The quilt patch titled Subject: mm: remove mlock_vma_page() has been removed from the -mm tree. Its filename was mm-remove-mlock_vma_page.patch This patch was dropped because it was merged into the mm-stable branch of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm ------------------------------------------------------ From: "Matthew Wilcox (Oracle)" <willy@xxxxxxxxxxxxx> Subject: mm: remove mlock_vma_page() Date: Mon, 16 Jan 2023 19:28:25 +0000 All callers now have a folio and can call mlock_vma_folio(). Update the documentation to refer to mlock_vma_folio(). Link: https://lkml.kernel.org/r/20230116192827.2146732-3-willy@xxxxxxxxxxxxx Signed-off-by: Matthew Wilcox (Oracle) <willy@xxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- --- a/Documentation/mm/unevictable-lru.rst~mm-remove-mlock_vma_page +++ a/Documentation/mm/unevictable-lru.rst @@ -311,7 +311,7 @@ do end up getting faulted into this VM_L fault path - which is also how mlock2()'s MLOCK_ONFAULT areas are handled. For each PTE (or PMD) being faulted into a VMA, the page add rmap function -calls mlock_vma_page(), which calls mlock_folio() when the VMA is VM_LOCKED +calls mlock_vma_folio(), which calls mlock_folio() when the VMA is VM_LOCKED (unless it is a PTE mapping of a part of a transparent huge page). Or when it is a newly allocated anonymous page, folio_add_lru_vma() calls mlock_new_folio() instead: similar to mlock_folio(), but can make better @@ -413,7 +413,7 @@ However, since mlock_vma_pages_range() s before mlocking any pages already present, if one of those pages were migrated before mlock_pte_range() reached it, it would get counted twice in mlock_count. To prevent that, mlock_vma_pages_range() temporarily marks the VMA as VM_IO, -so that mlock_vma_page() will skip it. +so that mlock_vma_folio() will skip it. To complete page migration, we place the old and new pages back onto the LRU afterwards. The "unneeded" page - old page on success, new page on failure - @@ -552,6 +552,6 @@ and node unevictable list. rmap's folio_referenced_one(), called via vmscan's shrink_active_list() or shrink_page_list(), and rmap's try_to_unmap_one() called via shrink_page_list(), -check for (3) pages still mapped into VM_LOCKED VMAs, and call mlock_vma_page() +check for (3) pages still mapped into VM_LOCKED VMAs, and call mlock_vma_folio() to correct them. Such pages are culled to the unevictable list when released by the shrinker. --- a/mm/internal.h~mm-remove-mlock_vma_page +++ a/mm/internal.h @@ -518,7 +518,7 @@ extern long faultin_vma_page_range(struc extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, unsigned long len); /* - * mlock_vma_page() and munlock_vma_page(): + * mlock_vma_folio() and munlock_vma_folio(): * should be called with vma's mmap_lock held for read or write, * under page table lock for the pte/pmd being added or removed. * @@ -547,12 +547,6 @@ static inline void mlock_vma_folio(struc mlock_folio(folio); } -static inline void mlock_vma_page(struct page *page, - struct vm_area_struct *vma, bool compound) -{ - mlock_vma_folio(page_folio(page), vma, compound); -} - void munlock_folio(struct folio *folio); static inline void munlock_vma_folio(struct folio *folio, @@ -656,8 +650,6 @@ static inline struct file *maybe_unlock_ } #else /* !CONFIG_MMU */ static inline void unmap_mapping_folio(struct folio *folio) { } -static inline void mlock_vma_page(struct page *page, - struct vm_area_struct *vma, bool compound) { } static inline void munlock_vma_page(struct page *page, struct vm_area_struct *vma, bool compound) { } static inline void mlock_new_folio(struct folio *folio) { } --- a/mm/mlock.c~mm-remove-mlock_vma_page +++ a/mm/mlock.c @@ -370,9 +370,9 @@ static void mlock_vma_pages_range(struct /* * There is a slight chance that concurrent page migration, * or page reclaim finding a page of this now-VM_LOCKED vma, - * will call mlock_vma_page() and raise page's mlock_count: + * will call mlock_vma_folio() and raise page's mlock_count: * double counting, leaving the page unevictable indefinitely. - * Communicate this danger to mlock_vma_page() with VM_IO, + * Communicate this danger to mlock_vma_folio() with VM_IO, * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas. * mmap_lock is held in write mode here, so this weird * combination should not be visible to other mmap_lock users; --- a/mm/rmap.c~mm-remove-mlock_vma_page +++ a/mm/rmap.c @@ -1260,7 +1260,7 @@ void page_add_anon_rmap(struct page *pag __page_check_anon_rmap(page, vma, address); } - mlock_vma_page(page, vma, compound); + mlock_vma_folio(folio, vma, compound); } /** @@ -1351,7 +1351,7 @@ void page_add_file_rmap(struct page *pag if (nr) __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); - mlock_vma_page(page, vma, compound); + mlock_vma_folio(folio, vma, compound); } /** _ Patches currently in -mm which might be from willy@xxxxxxxxxxxxx are