struct tp_params *p)
+{
+	int busy = 0;
+
+	tp_config(adap, p);
+	t3_set_vlan_accel(adap, 3, 0);
+
+	if (is_offload(adap)) {
+		tp_set_timers(adap, adap->params.vpd.cclk * 1000);
+		t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
+		busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
+				       0, 1000, 5);
+		if (busy)
+			CH_ERR(adap, "TP initialization timed out\n");
+	}
+
+	if (!busy)
+		t3_write_reg(adap, A_TP_RESET, F_TPRESET);
+	return busy;
+}
+
+int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
+{
+	if (port_mask & ~((1 << adap->params.nports) - 1))
+		return -EINVAL;
+	t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
+			 port_mask << S_PORT0ACTIVE);
+	return 0;
+}
+
+/*
+ * Perform the bits of HW initialization that are dependent on the number
+ * of available ports.
+ */
+static void init_hw_for_avail_ports(struct adapter *adap, int nports)
+{
+	int i;
+
+	if (nports == 1) {
+		t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
+		t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
+		t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
+			     F_PORT0ACTIVE | F_ENFORCEPKT);
+		t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000);
+	} else {
+		t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
+		t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
+		t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
+			     V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
+		t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
+			     F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
+			     F_ENFORCEPKT);
+		t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
+		t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
+		t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
+			     V_TX_MOD_QUEUE_REQ_MAP(0xaa));
+		for (i = 0; i < 16; i++)
+			t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
+				     (i << 16) | 0x1010);
+	}
+}
+
+static int calibrate_xgm(struct adapter *adapter)
+{
+	if (uses_xaui(adapter)) {
+		unsigned int v, i;
+
+		for (i = 0; i < 5; ++i) {
+			t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
+			t3_read_reg(adapter, A_XGM_XAUI_IMP);
+			msleep(1);
+			v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
+			if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
+				t3_write_reg(adapter, A_XGM_XAUI_IMP,
+					     V_XAUIIMP(G_CALIMP(v) >> 2));
+				return 0;
+			}
+		}
+		CH_ERR(adapter, "MAC calibration failed\n");
+		return -1;
+	} else {
+		t3_write_reg(adapter, A_XGM_RGMII_IMP,
+			     V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
+				 F_XGM_IMPSETUPDATE);
+	}
+	return 0;
+}
+
+static void calibrate_xgm_t3b(struct adapter *adapter)
+{
+	if (!uses_xaui(adapter)) {
+		t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
+			     F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
+				 F_XGM_IMPSETUPDATE);
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
+				 0);
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
+		t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
+	}
+}
+
+struct mc7_timing_params {
+	unsigned char ActToPreDly;
+	unsigned char ActToRdWrDly;
+	unsigned char PreCyc;
+	unsigned char RefCyc[5];
+	unsigned char BkCyc;
+	unsigned char WrToRdDly;
+	unsigned char RdToWrDly;
+};
+
+/*
+ * Write a value to a register and check that the write completed.  These
+ * writes normally complete in a cycle or two, so one read should suffice.
+ * The very first read exists to flush the posted write to the device.
+ */
+static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
+{
+	t3_write_reg(adapter, addr, val);
+	t3_read_reg(adapter, addr);	/* flush */
+	if (!(t3_read_reg(adapter, addr) & F_BUSY))
+		return 0;
+	CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
+	return -EIO;
+}
+
+static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
+{
+	static const unsigned int mc7_mode[] = {
+		0x632, 0x642, 0x652, 0x432, 0x442
+	};
+	static const struct mc7_timing_params mc7_timings[] = {
+		{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
+		{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
+		{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
+		{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
+		{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
+	};
+
+	u32 val;
+	unsigned int width, density, slow, attempts;
+	struct adapter *adapter = mc7->adapter;
+	const struct mc7_timing_params *p = &mc7_timings[mem_type];
+
+	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
+	slow = val & F_SLOW;
+	width = G_WIDTH(val);
+	density = G_DEN(val);
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
+	val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
+	msleep(1);
+
+	if (!slow) {
+		t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
+		t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
+		msleep(1);
+		if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
+		    (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
+			CH_ERR(adapter, "%s MC7 calibration timed out\n",
+			       mc7->name);
+			goto out_fail;
+		}
+	}
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
+		     V_ACTTOPREDLY(p->ActToPreDly) |
+		     V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
+		     V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
+		     V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
+		     val | F_CLKEN | F_TERM150);
+	t3_read_reg(adapter, mc7->offset + A_MC7_CFG);	/* flush */
+
+	if (!slow)
+		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
