[merged] hugetlb_cgroup-add-hugetlb_cgroup-reservation-docs.patch removed from -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled
     Subject: hugetlb_cgroup: add hugetlb_cgroup reservation docs
has been removed from the -mm tree.  Its filename was
     hugetlb_cgroup-add-hugetlb_cgroup-reservation-docs.patch

This patch was dropped because it was merged into mainline or a subsystem tree

------------------------------------------------------
From: Mina Almasry <almasrymina@xxxxxxxxxx>
Subject: hugetlb_cgroup: add hugetlb_cgroup reservation docs

Add docs for how to use hugetlb_cgroup reservations, and their behavior.

Link: http://lkml.kernel.org/r/20200211213128.73302-9-almasrymina@xxxxxxxxxx
Signed-off-by: Mina Almasry <almasrymina@xxxxxxxxxx>
Cc: David Rientjes <rientjes@xxxxxxxxxx>
Cc: Greg Thelen <gthelen@xxxxxxxxxx>
Cc: Mike Kravetz <mike.kravetz@xxxxxxxxxx>
Cc: Sandipan Das <sandipan@xxxxxxxxxxxxx>
Cc: Shakeel Butt <shakeelb@xxxxxxxxxx>
Cc: Shuah Khan <shuah@xxxxxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
---

 Documentation/admin-guide/cgroup-v1/hugetlb.rst |  103 ++++++++++++--
 1 file changed, 92 insertions(+), 11 deletions(-)

--- a/Documentation/admin-guide/cgroup-v1/hugetlb.rst~hugetlb_cgroup-add-hugetlb_cgroup-reservation-docs
+++ a/Documentation/admin-guide/cgroup-v1/hugetlb.rst
@@ -2,13 +2,6 @@
 HugeTLB Controller
 ==================
 
-The HugeTLB controller allows to limit the HugeTLB usage per control group and
-enforces the controller limit during page fault. Since HugeTLB doesn't
-support page reclaim, enforcing the limit at page fault time implies that,
-the application will get SIGBUS signal if it tries to access HugeTLB pages
-beyond its limit. This requires the application to know beforehand how much
-HugeTLB pages it would require for its use.
-
 HugeTLB controller can be created by first mounting the cgroup filesystem.
 
 # mount -t cgroup -o hugetlb none /sys/fs/cgroup
@@ -28,10 +21,14 @@ process (bash) into it.
 
 Brief summary of control files::
 
- hugetlb.<hugepagesize>.limit_in_bytes     # set/show limit of "hugepagesize" hugetlb usage
- hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb  usage recorded
- hugetlb.<hugepagesize>.usage_in_bytes     # show current usage for "hugepagesize" hugetlb
- hugetlb.<hugepagesize>.failcnt		   # show the number of allocation failure due to HugeTLB limit
+ hugetlb.<hugepagesize>.rsvd.limit_in_bytes            # set/show limit of "hugepagesize" hugetlb reservations
+ hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes        # show max "hugepagesize" hugetlb reservations and no-reserve faults
+ hugetlb.<hugepagesize>.rsvd.usage_in_bytes            # show current reservations and no-reserve faults for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.rsvd.failcnt                   # show the number of allocation failure due to HugeTLB reservation limit
+ hugetlb.<hugepagesize>.limit_in_bytes                 # set/show limit of "hugepagesize" hugetlb faults
+ hugetlb.<hugepagesize>.max_usage_in_bytes             # show max "hugepagesize" hugetlb  usage recorded
+ hugetlb.<hugepagesize>.usage_in_bytes                 # show current usage for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.failcnt                        # show the number of allocation failure due to HugeTLB usage limit
 
 For a system supporting three hugepage sizes (64k, 32M and 1G), the control
 files include::
@@ -40,11 +37,95 @@ files include::
   hugetlb.1GB.max_usage_in_bytes
   hugetlb.1GB.usage_in_bytes
   hugetlb.1GB.failcnt
+  hugetlb.1GB.rsvd.limit_in_bytes
+  hugetlb.1GB.rsvd.max_usage_in_bytes
+  hugetlb.1GB.rsvd.usage_in_bytes
+  hugetlb.1GB.rsvd.failcnt
   hugetlb.64KB.limit_in_bytes
   hugetlb.64KB.max_usage_in_bytes
   hugetlb.64KB.usage_in_bytes
   hugetlb.64KB.failcnt
+  hugetlb.64KB.rsvd.limit_in_bytes
+  hugetlb.64KB.rsvd.max_usage_in_bytes
+  hugetlb.64KB.rsvd.usage_in_bytes
+  hugetlb.64KB.rsvd.failcnt
   hugetlb.32MB.limit_in_bytes
   hugetlb.32MB.max_usage_in_bytes
   hugetlb.32MB.usage_in_bytes
   hugetlb.32MB.failcnt
+  hugetlb.32MB.rsvd.limit_in_bytes
+  hugetlb.32MB.rsvd.max_usage_in_bytes
+  hugetlb.32MB.rsvd.usage_in_bytes
+  hugetlb.32MB.rsvd.failcnt
+
+
+1. Page fault accounting
+
+hugetlb.<hugepagesize>.limit_in_bytes
+hugetlb.<hugepagesize>.max_usage_in_bytes
+hugetlb.<hugepagesize>.usage_in_bytes
+hugetlb.<hugepagesize>.failcnt
+
+The HugeTLB controller allows users to limit the HugeTLB usage (page fault) per
+control group and enforces the limit during page fault. Since HugeTLB
+doesn't support page reclaim, enforcing the limit at page fault time implies
+that, the application will get SIGBUS signal if it tries to fault in HugeTLB
+pages beyond its limit. Therefore the application needs to know exactly how many
+HugeTLB pages it uses before hand, and the sysadmin needs to make sure that
+there are enough available on the machine for all the users to avoid processes
+getting SIGBUS.
+
+
+2. Reservation accounting
+
+hugetlb.<hugepagesize>.rsvd.limit_in_bytes
+hugetlb.<hugepagesize>.rsvd.max_usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.usage_in_bytes
+hugetlb.<hugepagesize>.rsvd.failcnt
+
+The HugeTLB controller allows to limit the HugeTLB reservations per control
+group and enforces the controller limit at reservation time and at the fault of
+HugeTLB memory for which no reservation exists. Since reservation limits are
+enforced at reservation time (on mmap or shget), reservation limits never causes
+the application to get SIGBUS signal if the memory was reserved before hand. For
+MAP_NORESERVE allocations, the reservation limit behaves the same as the fault
+limit, enforcing memory usage at fault time and causing the application to
+receive a SIGBUS if it's crossing its limit.
+
+Reservation limits are superior to page fault limits described above, since
+reservation limits are enforced at reservation time (on mmap or shget), and
+never causes the application to get SIGBUS signal if the memory was reserved
+before hand. This allows for easier fallback to alternatives such as
+non-HugeTLB memory for example. In the case of page fault accounting, it's very
+hard to avoid processes getting SIGBUS since the sysadmin needs precisely know
+the HugeTLB usage of all the tasks in the system and make sure there is enough
+pages to satisfy all requests. Avoiding tasks getting SIGBUS on overcommited
+systems is practically impossible with page fault accounting.
+
+
+3. Caveats with shared memory
+
+For shared HugeTLB memory, both HugeTLB reservation and page faults are charged
+to the first task that causes the memory to be reserved or faulted, and all
+subsequent uses of this reserved or faulted memory is done without charging.
+
+Shared HugeTLB memory is only uncharged when it is unreserved or deallocated.
+This is usually when the HugeTLB file is deleted, and not when the task that
+caused the reservation or fault has exited.
+
+
+4. Caveats with HugeTLB cgroup offline.
+
+When a HugeTLB cgroup goes offline with some reservations or faults still
+charged to it, the behavior is as follows:
+
+- The fault charges are charged to the parent HugeTLB cgroup (reparented),
+- the reservation charges remain on the offline HugeTLB cgroup.
+
+This means that if a HugeTLB cgroup gets offlined while there is still HugeTLB
+reservations charged to it, that cgroup persists as a zombie until all HugeTLB
+reservations are uncharged. HugeTLB reservations behave in this manner to match
+the memory controller whose cgroups also persist as zombie until all charged
+memory is uncharged. Also, the tracking of HugeTLB reservations is a bit more
+complex compared to the tracking of HugeTLB faults, so it is significantly
+harder to reparent reservations at offline time.
_

Patches currently in -mm which might be from almasrymina@xxxxxxxxxx are





[Index of Archives]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux