The quilt patch titled Subject: shmem: factor shmem_falloc_wait() out of shmem_fault() has been removed from the -mm tree. Its filename was shmem-factor-shmem_falloc_wait-out-of-shmem_fault.patch This patch was dropped because it was merged into the mm-stable branch of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm ------------------------------------------------------ From: Hugh Dickins <hughd@xxxxxxxxxx> Subject: shmem: factor shmem_falloc_wait() out of shmem_fault() Date: Fri, 29 Sep 2023 20:27:53 -0700 (PDT) That Trinity livelock shmem_falloc avoidance block is unlikely, and a distraction from the proper business of shmem_fault(): separate it out. (This used to help compilers save stack on the fault path too, but both gcc and clang nowadays seem to make better choices anyway.) Link: https://lkml.kernel.org/r/6fe379a4-6176-9225-9263-fe60d2633c0@xxxxxxxxxx Signed-off-by: Hugh Dickins <hughd@xxxxxxxxxx> Reviewed-by: Jan Kara <jack@xxxxxxx> Cc: Axel Rasmussen <axelrasmussen@xxxxxxxxxx> Cc: Carlos Maiolino <cem@xxxxxxxxxx> Cc: Christian Brauner <brauner@xxxxxxxxxx> Cc: Chuck Lever <chuck.lever@xxxxxxxxxx> Cc: Darrick J. Wong <djwong@xxxxxxxxxx> Cc: Dave Chinner <dchinner@xxxxxxxxxx> Cc: Johannes Weiner <hannes@xxxxxxxxxxx> Cc: Matthew Wilcox (Oracle) <willy@xxxxxxxxxxxxx> Cc: Tim Chen <tim.c.chen@xxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- mm/shmem.c | 126 +++++++++++++++++++++++++++------------------------ 1 file changed, 69 insertions(+), 57 deletions(-) --- a/mm/shmem.c~shmem-factor-shmem_falloc_wait-out-of-shmem_fault +++ a/mm/shmem.c @@ -2148,87 +2148,99 @@ int shmem_get_folio(struct inode *inode, * entry unconditionally - even if something else had already woken the * target. */ -static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) +static int synchronous_wake_function(wait_queue_entry_t *wait, + unsigned int mode, int sync, void *key) { int ret = default_wake_function(wait, mode, sync, key); list_del_init(&wait->entry); return ret; } +/* + * Trinity finds that probing a hole which tmpfs is punching can + * prevent the hole-punch from ever completing: which in turn + * locks writers out with its hold on i_rwsem. So refrain from + * faulting pages into the hole while it's being punched. Although + * shmem_undo_range() does remove the additions, it may be unable to + * keep up, as each new page needs its own unmap_mapping_range() call, + * and the i_mmap tree grows ever slower to scan if new vmas are added. + * + * It does not matter if we sometimes reach this check just before the + * hole-punch begins, so that one fault then races with the punch: + * we just need to make racing faults a rare case. + * + * The implementation below would be much simpler if we just used a + * standard mutex or completion: but we cannot take i_rwsem in fault, + * and bloating every shmem inode for this unlikely case would be sad. + */ +static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) +{ + struct shmem_falloc *shmem_falloc; + struct file *fpin = NULL; + vm_fault_t ret = 0; + + spin_lock(&inode->i_lock); + shmem_falloc = inode->i_private; + if (shmem_falloc && + shmem_falloc->waitq && + vmf->pgoff >= shmem_falloc->start && + vmf->pgoff < shmem_falloc->next) { + wait_queue_head_t *shmem_falloc_waitq; + DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); + + ret = VM_FAULT_NOPAGE; + fpin = maybe_unlock_mmap_for_io(vmf, NULL); + shmem_falloc_waitq = shmem_falloc->waitq; + prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, + TASK_UNINTERRUPTIBLE); + spin_unlock(&inode->i_lock); + schedule(); + + /* + * shmem_falloc_waitq points into the shmem_fallocate() + * stack of the hole-punching task: shmem_falloc_waitq + * is usually invalid by the time we reach here, but + * finish_wait() does