The patch titled Subject: mm/swap: remember PG_anon_exclusive via a swp pte bit has been added to the -mm tree. Its filename is mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit.patch This patch should soon appear at https://ozlabs.org/~akpm/mmots/broken-out/mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit.patch and later at https://ozlabs.org/~akpm/mmotm/broken-out/mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit.patch Before you just go and hit "reply", please: a) Consider who else should be cc'ed b) Prefer to cc a suitable mailing list as well c) Ideally: find the original patch on the mailing list and do a reply-to-all to that, adding suitable additional cc's *** Remember to use Documentation/process/submit-checklist.rst when testing your code *** The -mm tree is included into linux-next and is updated there every 3-4 working days ------------------------------------------------------ From: David Hildenbrand <david@xxxxxxxxxx> Subject: mm/swap: remember PG_anon_exclusive via a swp pte bit Patch series "mm: COW fixes part 3: reliable GUP R/W FOLL_GET of anonymous pages", v2. This series fixes memory corruptions when a GUP R/W reference (FOLL_WRITE | FOLL_GET) was taken on an anonymous page and COW logic fails to detect exclusivity of the page to then replacing the anonymous page by a copy in the page table: The GUP reference lost synchronicity with the pages mapped into the page tables. This series focuses on x86, arm64, s390x and ppc64/book3s -- other architectures are fairly easy to support by implementing __HAVE_ARCH_PTE_SWP_EXCLUSIVE. This primarily fixes the O_DIRECT memory corruptions that can happen on concurrent swapout, whereby we lose DMA reads to a page (modifying the user page by writing to it). O_DIRECT currently uses FOLL_GET for short-term (!FOLL_LONGTERM) DMA from/to a user page. In the long run, we want to convert it to properly use FOLL_PIN, and John is working on it, but that might take a while and might not be easy to backport. In the meantime, let's restore what used to work before we started modifying our COW logic: make R/W FOLL_GET references reliable as long as there is no fork() after GUP involved. This is just the natural follow-up of part 2, that will also further reduce "wrong COW" on the swapin path, for example, when we cannot remove a page from the swapcache due to concurrent writeback, or if we have two threads faulting on the same swapped-out page. Fixing O_DIRECT is just a nice side-product This issue, including other related COW issues, has been summarized in [3] under 2): " 2. Intra Process Memory Corruptions due to Wrong COW (FOLL_GET) It was discovered that we can create a memory corruption by reading a file via O_DIRECT to a part (e.g., first 512 bytes) of a page, concurrently writing to an unrelated part (e.g., last byte) of the same page, and concurrently write-protecting the page via clear_refs SOFTDIRTY tracking [6]. For the reproducer, the issue is that O_DIRECT grabs a reference of the target page (via FOLL_GET) and clear_refs write-protects the relevant page table entry. On successive write access to the page from the process itself, we wrongly COW the page when resolving the write fault, resulting in a loss of synchronicity and consequently a memory corruption. While some people might think that using clear_refs in this combination is a corner cases, it turns out to be a more generic problem unfortunately. For example, it was just recently discovered that we can similarly create a memory corruption without clear_refs, simply by concurrently swapping out the buffer pages [7]. Note that we nowadays even use the swap infrastructure in Linux without an actual swap disk/partition: the prime example is zram which is enabled as default under Fedora [10]. The root issue is that a write-fault on a page that has additional references results in a COW and thereby a loss of synchronicity and consequently a memory corruption if two parties believe they are referencing the same page. " We don't particularly care about R/O FOLL_GET references: they were never reliable and O_DIRECT doesn't expect to observe modifications from a page after DMA was started. Note that: * this only fixes the issue on x86, arm64, s390x and ppc64/book3s ("enterprise architectures"). Other architectures have to implement __HAVE_ARCH_PTE_SWP_EXCLUSIVE to achieve the same. * this does *not * consider any kind of fork() after taking the reference: fork() after GUP never worked reliably with FOLL_GET. * Not losing PG_anon_exclusive during swapout was the last remaining piece. KSM already makes sure that there are no other references on a page before considering it for sharing. Page migration maintains PG_anon_exclusive and simply fails when there are additional references (freezing the refcount fails). Only swapout code dropped the PG_anon_exclusive flag because it requires more work to remember + restore it. With this series in place, most COW issues of [3] are fixed on said architectures. Other architectures can implement __HAVE_ARCH_PTE_SWP_EXCLUSIVE fairly easily. [1] https://lkml.kernel.org/r/20220329160440.193848-1-david@xxxxxxxxxx [2] https://lkml.kernel.org/r/20211217113049.23850-1-david@xxxxxxxxxx [3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@xxxxxxxxxx This patch (of 8): Currently, we clear PG_anon_exclusive in try_to_unmap() and forget about it. We do this, to keep fork() logic on swap entries easy and efficient: for example, if we wouldn't clear it when unmapping, we'd have to lookup the page in the swapcache for each and every swap entry during fork() and clear PG_anon_exclusive if set. Instead, we want to store that information directly in the swap pte, protected by the page table lock, similarly to how we handle SWP_MIGRATION_READ_EXCLUSIVE for migration entries. However, for actual swap entries, we don't want to mess with the swap type (e.g., still one bit) because it overcomplicates swap code. In try_to_unmap(), we already reject to unmap in case the page might be pinned, because we must not lose PG_anon_exclusive on pinned pages ever. Checking if there are other unexpected references reliably *before* completely unmapping a page is unfortunately not really possible: THP heavily overcomplicate the situation. Once fully unmapped it's easier -- we, for example, make sure that there are no unexpected references *after* unmapping a page before starting writeback on that page. So, we currently might end up unmapping a page and clearing PG_anon_exclusive if that page has additional references, for example, due to a FOLL_GET. do_swap_page() has to re-determine if a page is exclusive, which will easily fail if there are other references on a page, most prominently GUP references via FOLL_GET. This can currently result in memory corruptions when taking a FOLL_GET | FOLL_WRITE reference on a page even when fork() is never involved: try_to_unmap() will succeed, and when refaulting the page, it cannot be marked exclusive and will get replaced by a copy in the page tables on the next write access, resulting in writes via the GUP reference to the page being lost. In an ideal world, everybody that uses GUP and wants to modify page content, such as O_DIRECT, would properly use FOLL_PIN. However, that conversion will take a while. It's easier to fix what used to work in the past (FOLL_GET | FOLL_WRITE) remembering PG_anon_exclusive. In addition, by remembering PG_anon_exclusive we can further reduce unnecessary COW in some cases, so it's the natural thing to do. So let's transfer the PG_anon_exclusive information to the swap pte and store it via an architecture-dependant pte bit; use that information when restoring the swap pte in do_swap_page() and unuse_pte(). During fork(), we simply have to clear the pte bit and are done. Of course, there is one corner case to handle: swap backends that don't support concurrent page modifications while the page is under writeback. Special case these, and drop the exclusive marker. Add a comment why that is just fine (also, reuse_swap_page() would have done the same in the past). In the future, we'll hopefully have all architectures support __HAVE_ARCH_PTE_SWP_EXCLUSIVE, such that we can get rid of the empty stubs and the define completely. Then, we can also convert SWP_MIGRATION_READ_EXCLUSIVE. For architectures it's fairly easy to support: either simply use a yet unused pte bit that can be used for swap entries, steal one from the arch type bits if they exceed 5, or steal one from the offset bits. Note: R/O FOLL_GET references were never really reliable, especially when taking one on a shared page and then writing to the page (e.g., GUP after fork()). FOLL_GET, including R/W references, were never really reliable once fork was involved (e.g., GUP before fork(), GUP during fork()). KSM steps back in case it stumbles over unexpected references and is, therefore, fine. Link: https://lkml.kernel.org/r/20220329164329.208407-1-david@xxxxxxxxxx Link: https://lkml.kernel.org/r/20220329164329.208407-2-david@xxxxxxxxxx Signed-off-by: David Hildenbrand <david@xxxxxxxxxx> Cc: Hugh Dickins <hughd@xxxxxxxxxx> Cc: Shakeel Butt <shakeelb@xxxxxxxxxx> Cc: John Hubbard <jhubbard@xxxxxxxxxx> Cc: Jason Gunthorpe <jgg@xxxxxxxxxx> Cc: Mike Kravetz <mike.kravetz@xxxxxxxxxx> Cc: Mike Rapoport <rppt@xxxxxxxxxxxxx> Cc: "Kirill A. Shutemov" <kirill.shutemov@xxxxxxxxxxxxxxx> Cc: Matthew Wilcox (Oracle) <willy@xxxxxxxxxxxxx> Cc: Vlastimil Babka <vbabka@xxxxxxx> Cc: Jann Horn <jannh@xxxxxxxxxx> Cc: Michal Hocko <mhocko@xxxxxxxxxx> Cc: Nadav Amit <namit@xxxxxxxxxx> Cc: Rik van Riel <riel@xxxxxxxxxxx> Cc: Roman Gushchin <guro@xxxxxx> Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx> Cc: Peter Xu <peterx@xxxxxxxxxx> Cc: Don Dutile <ddutile@xxxxxxxxxx> Cc: Christoph Hellwig <hch@xxxxxx> Cc: Oleg Nesterov <oleg@xxxxxxxxxx> Cc: Jan Kara <jack@xxxxxxx> Cc: Liang Zhang <zhangliang5@xxxxxxxxxx> Cc: Pedro Demarchi Gomes <pedrodemargomes@xxxxxxxxx> Cc: Oded Gabbay <oded.gabbay@xxxxxxxxx> Cc: Catalin Marinas <catalin.marinas@xxxxxxx> Cc: Will Deacon <will@xxxxxxxxxx> Cc: Michael Ellerman <mpe@xxxxxxxxxxxxxx> Cc: Benjamin Herrenschmidt <benh@xxxxxxxxxxxxxxxxxxx> Cc: Paul Mackerras <paulus@xxxxxxxxx> Cc: Heiko Carstens <hca@xxxxxxxxxxxxx> Cc: Vasily Gorbik <gor@xxxxxxxxxxxxx> Cc: Alexander Gordeev <agordeev@xxxxxxxxxxxxx> Cc: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Cc: Ingo Molnar <mingo@xxxxxxxxxx> Cc: Borislav Petkov <bp@xxxxxxxxx> Cc: Dave Hansen <dave.hansen@xxxxxxxxxxxxxxx> Cc: Gerald Schaefer <gerald.schaefer@xxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- include/linux/pgtable.h | 29 ++++++++++++++++++++ include/linux/swapops.h | 2 + mm/memory.c | 55 +++++++++++++++++++++++++++++++++++--- mm/rmap.c | 19 +++++++------ mm/swapfile.c | 13 ++++++++ 5 files changed, 105 insertions(+), 13 deletions(-) --- a/include/linux/pgtable.h~mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit +++ a/include/linux/pgtable.h @@ -1003,6 +1003,35 @@ static inline pgprot_t pgprot_modify(pgp #define arch_start_context_switch(prev) do {} while (0) #endif +/* + * When replacing an anonymous page by a real (!non) swap entry, we clear + * PG_anon_exclusive from the page and instead remember whether the flag was + * set in the swp pte. During fork(), we have to mark the entry as !exclusive + * (possibly shared). On swapin, we use that information to restore + * PG_anon_exclusive, which is very helpful in cases where we might have + * additional (e.g., FOLL_GET) references on a page and wouldn't be able to + * detect exclusivity. + * + * These functions don't apply to non-swap entries (e.g., migration, hwpoison, + * ...). + */ +#ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE +static inline pte_t pte_swp_mkexclusive(pte_t pte) +{ + return pte; +} + +static inline int pte_swp_exclusive(pte_t pte) +{ + return false; +} + +static inline pte_t pte_swp_clear_exclusive(pte_t pte) +{ + return pte; +} +#endif + #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) --- a/include/linux/swapops.h~mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit +++ a/include/linux/swapops.h @@ -26,6 +26,8 @@ /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { + if (pte_swp_exclusive(pte)) + pte = pte_swp_clear_exclusive(pte); if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) --- a/mm/memory.c~mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit +++ a/mm/memory.c @@ -792,6 +792,11 @@ copy_nonpresent_pte(struct mm_struct *ds &src_mm->mmlist); spin_unlock(&mmlist_lock); } + /* Mark the swap entry as shared. */ + if (pte_swp_exclusive(*src_pte)) { + pte = pte_swp_clear_exclusive(*src_pte); + set_pte_at(src_mm, addr, src_pte, pte); + } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = pfn_swap_entry_to_page(entry); @@ -3559,6 +3564,7 @@ vm_fault_t do_swap_page(struct vm_fault struct page *page = NULL, *swapcache; struct swap_info_struct *si = NULL; rmap_t rmap_flags = RMAP_NONE; + bool exclusive = false; swp_entry_t entry; pte_t pte; int locked; @@ -3725,6 +3731,46 @@ vm_fault_t do_swap_page(struct vm_fault BUG_ON(PageAnon(page) && PageAnonExclusive(page)); /* + * Check under PT lock (to protect against concurrent fork() sharing + * the swap entry concurrently) for certainly exclusive pages. + */ + if (!PageKsm(page)) { + /* + * Note that pte_swp_exclusive() == false for architectures + * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE. + */ + exclusive = pte_swp_exclusive(vmf->orig_pte); + if (page != swapcache) { + /* + * We have a fresh page that is not exposed to the + * swapcache -> certainly exclusive. + */ + exclusive = true; + } else if (exclusive && PageWriteback(page) && + !(swp_swap_info(entry)->flags & SWP_STABLE_WRITES)) { + /* + * This is tricky: not all swap backends support + * concurrent page modifications while under writeback. + * + * So if we stumble over such a page in the swapcache + * we must not set the page exclusive, otherwise we can + * map it writable without further checks and modify it + * while still under writeback. + * + * For these problematic swap backends, simply drop the + * exclusive marker: this is perfectly fine as we start + * writeback only if we fully unmapped the page and + * there are no unexpected references on the page after + * unmapping succeeded. After fully unmapped, no + * further GUP references (FOLL_GET and FOLL_PIN) can + * appear, so dropping the exclusive marker and mapping + * it only R/O is fine. + */ + exclusive = false; + } + } + + /* * Remove the swap entry and conditionally try to free up the swapcache. * We're already holding a reference on the page but haven't mapped it * yet. @@ -3738,11 +3784,12 @@ vm_fault_t do_swap_page(struct vm_fault pte = mk_pte(page, vma->vm_page_prot); /* - * Same logic as in do_wp_page(); however, optimize for fresh pages - * that are certainly not shared because we just allocated them without - * exposing them to the swapcache. + * Same logic as in do_wp_page(); however, optimize for pages that are + * certainly not shared either because we just allocated them without + * exposing them to the swapcache or because the swap entry indicates + * exclusivity. */ - if (!PageKsm(page) && (page != swapcache || page_count(page) == 1)) { + if (!PageKsm(page) && (exclusive || page_count(page) == 1)) { if (vmf->flags & FAULT_FLAG_WRITE) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; --- a/mm/rmap.c~mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit +++ a/mm/rmap.c @@ -1656,14 +1656,15 @@ static bool try_to_unmap_one(struct foli break; } /* - * Note: We *don't* remember yet if the page was mapped - * exclusively in the swap entry, so swapin code has - * to re-determine that manually and might detect the - * page as possibly shared, for example, if there are - * other references on the page or if the page is under - * writeback. We made sure that there are no GUP pins - * on the page that would rely on it, so for GUP pins - * this is fine. + * Note: We *don't* remember if the page was mapped + * exclusively in the swap pte if the architecture + * doesn't support __HAVE_ARCH_PTE_SWP_EXCLUSIVE. In + * that case, swapin code has to re-determine that + * manually and might detect the page as possibly + * shared, for example, if there are other references on + * the page or if the page is under writeback. We made + * sure that there are no GUP pins on the page that + * would rely on it, so for GUP pins this is fine. */ if (list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); @@ -1674,6 +1675,8 @@ static bool try_to_unmap_one(struct foli dec_mm_counter(mm, MM_ANONPAGES); inc_mm_counter(mm, MM_SWAPENTS); swp_pte = swp_entry_to_pte(entry); + if (anon_exclusive) + swp_pte = pte_swp_mkexclusive(swp_pte); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) --- a/mm/swapfile.c~mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit +++ a/mm/swapfile.c @@ -1804,7 +1804,18 @@ static int unuse_pte(struct vm_area_stru inc_mm_counter(vma->vm_mm, MM_ANONPAGES); get_page(page); if (page == swapcache) { - page_add_anon_rmap(page, vma, addr, RMAP_NONE); + rmap_t rmap_flags = RMAP_NONE; + + /* + * See do_swap_page(): PageWriteback() would be problematic. + * However, we do a wait_on_page_writeback() just before this + * call and have the page locked. + */ + VM_BUG_ON_PAGE(PageWriteback(page), page); + if (pte_swp_exclusive(*pte)) + rmap_flags |= RMAP_EXCLUSIVE; + + page_add_anon_rmap(page, vma, addr, rmap_flags); } else { /* ksm created a completely new copy */ page_add_new_anon_rmap(page, vma, addr); lru_cache_add_inactive_or_unevictable(page, vma); _ Patches currently in -mm which might be from david@xxxxxxxxxx are mm-rmap-fix-missing-swap_free-in-try_to_unmap-after-arch_unmap_one-failed.patch mm-hugetlb-take-src_mm-write_protect_seq-in-copy_hugetlb_page_range.patch mm-memory-slightly-simplify-copy_present_pte.patch mm-rmap-split-page_dup_rmap-into-page_dup_file_rmap-and-page_try_dup_anon_rmap.patch mm-rmap-convert-rmap-flags-to-a-proper-distinct-rmap_t-type.patch mm-rmap-remove-do_page_add_anon_rmap.patch mm-rmap-pass-rmap-flags-to-hugepage_add_anon_rmap.patch mm-rmap-drop-compound-parameter-from-page_add_new_anon_rmap.patch mm-rmap-use-page_move_anon_rmap-when-reusing-a-mapped-pageanon-page-exclusively.patch mm-huge_memory-remove-outdated-vm_warn_on_once_page-from-unmap_page.patch mm-page-flags-reuse-pg_mappedtodisk-as-pg_anon_exclusive-for-pageanon-pages.patch mm-remember-exclusively-mapped-anonymous-pages-with-pg_anon_exclusive.patch mm-gup-disallow-follow_pagefoll_pin.patch mm-support-gup-triggered-unsharing-of-anonymous-pages.patch mm-gup-trigger-fault_flag_unshare-when-r-o-pinning-a-possibly-shared-anonymous-page.patch mm-gup-sanity-check-with-config_debug_vm-that-anonymous-pages-are-exclusive-when-unpinning.patch mm-swap-remember-pg_anon_exclusive-via-a-swp-pte-bit.patch mm-debug_vm_pgtable-add-tests-for-__have_arch_pte_swp_exclusive.patch x86-pgtable-support-__have_arch_pte_swp_exclusive.patch arm64-pgtable-support-__have_arch_pte_swp_exclusive.patch s390-pgtable-cleanup-description-of-swp-pte-layout.patch s390-pgtable-support-__have_arch_pte_swp_exclusive.patch powerpc-pgtable-remove-_page_bit_swap_type-for-book3s.patch powerpc-pgtable-support-__have_arch_pte_swp_exclusive-for-book3s.patch