The quilt patch titled Subject: mm: memcg: use rstat for non-hierarchical stats has been removed from the -mm tree. Its filename was mm-memcg-use-rstat-for-non-hierarchical-stats.patch This patch was dropped because it was merged into the mm-stable branch of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm ------------------------------------------------------ From: Yosry Ahmed <yosryahmed@xxxxxxxxxx> Subject: mm: memcg: use rstat for non-hierarchical stats Date: Wed, 26 Jul 2023 15:32:23 +0000 Currently, memcg uses rstat to maintain aggregated hierarchical stats. Counters are maintained for hierarchical stats at each memcg. Rstat tracks which cgroups have updates on which cpus to keep those counters fresh on the read-side. Non-hierarchical stats are currently not covered by rstat. Their per-cpu counters are summed up on every read, which is expensive. The original implementation did the same. At some point before rstat, non-hierarchical aggregated counters were introduced by commit a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting"). However, those counters were updated on the performance critical write-side, which caused regressions, so they were later removed by commit 815744d75152 ("mm: memcontrol: don't batch updates of local VM stats and events"). See [1] for more detailed history. Kernel versions in between a983b5ebee57 & 815744d75152 (a year and a half) enjoyed cheap reads of non-hierarchical stats, specifically on cgroup v1. When moving to more recent kernels, a performance regression for reading non-hierarchical stats is observed. Now that we have rstat, we know exactly which percpu counters have updates for each stat. We can maintain non-hierarchical counters again, making reads much more efficient, without affecting the performance critical write-side. Hence, add non-hierarchical (i.e local) counters for the stats, and extend rstat flushing to keep those up-to-date. A caveat is that we now need a stats flush before reading local/non-hierarchical stats through {memcg/lruvec}_page_state_local() or memcg_events_local(), where we previously only needed a flush to read hierarchical stats. Most contexts reading non-hierarchical stats are already doing a flush, add a flush to the only missing context in count_shadow_nodes(). With this patch, reading memory.stat from 1000 memcgs is 3x faster on a machine with 256 cpus on cgroup v1: # for i in $(seq 1000); do mkdir /sys/fs/cgroup/memory/cg$i; done # time cat /sys/fs/cgroup/memory/cg*/memory.stat > /dev/null real 0m0.125s user 0m0.005s sys 0m0.120s After: real 0m0.032s user 0m0.005s sys 0m0.027s To make sure there are no regressions on cgroup v2, I ran an artificial reclaim/refault stress test [2] that creates (NR_CPUS * 2) cgroups, assigns them limits, runs a worker process in each cgroup that allocates tmpfs memory equal to quadruple the limit (to invoke reclaim continuously), and then reads back the entire file (to invoke refaults). All workers are run in parallel, and zram is used as a swapping backend. Both reclaim and refault have conditional stats flushing. I ran this on a machine with 112 cpus, once on mm-unstable, and once on mm-unstable with this patch reverted. (1) A few runs without this patch: # time ./stress_reclaim_refault.sh real 0m9.949s user 0m0.496s sys 14m44.974s # time ./stress_reclaim_refault.sh real 0m10.049s user 0m0.486s sys 14m55.791s # time ./stress_reclaim_refault.sh real 0m9.984s user 0m0.481s sys 14m53.841s (2) A few runs with this patch: # time ./stress_reclaim_refault.sh real 0m9.885s user 0m0.486s sys 14m48.753s # time ./stress_reclaim_refault.sh real 0m9.903s user 0m0.495s sys 14m48.339s # time ./stress_reclaim_refault.sh real 0m9.861s user 0m0.507s sys 14m49.317s No regressions are observed with this patch. There is actually a very slight improvement. If I have to guess, maybe it's because we avoid the percpu loop in count_shadow_nodes() when calling lruvec_page_state_local(), but I could not prove this using perf, it's probably in the noise. [1] https://lore.kernel.org/lkml/20230725201811.GA1231514@xxxxxxxxxxx/ [2] https://lore.kernel.org/lkml/CAJD7tkb17x=qwoO37uxyYXLEUVp15BQKR+Xfh7Sg9Hx-wTQ_=w@xxxxxxxxxxxxxx/ Link: https://lkml.kernel.org/r/20230803185046.1385770-1-yosryahmed@xxxxxxxxxx Link: https://lkml.kernel.org/r/20230726153223.821757-2-yosryahmed@xxxxxxxxxx Signed-off-by: Yosry Ahmed <yosryahmed@xxxxxxxxxx> Acked-by: Johannes Weiner <hannes@xxxxxxxxxxx> Acked-by: Roman Gushchin <roman.gushchin@xxxxxxxxx> Acked-by: Michal Hocko <mhocko@xxxxxxxx> Cc: Muchun Song <muchun.song@xxxxxxxxx> Cc: Shakeel Butt <shakeelb@xxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- include/linux/memcontrol.h | 7 ++- mm/memcontrol.c | 67 +++++++++++++++++++---------------- mm/workingset.c | 1 3 files changed, 43 insertions(+), 32 deletions(-) --- a/include/linux/memcontrol.h~mm-memcg-use-rstat-for-non-hierarchical-stats +++ a/include/linux/memcontrol.h @@ -111,6 +111,9 @@ struct lruvec_stats { /* Aggregated (CPU and subtree) state */ long state[NR_VM_NODE_STAT_ITEMS]; + /* Non-hierarchical (CPU aggregated) state */ + long state_local[NR_VM_NODE_STAT_ITEMS]; + /* Pending child counts during tree propagation */ long state_pending[NR_VM_NODE_STAT_ITEMS]; }; @@ -1018,14 +1021,12 @@ static inline unsigned long lruvec_page_ { struct mem_cgroup_per_node *pn; long x = 0; - int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); - for_each_possible_cpu(cpu) - x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); + x = READ_ONCE(pn->lruvec_stats.state_local[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; --- a/mm/memcontrol.c~mm-memcg-use-rstat-for-non-hierarchical-stats +++ a/mm/memcontrol.c @@ -742,6 +742,10 @@ struct memcg_vmstats { long state[MEMCG_NR_STAT]; unsigned long events[NR_MEMCG_EVENTS]; + /* Non-hierarchical (CPU aggregated) page state & events */ + long state_local[MEMCG_NR_STAT]; + unsigned long events_local[NR_MEMCG_EVENTS]; + /* Pending child counts during tree propagation */ long state_pending[MEMCG_NR_STAT]; unsigned long events_pending[NR_MEMCG_EVENTS]; @@ -775,11 +779,8 @@ void __mod_memcg_state(struct mem_cgroup /* idx can be of type enum memcg_stat_item or node_stat_item. */ static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { - long x = 0; - int cpu; + long x = READ_ONCE(memcg->vmstats->state_local[idx]); - for_each_possible_cpu(cpu) - x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; @@ -926,16 +927,12 @@ static unsigned long memcg_events(struct static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) { - long x = 0; - int cpu; int index = memcg_events_index(event); if (index < 0) return 0; - for_each_possible_cpu(cpu) - x += per_cpu(memcg->vmstats_percpu->events[index], cpu); - return x; + return READ_ONCE(memcg->vmstats->events_local[index]); } static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, @@ -5516,7 +5513,7 @@ static void mem_cgroup_css_rstat_flush(s struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent = parent_mem_cgroup(memcg); struct memcg_vmstats_percpu *statc; - long delta, v; + long delta, delta_cpu, v; int i, nid; statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); @@ -5532,19 +5529,23 @@ static void mem_cgroup_css_rstat_flush(s memcg->vmstats->state_pending[i] = 0; /* Add CPU changes on this level since the last flush */ + delta_cpu = 0; v = READ_ONCE(statc->state[i]); if (v != statc->state_prev[i]) { - delta += v - statc->state_prev[i]; + delta_cpu = v - statc->state_prev[i]; + delta += delta_cpu; statc->state_prev[i] = v; } - if (!delta) - continue; - /* Aggregate counts on this level and propagate upwards */ - memcg->vmstats->state[i] += delta; - if (parent) - parent->vmstats->state_pending[i] += delta; + if (delta_cpu) + memcg->vmstats->state_local[i] += delta_cpu; + + if (delta) { + memcg->vmstats->state[i] += delta; + if (parent) + parent->vmstats->state_pending[i] += delta; + } } for (i = 0; i < NR_MEMCG_EVENTS; i++) { @@ -5552,18 +5553,22 @@ static void mem_cgroup_css_rstat_flush(s if (delta) memcg->vmstats->events_pending[i] = 0; + delta_cpu = 0; v = READ_ONCE(statc->events[i]); if (v != statc->events_prev[i]) { - delta += v - statc->events_prev[i]; + delta_cpu = v - statc->events_prev[i]; + delta += delta_cpu; statc->events_prev[i] = v; } - if (!delta) - continue; + if (delta_cpu) + memcg->vmstats->events_local[i] += delta_cpu; - memcg->vmstats->events[i] += delta; - if (parent) - parent->vmstats->events_pending[i] += delta; + if (delta) { + memcg->vmstats->events[i] += delta; + if (parent) + parent->vmstats->events_pending[i] += delta; + } } for_each_node_state(nid, N_MEMORY) { @@ -5581,18 +5586,22 @@ static void mem_cgroup_css_rstat_flush(s if (delta) pn->lruvec_stats.state_pending[i] = 0; + delta_cpu = 0; v = READ_ONCE(lstatc->state[i]); if (v != lstatc->state_prev[i]) { - delta += v - lstatc->state_prev[i]; + delta_cpu = v - lstatc->state_prev[i]; + delta += delta_cpu; lstatc->state_prev[i] = v; } - if (!delta) - continue; + if (delta_cpu) + pn->lruvec_stats.state_local[i] += delta_cpu; - pn->lruvec_stats.state[i] += delta; - if (ppn) - ppn->lruvec_stats.state_pending[i] += delta; + if (delta) { + pn->lruvec_stats.state[i] += delta; + if (ppn) + ppn->lruvec_stats.state_pending[i] += delta; + } } } } --- a/mm/workingset.c~mm-memcg-use-rstat-for-non-hierarchical-stats +++ a/mm/workingset.c @@ -664,6 +664,7 @@ static unsigned long count_shadow_nodes( struct lruvec *lruvec; int i; + mem_cgroup_flush_stats(); lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid)); for (pages = 0, i = 0; i < NR_LRU_LISTS; i++) pages += lruvec_page_state_local(lruvec, _ Patches currently in -mm which might be from yosryahmed@xxxxxxxxxx are