not dereference it in that case; + * though i_lock needed lest racing with wake_up_all(). + */ + spin_lock(&inode->i_lock); + finish_wait(shmem_falloc_waitq, &shmem_fault_wait); + } + spin_unlock(&inode->i_lock); + if (fpin) { + fput(fpin); + ret = VM_FAULT_RETRY; + } + return ret; +} + static vm_fault_t shmem_fault(struct vm_fault *vmf) { - struct vm_area_struct *vma = vmf->vma; - struct inode *inode = file_inode(vma->vm_file); + struct inode *inode = file_inode(vmf->vma->vm_file); gfp_t gfp = mapping_gfp_mask(inode->i_mapping); struct folio *folio = NULL; + vm_fault_t ret = 0; int err; - vm_fault_t ret = VM_FAULT_LOCKED; /* * Trinity finds that probing a hole which tmpfs is punching can - * prevent the hole-punch from ever completing: which in turn - * locks writers out with its hold on i_rwsem. So refrain from - * faulting pages into the hole while it's being punched. Although - * shmem_undo_range() does remove the additions, it may be unable to - * keep up, as each new page needs its own unmap_mapping_range() call, - * and the i_mmap tree grows ever slower to scan if new vmas are added. - * - * It does not matter if we sometimes reach this check just before the - * hole-punch begins, so that one fault then races with the punch: - * we just need to make racing faults a rare case. - * - * The implementation below would be much simpler if we just used a - * standard mutex or completion: but we cannot take i_rwsem in fault, - * and bloating every shmem inode for this unlikely case would be sad. + * prevent the hole-punch from ever completing: noted in i_private. */ if (unlikely(inode->i_private)) { - struct shmem_falloc *shmem_falloc; - - spin_lock(&inode->i_lock); - shmem_falloc = inode->i_private; - if (shmem_falloc && - shmem_falloc->waitq && - vmf->pgoff >= shmem_falloc->start && - vmf->pgoff < shmem_falloc->next) { - struct file *fpin; - wait_queue_head_t *shmem_falloc_waitq; - DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); - - ret = VM_FAULT_NOPAGE; - fpin = maybe_unlock_mmap_for_io(vmf, NULL); - if (fpin) - ret = VM_FAULT_RETRY; - - shmem_falloc_waitq = shmem_falloc->waitq; - prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, - TASK_UNINTERRUPTIBLE); - spin_unlock(&inode->i_lock); - schedule(); - - /* - * shmem_falloc_waitq points into the shmem_fallocate() - * stack of the hole-punching task: shmem_falloc_waitq - * is usually invalid by the time we reach here, but - * finish_wait() does not dereference it in that case; - * though i_lock needed lest racing with wake_up_all(). - */ - spin_lock(&inode->i_lock); - finish_wait(shmem_falloc_waitq, &shmem_fault_wait); - spin_unlock(&inode->i_lock); - - if (fpin) - fput(fpin); + ret = shmem_falloc_wait(vmf, inode); + if (ret) return ret; - } - spin_unlock(&inode->i_lock); } + WARN_ON_ONCE(vmf->page != NULL); err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, gfp, vmf, &ret); if (err) return vmf_error(err); - if (folio) + if (folio) { vmf->page = folio_file_page(folio, vmf->pgoff); + ret |= VM_FAULT_LOCKED; + } return ret; } _ Patches currently in -mm which might be from hughd@xxxxxxxxxx are hugetlbfs-drop-shared-numa-mempolicy-pretence.patch kernfs-drop-shared-numa-mempolicy-hooks.patch mempolicy-fix-migrate_pages2-syscall-return-nr_failed.patch mempolicy-trivia-delete-those-ancient-pr_debugs.patch mempolicy-trivia-slightly-more-consistent-naming.patch mempolicy-trivia-use-pgoff_t-in-shared-mempolicy-tree.patch mempolicy-mpol_shared_policy_init-without-pseudo-vma.patch mempolicy-remove-confusing-mpol_mf_lazy-dead-code.patch mm-add-page_rmappable_folio-wrapper.patch mempolicy-alloc_pages_mpol-for-numa-policy-without-vma.patch mempolicy-mmap_lock-is-not-needed-while-migrating-folios.patch mempolicy-migration-attempt-to-match-interleave-nodes.patch