+				 F_DLLENB);
+	udelay(1);
+
+	val = slow ? 3 : 6;
+	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
+		goto out_fail;
+
+	if (!slow) {
+		t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
+		t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
+		udelay(5);
+	}
+
+	if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
+		       mc7_mode[mem_type]) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
+	    wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
+		goto out_fail;
+
+	/* clock value is in KHz */
+	mc7_clock = mc7_clock * 7812 + mc7_clock / 2;	/* ns */
+	mc7_clock /= 1000000;	/* KHz->MHz, ns->us */
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_REF,
+		     F_PERREFEN | V_PREREFDIV(mc7_clock));
+	t3_read_reg(adapter, mc7->offset + A_MC7_REF);	/* flush */
+
+	t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
+	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
+	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
+	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
+		     (mc7->size << width) - 1);
+	t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
+	t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);	/* flush */
+
+	attempts = 50;
+	do {
+		msleep(250);
+		val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
+	} while ((val & F_BUSY) && --attempts);
+	if (val & F_BUSY) {
+		CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
+		goto out_fail;
+	}
+
+	/* Enable normal memory accesses. */
+	t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
+	return 0;
+
+out_fail:
+	return -1;
+}
+
+static void config_pcie(struct adapter *adap)
+{
+	static const u16 ack_lat[4][6] = {
+		{237, 416, 559, 1071, 2095, 4143},
+		{128, 217, 289, 545, 1057, 2081},
+		{73, 118, 154, 282, 538, 1050},
+		{67, 107, 86, 150, 278, 534}
+	};
+	static const u16 rpl_tmr[4][6] = {
+		{711, 1248, 1677, 3213, 6285, 12429},
+		{384, 651, 867, 1635, 3171, 6243},
+		{219, 354, 462, 846, 1614, 3150},
+		{201, 321, 258, 450, 834, 1602}
+	};
+
+	u16 val;
+	unsigned int log2_width, pldsize;
+	unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
+
+	pci_read_config_word(adap->pdev,
+			     adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
+			     &val);
+	pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
+	pci_read_config_word(adap->pdev,
+			     adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
+			     &val);
+
+	fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
+	fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
+	    G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
+	log2_width = fls(adap->params.pci.width) - 1;
+	acklat = ack_lat[log2_width][pldsize];
+	if (val & 1)		/* check LOsEnable */
+		acklat += fst_trn_tx * 4;
+	rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
+
+	if (adap->params.rev == 0)
+		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
+				 V_T3A_ACKLAT(M_T3A_ACKLAT),
+				 V_T3A_ACKLAT(acklat));
+	else
+		t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
+				 V_ACKLAT(acklat));
+
+	t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
+			 V_REPLAYLMT(rpllmt));
+
+	t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
+	t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
+}
+
+/*
+ * Initialize and configure T3 HW modules.  This performs the
+ * initialization steps that need to be done once after a card is reset.
+ * MAC and PHY initialization is handled separarely whenever a port is enabled.
+ *
+ * fw_params are passed to FW and their value is platform dependent.  Only the
+ * top 8 bits are available for use, the rest must be 0.
+ */
+int t3_init_hw(struct adapter *adapter, u32 fw_params)
+{
+	int err = -EIO, attempts = 100;
+	const struct vpd_params *vpd = &adapter->params.vpd;
+
+	if (adapter->params.rev > 0)
+		calibrate_xgm_t3b(adapter);
+	else if (calibrate_xgm(adapter))
+		goto out_err;
+
+	if (vpd->mclk) {
+		partition_mem(adapter, &adapter->params.tp);
+
+		if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
+		    mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
+		    mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
+		    t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
+				adapter->params.mc5.nfilters,
+				adapter->params.mc5.nroutes))
+			goto out_err;
+	}
+
+	if (tp_init(adapter, &adapter->params.tp))
+		goto out_err;
+
+	t3_tp_set_coalescing_size(adapter,
+				  min(adapter->params.sge.max_pkt_size,
+				      MAX_RX_COALESCING_LEN), 1);
+	t3_tp_set_max_rxsize(adapter,
+			     min(adapter->params.sge.max_pkt_size, 16384U));
+	ulp_config(adapter, &adapter->params.tp);
+
+	if (is_pcie(adapter))
+		config_pcie(adapter);
+	else
+		t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
+
+	t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000);
+	init_hw_for_avail_ports(adapter, adapter->params.nports);
+	t3_sge_init(adapter, &adapter->params.sge);
+
+	t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
+	t3_write_reg(adapter, A_CIM_BOOT_CFG,
+		     V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
+	t3_read_reg(adapter, A_CIM_BOOT_CFG);	/* flush */
+
+	do {			/* wait for uP to initialize */
+		msleep(20);
+	} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
+	if (!attempts)
+		goto out_err;
+
+	err = 0;
+out_err:
+	return err;
+}
+
+/**
+ *	get_pci_mode - determine a card's PCI mode
+ *	@adapter: the adapter
+ *	@p: where to store the PCI settings
+ *
+ *	Determines a card's PCI mode and associated parameters, such as speed
+ *	and width.
