[merged mm-stable] mm-ksm-simplify-break_ksm-to-not-rely-on-vm_fault_write.patch removed from -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The quilt patch titled
     Subject: mm/ksm: simplify break_ksm() to not rely on VM_FAULT_WRITE
has been removed from the -mm tree.  Its filename was
     mm-ksm-simplify-break_ksm-to-not-rely-on-vm_fault_write.patch

This patch was dropped because it was merged into the mm-stable branch
of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

------------------------------------------------------
From: David Hildenbrand <david@xxxxxxxxxx>
Subject: mm/ksm: simplify break_ksm() to not rely on VM_FAULT_WRITE
Date: Fri, 21 Oct 2022 12:11:34 +0200

Now that GUP no longer requires VM_FAULT_WRITE, break_ksm() is the sole
remaining user of VM_FAULT_WRITE.  As we also want to stop triggering a
fake write fault and instead use FAULT_FLAG_UNSHARE -- similar to
GUP-triggered unsharing when taking a R/O pin on a shared anonymous page
(including KSM pages), let's stop relying on VM_FAULT_WRITE.

Let's rework break_ksm() to not rely on the return value of
handle_mm_fault() anymore to figure out whether COW-breaking was
successful.  Simply perform another follow_page() lookup to verify the
result.

While this makes break_ksm() slightly less efficient, we can simplify
handle_mm_fault() a little and easily switch to FAULT_FLAG_UNSHARE without
introducing similar KSM-specific behavior for FAULT_FLAG_UNSHARE.

In my setup (AMD Ryzen 9 3900X), running the KSM selftest to test unmerge
performance on 2 GiB (taskset 0x8 ./ksm_tests -D -s 2048), this results in
a performance degradation of ~4% -- 5% (old: ~5250 MiB/s, new: ~5010
MiB/s).

I don't think that we particularly care about that performance drop when
unmerging.  If it ever turns out to be an actual performance issue, we can
think about a better alternative for FAULT_FLAG_UNSHARE -- let's just keep
it simple for now.

Link: https://lkml.kernel.org/r/20221021101141.84170-3-david@xxxxxxxxxx
Signed-off-by: David Hildenbrand <david@xxxxxxxxxx>
Acked-by: Peter Xu <peterx@xxxxxxxxxx>
Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx>
Cc: Hugh Dickins <hughd@xxxxxxxxxx>
Cc: Jason Gunthorpe <jgg@xxxxxxxxxx>
Cc: John Hubbard <jhubbard@xxxxxxxxxx>
Cc: Matthew Wilcox (Oracle) <willy@xxxxxxxxxxxxx>
Cc: Shuah Khan <shuah@xxxxxxxxxx>
Cc: Vlastimil Babka <vbabka@xxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
---

 mm/ksm.c |   25 +++++++++++++------------
 1 file changed, 13 insertions(+), 12 deletions(-)

--- a/mm/ksm.c~mm-ksm-simplify-break_ksm-to-not-rely-on-vm_fault_write
+++ a/mm/ksm.c
@@ -440,26 +440,27 @@ static int break_ksm(struct vm_area_stru
 	vm_fault_t ret = 0;
 
 	do {
+		bool ksm_page = false;
+
 		cond_resched();
 		page = follow_page(vma, addr,
 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 		if (IS_ERR_OR_NULL(page))
 			break;
 		if (PageKsm(page))
-			ret = handle_mm_fault(vma, addr,
-					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
-					      NULL);
-		else
-			ret = VM_FAULT_WRITE;
+			ksm_page = true;
 		put_page(page);
-	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
+
+		if (!ksm_page)
+			return 0;
+		ret = handle_mm_fault(vma, addr,
+				      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
+				      NULL);
+	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 	/*
-	 * We must loop because handle_mm_fault() may back out if there's
-	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
-	 *
-	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
-	 * COW has been broken, even if the vma does not permit VM_WRITE;
-	 * but note that a concurrent fault might break PageKsm for us.
+	 * We must loop until we no longer find a KSM page because
+	 * handle_mm_fault() may back out if there's any difficulty e.g. if
+	 * pte accessed bit gets updated concurrently.
 	 *
 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
 	 * backing file, which also invalidates anonymous pages: that's
_

Patches currently in -mm which might be from david@xxxxxxxxxx are





[Index of Archives]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux