The patch titled Subject: mul_u64_u64_div_u64: make it precise always has been added to the -mm mm-nonmm-unstable branch. Its filename is mul_u64_u64_div_u64-make-it-precise-always.patch This patch will shortly appear at https://git.kernel.org/pub/scm/linux/kernel/git/akpm/25-new.git/tree/patches/mul_u64_u64_div_u64-make-it-precise-always.patch This patch will later appear in the mm-nonmm-unstable branch at git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Before you just go and hit "reply", please: a) Consider who else should be cc'ed b) Prefer to cc a suitable mailing list as well c) Ideally: find the original patch on the mailing list and do a reply-to-all to that, adding suitable additional cc's *** Remember to use Documentation/process/submit-checklist.rst when testing your code *** The -mm tree is included into linux-next via the mm-everything branch at git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm and is updated there every 2-3 working days ------------------------------------------------------ From: Nicolas Pitre <npitre@xxxxxxxxxxxx> Subject: mul_u64_u64_div_u64: make it precise always Date: Sun, 7 Jul 2024 15:05:19 -0400 Patch series "mul_u64_u64_div_u64: new implementation", v3. This provides an implementation for mul_u64_u64_div_u64() that always produces exact results. This patch (of 2): Library facilities must always return exact results. If the caller may be contented with approximations then it should do the approximation on its own. In this particular case the comment in the code says "the algorithm ... below might lose some precision". Well, if you try it with e.g.: a = 18446462598732840960 b = 18446462598732840960 c = 18446462598732840961 then the produced answer is 0 whereas the exact answer should be 18446462598732840959. This is _some_ precision lost indeed! Let's reimplement this function so it always produces the exact result regardless of its inputs while preserving existing fast paths when possible. Link: https://lkml.kernel.org/r/20240707190648.1982714-1-nico@xxxxxxxxxxx Link: https://lkml.kernel.org/r/20240707190648.1982714-2-nico@xxxxxxxxxxx Signed-off-by: Nicolas Pitre <npitre@xxxxxxxxxxxx> Tested-by: Uwe Kleine-König <u.kleine-koenig@xxxxxxxxxxxx> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@xxxxxxxxxxxx> Tested-by: Biju Das <biju.das.jz@xxxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- lib/math/div64.c | 108 +++++++++++++++++++++++++++------------------ 1 file changed, 65 insertions(+), 43 deletions(-) --- a/lib/math/div64.c~mul_u64_u64_div_u64-make-it-precise-always +++ a/lib/math/div64.c @@ -186,55 +186,77 @@ EXPORT_SYMBOL(iter_div_u64_rem); #ifndef mul_u64_u64_div_u64 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c) { - u64 res = 0, div, rem; - int shift; + if (ilog2(a) + ilog2(b) <= 62) + return div64_u64(a * b, c); - /* can a * b overflow ? */ - if (ilog2(a) + ilog2(b) > 62) { - /* - * Note that the algorithm after the if block below might lose - * some precision and the result is more exact for b > a. So - * exchange a and b if a is bigger than b. - * - * For example with a = 43980465100800, b = 100000000, c = 1000000000 - * the below calculation doesn't modify b at all because div == 0 - * and then shift becomes 45 + 26 - 62 = 9 and so the result - * becomes 4398035251080. However with a and b swapped the exact - * result is calculated (i.e. 4398046510080). - */ - if (a > b) - swap(a, b); +#if defined(__SIZEOF_INT128__) + + /* native 64x64=128 bits multiplication */ + u128 prod = (u128)a * b; + u64 n_lo = prod, n_hi = prod >> 64; + +#else + + /* perform a 64x64=128 bits multiplication manually */ + u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32; + u64 x, y, z; + + x = (u64)a_lo * b_lo; + y = (u64)a_lo * b_hi + (u32)(x >> 32); + z = (u64)a_hi * b_hi + (u32)(y >> 32); + y = (u64)a_hi * b_lo + (u32)y; + z += (u32)(y >> 32); + x = (y << 32) + (u32)x; + + u64 n_lo = x, n_hi = z; + +#endif + + int shift = __builtin_ctzll(c); + /* try reducing the fraction in case the dividend becomes <= 64 bits */ + if ((n_hi >> shift) == 0) { + u64 n = (n_lo >> shift) | (n_hi << (64 - shift)); + + return div64_u64(n, c >> shift); /* - * (b * a) / c is equal to - * - * (b / c) * a + - * (b % c) * a / c - * - * if nothing overflows. Can the 1st multiplication - * overflow? Yes, but we do not care: this can only - * happen if the end result can't fit in u64 anyway. - * - * So the code below does - * - * res = (b / c) * a; - * b = b % c; + * The remainder value if needed would be: + * res = div64_u64_rem(n, c >> shift, &rem); + * rem = (rem << shift) + (n_lo - (n << shift)); */ - div = div64_u64_rem(b, c, &rem); - res = div * a; - b = rem; - - shift = ilog2(a) + ilog2(b) - 62; - if (shift > 0) { - /* drop precision */ - b >>= shift; - c >>= shift; - if (!c) - return res; - } } - return res + div64_u64(a * b, c); + if (n_hi >= c) { + /* overflow: result is unrepresentable in a u64 */ + return -1; + } + + /* Do the full 128 by 64 bits division */ + + shift = __builtin_clzll(c); + c <<= shift; + + int p = 64 + shift; + u64 res = 0; + bool carry; + + do { + carry = n_hi >> 63; + shift = carry ? 1 : __builtin_clzll(n_hi); + if (p < shift) + break; + p -= shift; + n_hi <<= shift; + n_hi |= n_lo >> (64 - shift); + n_lo <<= shift; + if (carry || (n_hi >= c)) { + n_hi -= c; + res |= 1ULL << p; + } + } while (n_hi); + /* The remainder value if needed would be n_hi << p */ + + return res; } EXPORT_SYMBOL(mul_u64_u64_div_u64); #endif _ Patches currently in -mm which might be from npitre@xxxxxxxxxxxx are mul_u64_u64_div_u64-make-it-precise-always.patch mul_u64_u64_div_u64-basic-sanity-test.patch