+ */
+static void __devinit get_pci_mode(struct adapter *adapter,
+				   struct pci_params *p)
+{
+	static unsigned short speed_map[] = { 33, 66, 100, 133 };
+	u32 pci_mode, pcie_cap;
+
+	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
+	if (pcie_cap) {
+		u16 val;
+
+		p->variant = PCI_VARIANT_PCIE;
+		p->pcie_cap_addr = pcie_cap;
+		pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
+					&val);
+		p->width = (val >> 4) & 0x3f;
+		return;
+	}
+
+	pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
+	p->speed = speed_map[G_PCLKRANGE(pci_mode)];
+	p->width = (pci_mode & F_64BIT) ? 64 : 32;
+	pci_mode = G_PCIXINITPAT(pci_mode);
+	if (pci_mode == 0)
+		p->variant = PCI_VARIANT_PCI;
+	else if (pci_mode < 4)
+		p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
+	else if (pci_mode < 8)
+		p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
+	else
+		p->variant = PCI_VARIANT_PCIX_266_MODE2;
+}
+
+/**
+ *	init_link_config - initialize a link's SW state
+ *	@lc: structure holding the link state
+ *	@ai: information about the current card
+ *
+ *	Initializes the SW state maintained for each link, including the link's
+ *	capabilities and default speed/duplex/flow-control/autonegotiation
+ *	settings.
+ */
+static void __devinit init_link_config(struct link_config *lc,
+				       unsigned int caps)
+{
+	lc->supported = caps;
+	lc->requested_speed = lc->speed = SPEED_INVALID;
+	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
+	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
+	if (lc->supported & SUPPORTED_Autoneg) {
+		lc->advertising = lc->supported;
+		lc->autoneg = AUTONEG_ENABLE;
+		lc->requested_fc |= PAUSE_AUTONEG;
+	} else {
+		lc->advertising = 0;
+		lc->autoneg = AUTONEG_DISABLE;
+	}
+}
+
+/**
+ *	mc7_calc_size - calculate MC7 memory size
+ *	@cfg: the MC7 configuration
+ *
+ *	Calculates the size of an MC7 memory in bytes from the value of its
+ *	configuration register.
+ */
+static unsigned int __devinit mc7_calc_size(u32 cfg)
+{
+	unsigned int width = G_WIDTH(cfg);
+	unsigned int banks = !!(cfg & F_BKS) + 1;
+	unsigned int org = !!(cfg & F_ORG) + 1;
+	unsigned int density = G_DEN(cfg);
+	unsigned int MBs = ((256 << density) * banks) / (org << width);
+
+	return MBs << 20;
+}
+
+static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
+			       unsigned int base_addr, const char *name)
+{
+	u32 cfg;
+
+	mc7->adapter = adapter;
+	mc7->name = name;
+	mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
+	cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
+	mc7->size = mc7_calc_size(cfg);
+	mc7->width = G_WIDTH(cfg);
+}
+
+void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
+{
+	mac->adapter = adapter;
+	mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
+	mac->nucast = 1;
+
+	if (adapter->params.rev == 0 && uses_xaui(adapter)) {
+		t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
+			     is_10G(adapter) ? 0x2901c04 : 0x2301c04);
+		t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
+				 F_ENRGMII, 0);
+	}
+}
+
+void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
+{
+	u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
+
+	mi1_init(adapter, ai);
+	t3_write_reg(adapter, A_I2C_CFG,	/* set for 80KHz */
+		     V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
+	t3_write_reg(adapter, A_T3DBG_GPIO_EN,
+		     ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
+
+	if (adapter->params.rev == 0 || !uses_xaui(adapter))
+		val |= F_ENRGMII;
+
+	/* Enable MAC clocks so we can access the registers */
+	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
+	t3_read_reg(adapter, A_XGM_PORT_CFG);
+
+	val |= F_CLKDIVRESET_;
+	t3_write_reg(adapter, A_XGM_PORT_CFG, val);
+	t3_read_reg(adapter, A_XGM_PORT_CFG);
+	t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
+	t3_read_reg(adapter, A_XGM_PORT_CFG);
+}
+
+/*
+ * Reset the adapter.  PCIe cards lose their config space during reset, PCI-X
+ * ones don't.
+ */
+int t3_reset_adapter(struct adapter *adapter)
+{
+	int i;
+	uint16_t devid = 0;
+
+	if (is_pcie(adapter))
+		pci_save_state(adapter->pdev);
+	t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
+
+	/*
+	 * Delay. Give Some time to device to reset fully.
+	 * XXX The delay time should be modified.
+	 */
+	for (i = 0; i < 10; i++) {
+		msleep(50);
+		pci_read_config_word(adapter->pdev, 0x00, &devid);
+		if (devid == 0x1425)
+			break;
+	}
+
+	if (devid != 0x1425)
+		return -1;
+
+	if (is_pcie(adapter))
+		pci_restore_state(adapter->pdev);
+	return 0;
+}
+
+/*
+ * Initialize adapter SW state for the various HW modules, set initial values
+ * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
+ * interface.
+ */
+int __devinit t3_prep_adapter(struct adapter *adapter,
+			      const struct adapter_info *ai, int reset)
+{
+	int ret;
+	unsigned int i, j = 0;
+
+	get_pci_mode(adapter, &adapter->params.pci);
+
+	adapter->params.info = ai;
+	adapter->params.nports = ai->nports;
+	adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
+	adapter->params.linkpoll_period = 0;
+	adapter->params.stats_update_period = is_10G(adapter) ?
+	    MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
+	adapter->params.pci.vpd_cap_addr =
+	    pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
+	ret = get_vpd_params(adapter, &adapter->params.vpd);
+	if (ret < 0)
+		return ret;
+
+	if (reset && t3_reset_adapter(adapter))
+		return -1;
+
+	t3_sge_prep(adapter, &adapter->params.sge);
+
+	if (adapter->params.vpd.mclk) {
+		struct tp_params *p = &adapter->params.tp;
+
+		mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
+		mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
+		mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
+
+		p->nchan = ai->nports;
+		p->pmrx_size = t3_mc7_size(&adapter->pmrx);
+		p->pmtx_size = t3_mc7_size(&adapter->pmtx);
+		p->cm_size = t3_mc7_size(&adapter->cm);
+		p->chan_rx_size = p->pmrx_size / 2;	/* only 1 Rx channel */
+		p->chan_tx_size = p->pmtx_size / p->nchan;
+		p->rx_pg_size = 64 * 1024;
+		p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
+		p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
+		p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
+		p->ntimer_qs = p->cm_size >= (128 << 20) ||
+		    adapter->params.rev > 0 ? 12 : 6;
+
+		adapter->params.mc5.nservers = DEFAULT_NSERVERS;
+		adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
+		    DEFAULT_NFILTERS : 0;
+		adapter->params.mc5.nroutes = 0;
+		t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
+
+		init_mtus(adapter->params.mtus);
+		init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
+	}
+
+	early_hw_init(adapter, ai);
+
+	for_each_port(adapter, i) {
+		u8 hw_addr[6];
+		struct port_info *p = adap2pinfo(adapter, i);
+
+		while (!adapter->params.vpd.port_type[j])
+			++j;
+
+		p->port_type = &port_types[adapter->params.vpd.port_type[j]];
+		p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
+				       ai->mdio_ops);
+		mac_prep(&p->mac, adapter, j);
+		++j;
+
+		/*
+		 * The VPD EEPROM stores the base Ethernet address for the
+		 * card.  A port's address is derived from the base by adding
+		 * the port's index to the base's low octet.
+		 */
+		memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
+		hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
+
+		memcpy(adapter->port[i]->dev_addr, hw_addr,
+		       ETH_ALEN);
+		memcpy(adapter->port[i]->perm_addr, hw_addr,
+		       ETH_ALEN);
+		init_link_config(&p->link_config, p->port_type->caps);
+		p->phy.ops->power_down(&p->phy, 1);
+		if (!(p->port_type->caps & SUPPORTED_IRQ))
+			adapter->params.linkpoll_period = 10;
+	}
+
+	return 0;
+}
+
+void t3_led_ready(struct adapter *adapter)
+{
+	t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
+			 F_GPIO0_OUT_VAL);
+}
_

Patches currently in -mm which might be from divy@xxxxxxxxxxx are

git-netdev-all.patch
cxgb3-vs-gregkh-driver-network-device.patch

-
To unsubscribe from this list: send the line "unsubscribe mm-commits" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html

[Index of Archives]     [Kernel Newbies FAQ]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Photo]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux