The patch titled Subject: lib: Move mathematic helpers to separate folder has been added to the -mm tree. Its filename is lib-move-mathematic-helpers-to-separate-folder.patch This patch should soon appear at http://ozlabs.org/~akpm/mmots/broken-out/lib-move-mathematic-helpers-to-separate-folder.patch and later at http://ozlabs.org/~akpm/mmotm/broken-out/lib-move-mathematic-helpers-to-separate-folder.patch Before you just go and hit "reply", please: a) Consider who else should be cc'ed b) Prefer to cc a suitable mailing list as well c) Ideally: find the original patch on the mailing list and do a reply-to-all to that, adding suitable additional cc's *** Remember to use Documentation/process/submit-checklist.rst when testing your code *** The -mm tree is included into linux-next and is updated there every 3-4 working days ------------------------------------------------------ From: Andy Shevchenko <andriy.shevchenko@xxxxxxxxxxxxxxx> Subject: lib: Move mathematic helpers to separate folder For better maintenance and expansion move the mathematic helpers to the separate folder. No functional change intended. Note, the int_sqrt() is not used as a part of lib, so, moved to regular obj. Link: http://lkml.kernel.org/r/20190323172531.80025-1-andriy.shevchenko@xxxxxxxxxxxxxxx Signed-off-by: Andy Shevchenko <andriy.shevchenko@xxxxxxxxxxxxxxx> Cc: Thierry Reding <thierry.reding@xxxxxxxxx> Cc: Lee Jones <lee.jones@xxxxxxxxxx> Cc: Daniel Thompson <daniel.thompson@xxxxxxxxxx> Cc: Ray Jui <rjui@xxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- lib/Kconfig | 14 - lib/Makefile | 15 - lib/cordic.c | 92 ---------- lib/div64.c | 192 --------------------- lib/gcd.c | 84 --------- lib/int_sqrt.c | 70 -------- lib/lcm.c | 25 -- lib/math/Kconfig | 11 + lib/math/Makefile | 5 lib/math/cordic.c | 92 ++++++++++ lib/math/div64.c | 192 +++++++++++++++++++++ lib/math/gcd.c | 84 +++++++++ lib/math/int_sqrt.c | 70 ++++++++ lib/math/lcm.c | 25 ++ lib/math/prime_numbers.c | 315 ++++++++++++++++++++++++++++++++++++ lib/math/rational.c | 65 +++++++ lib/math/reciprocal_div.c | 69 +++++++ lib/prime_numbers.c | 315 ------------------------------------ lib/rational.c | 65 ------- lib/reciprocal_div.c | 69 ------- 20 files changed, 936 insertions(+), 933 deletions(-) --- a/lib/cordic.c +++ /dev/null @@ -1,92 +0,0 @@ -/* - * Copyright (c) 2011 Broadcom Corporation - * - * Permission to use, copy, modify, and/or distribute this software for any - * purpose with or without fee is hereby granted, provided that the above - * copyright notice and this permission notice appear in all copies. - * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY - * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION - * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN - * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. - */ -#include <linux/module.h> -#include <linux/cordic.h> - -static const s32 arctan_table[] = { - 2949120, - 1740967, - 919879, - 466945, - 234379, - 117304, - 58666, - 29335, - 14668, - 7334, - 3667, - 1833, - 917, - 458, - 229, - 115, - 57, - 29 -}; - -/* - * cordic_calc_iq() - calculates the i/q coordinate for given angle - * - * theta: angle in degrees for which i/q coordinate is to be calculated - * coord: function output parameter holding the i/q coordinate - */ -struct cordic_iq cordic_calc_iq(s32 theta) -{ - struct cordic_iq coord; - s32 angle, valtmp; - unsigned iter; - int signx = 1; - int signtheta; - - coord.i = CORDIC_ANGLE_GEN; - coord.q = 0; - angle = 0; - - theta = CORDIC_FIXED(theta); - signtheta = (theta < 0) ? -1 : 1; - theta = ((theta + CORDIC_FIXED(180) * signtheta) % CORDIC_FIXED(360)) - - CORDIC_FIXED(180) * signtheta; - - if (CORDIC_FLOAT(theta) > 90) { - theta -= CORDIC_FIXED(180); - signx = -1; - } else if (CORDIC_FLOAT(theta) < -90) { - theta += CORDIC_FIXED(180); - signx = -1; - } - - for (iter = 0; iter < CORDIC_NUM_ITER; iter++) { - if (theta > angle) { - valtmp = coord.i - (coord.q >> iter); - coord.q += (coord.i >> iter); - angle += arctan_table[iter]; - } else { - valtmp = coord.i + (coord.q >> iter); - coord.q -= (coord.i >> iter); - angle -= arctan_table[iter]; - } - coord.i = valtmp; - } - - coord.i *= signx; - coord.q *= signx; - return coord; -} -EXPORT_SYMBOL(cordic_calc_iq); - -MODULE_DESCRIPTION("CORDIC algorithm"); -MODULE_AUTHOR("Broadcom Corporation"); -MODULE_LICENSE("Dual BSD/GPL"); --- a/lib/div64.c +++ /dev/null @@ -1,192 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Copyright (C) 2003 Bernardo Innocenti <bernie@xxxxxxxxxxx> - * - * Based on former do_div() implementation from asm-parisc/div64.h: - * Copyright (C) 1999 Hewlett-Packard Co - * Copyright (C) 1999 David Mosberger-Tang <davidm@xxxxxxxxxx> - * - * - * Generic C version of 64bit/32bit division and modulo, with - * 64bit result and 32bit remainder. - * - * The fast case for (n>>32 == 0) is handled inline by do_div(). - * - * Code generated for this function might be very inefficient - * for some CPUs. __div64_32() can be overridden by linking arch-specific - * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S - * or by defining a preprocessor macro in arch/include/asm/div64.h. - */ - -#include <linux/export.h> -#include <linux/kernel.h> -#include <linux/math64.h> - -/* Not needed on 64bit architectures */ -#if BITS_PER_LONG == 32 - -#ifndef __div64_32 -uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) -{ - uint64_t rem = *n; - uint64_t b = base; - uint64_t res, d = 1; - uint32_t high = rem >> 32; - - /* Reduce the thing a bit first */ - res = 0; - if (high >= base) { - high /= base; - res = (uint64_t) high << 32; - rem -= (uint64_t) (high*base) << 32; - } - - while ((int64_t)b > 0 && b < rem) { - b = b+b; - d = d+d; - } - - do { - if (rem >= b) { - rem -= b; - res += d; - } - b >>= 1; - d >>= 1; - } while (d); - - *n = res; - return rem; -} -EXPORT_SYMBOL(__div64_32); -#endif - -/** - * div_s64_rem - signed 64bit divide with 64bit divisor and remainder - * @dividend: 64bit dividend - * @divisor: 64bit divisor - * @remainder: 64bit remainder - */ -#ifndef div_s64_rem -s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) -{ - u64 quotient; - - if (dividend < 0) { - quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); - *remainder = -*remainder; - if (divisor > 0) - quotient = -quotient; - } else { - quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); - if (divisor < 0) - quotient = -quotient; - } - return quotient; -} -EXPORT_SYMBOL(div_s64_rem); -#endif - -/** - * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder - * @dividend: 64bit dividend - * @divisor: 64bit divisor - * @remainder: 64bit remainder - * - * This implementation is a comparable to algorithm used by div64_u64. - * But this operation, which includes math for calculating the remainder, - * is kept distinct to avoid slowing down the div64_u64 operation on 32bit - * systems. - */ -#ifndef div64_u64_rem -u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) -{ - u32 high = divisor >> 32; - u64 quot; - - if (high == 0) { - u32 rem32; - quot = div_u64_rem(dividend, divisor, &rem32); - *remainder = rem32; - } else { - int n = fls(high); - quot = div_u64(dividend >> n, divisor >> n); - - if (quot != 0) - quot--; - - *remainder = dividend - quot * divisor; - if (*remainder >= divisor) { - quot++; - *remainder -= divisor; - } - } - - return quot; -} -EXPORT_SYMBOL(div64_u64_rem); -#endif - -/** - * div64_u64 - unsigned 64bit divide with 64bit divisor - * @dividend: 64bit dividend - * @divisor: 64bit divisor - * - * This implementation is a modified version of the algorithm proposed - * by the book 'Hacker's Delight'. The original source and full proof - * can be found here and is available for use without restriction. - * - * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' - */ -#ifndef div64_u64 -u64 div64_u64(u64 dividend, u64 divisor) -{ - u32 high = divisor >> 32; - u64 quot; - - if (high == 0) { - quot = div_u64(dividend, divisor); - } else { - int n = fls(high); - quot = div_u64(dividend >> n, divisor >> n); - - if (quot != 0) - quot--; - if ((dividend - quot * divisor) >= divisor) - quot++; - } - - return quot; -} -EXPORT_SYMBOL(div64_u64); -#endif - -/** - * div64_s64 - signed 64bit divide with 64bit divisor - * @dividend: 64bit dividend - * @divisor: 64bit divisor - */ -#ifndef div64_s64 -s64 div64_s64(s64 dividend, s64 divisor) -{ - s64 quot, t; - - quot = div64_u64(abs(dividend), abs(divisor)); - t = (dividend ^ divisor) >> 63; - - return (quot ^ t) - t; -} -EXPORT_SYMBOL(div64_s64); -#endif - -#endif /* BITS_PER_LONG == 32 */ - -/* - * Iterative div/mod for use when dividend is not expected to be much - * bigger than divisor. - */ -u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) -{ - return __iter_div_u64_rem(dividend, divisor, remainder); -} -EXPORT_SYMBOL(iter_div_u64_rem); --- a/lib/gcd.c +++ /dev/null @@ -1,84 +0,0 @@ -#include <linux/kernel.h> -#include <linux/gcd.h> -#include <linux/export.h> - -/* - * This implements the binary GCD algorithm. (Often attributed to Stein, - * but as Knuth has noted, appears in a first-century Chinese math text.) - * - * This is faster than the division-based algorithm even on x86, which - * has decent hardware division. - */ - -#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) - -/* If __ffs is available, the even/odd algorithm benchmarks slower. */ - -/** - * gcd - calculate and return the greatest common divisor of 2 unsigned longs - * @a: first value - * @b: second value - */ -unsigned long gcd(unsigned long a, unsigned long b) -{ - unsigned long r = a | b; - - if (!a || !b) - return r; - - b >>= __ffs(b); - if (b == 1) - return r & -r; - - for (;;) { - a >>= __ffs(a); - if (a == 1) - return r & -r; - if (a == b) - return a << __ffs(r); - - if (a < b) - swap(a, b); - a -= b; - } -} - -#else - -/* If normalization is done by loops, the even/odd algorithm is a win. */ -unsigned long gcd(unsigned long a, unsigned long b) -{ - unsigned long r = a | b; - - if (!a || !b) - return r; - - /* Isolate lsbit of r */ - r &= -r; - - while (!(b & r)) - b >>= 1; - if (b == r) - return r; - - for (;;) { - while (!(a & r)) - a >>= 1; - if (a == r) - return r; - if (a == b) - return a; - - if (a < b) - swap(a, b); - a -= b; - a >>= 1; - if (a & r) - a += b; - a >>= 1; - } -} - -#endif - -EXPORT_SYMBOL_GPL(gcd); --- a/lib/int_sqrt.c +++ /dev/null @@ -1,70 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Copyright (C) 2013 Davidlohr Bueso <davidlohr.bueso@xxxxxx> - * - * Based on the shift-and-subtract algorithm for computing integer - * square root from Guy L. Steele. - */ - -#include <linux/kernel.h> -#include <linux/export.h> -#include <linux/bitops.h> - -/** - * int_sqrt - computes the integer square root - * @x: integer of which to calculate the sqrt - * - * Computes: floor(sqrt(x)) - */ -unsigned long int_sqrt(unsigned long x) -{ - unsigned long b, m, y = 0; - - if (x <= 1) - return x; - - m = 1UL << (__fls(x) & ~1UL); - while (m != 0) { - b = y + m; - y >>= 1; - - if (x >= b) { - x -= b; - y += m; - } - m >>= 2; - } - - return y; -} -EXPORT_SYMBOL(int_sqrt); - -#if BITS_PER_LONG < 64 -/** - * int_sqrt64 - strongly typed int_sqrt function when minimum 64 bit input - * is expected. - * @x: 64bit integer of which to calculate the sqrt - */ -u32 int_sqrt64(u64 x) -{ - u64 b, m, y = 0; - - if (x <= ULONG_MAX) - return int_sqrt((unsigned long) x); - - m = 1ULL << ((fls64(x) - 1) & ~1ULL); - while (m != 0) { - b = y + m; - y >>= 1; - - if (x >= b) { - x -= b; - y += m; - } - m >>= 2; - } - - return y; -} -EXPORT_SYMBOL(int_sqrt64); -#endif --- a/lib/Kconfig~lib-move-mathematic-helpers-to-separate-folder +++ a/lib/Kconfig @@ -29,9 +29,6 @@ config HAVE_ARCH_BITREVERSE This option enables the use of hardware bit-reversal instructions on architectures which support such operations. -config RATIONAL - bool - config GENERIC_STRNCPY_FROM_USER bool @@ -44,6 +41,8 @@ config GENERIC_NET_UTILS config GENERIC_FIND_FIRST_BIT bool +source "lib/math/Kconfig" + config NO_GENERIC_PCI_IOPORT_MAP bool @@ -514,12 +513,6 @@ config LRU_CACHE config CLZ_TAB bool -config CORDIC - tristate "CORDIC algorithm" - help - This option provides an implementation of the CORDIC algorithm; - calculations are in fixed point. Module will be called cordic. - config DDR bool "JEDEC DDR data" help @@ -607,9 +600,6 @@ config SBITMAP config PARMAN tristate "parman" if COMPILE_TEST -config PRIME_NUMBERS - tristate - config STRING_SELFTEST tristate "Test string functions" --- a/lib/lcm.c +++ /dev/null @@ -1,25 +0,0 @@ -#include <linux/compiler.h> -#include <linux/gcd.h> -#include <linux/export.h> -#include <linux/lcm.h> - -/* Lowest common multiple */ -unsigned long lcm(unsigned long a, unsigned long b) -{ - if (a && b) - return (a / gcd(a, b)) * b; - else - return 0; -} -EXPORT_SYMBOL_GPL(lcm); - -unsigned long lcm_not_zero(unsigned long a, unsigned long b) -{ - unsigned long l = lcm(a, b); - - if (l) - return l; - - return (b ? : a); -} -EXPORT_SYMBOL_GPL(lcm_not_zero); --- a/lib/Makefile~lib-move-mathematic-helpers-to-separate-folder +++ a/lib/Makefile @@ -19,7 +19,7 @@ KCOV_INSTRUMENT_dynamic_debug.o := n lib-y := ctype.o string.o vsprintf.o cmdline.o \ rbtree.o radix-tree.o timerqueue.o xarray.o \ - idr.o int_sqrt.o extable.o \ + idr.o extable.o \ sha1.o chacha.o irq_regs.o argv_split.o \ flex_proportions.o ratelimit.o show_mem.o \ is_single_threaded.o plist.o decompress.o kobject_uevent.o \ @@ -33,11 +33,11 @@ lib-$(CONFIG_SMP) += cpumask.o lib-y += kobject.o klist.o obj-y += lockref.o -obj-y += bcd.o div64.o sort.o parser.o debug_locks.o random32.o \ +obj-y += bcd.o sort.o parser.o debug_locks.o random32.o \ bust_spinlocks.o kasprintf.o bitmap.o scatterlist.o \ - gcd.o lcm.o list_sort.o uuid.o iov_iter.o clz_ctz.o \ + list_sort.o uuid.o iov_iter.o clz_ctz.o \ bsearch.o find_bit.o llist.o memweight.o kfifo.o \ - percpu-refcount.o rhashtable.o reciprocal_div.o \ + percpu-refcount.o rhashtable.o \ once.o refcount.o usercopy.o errseq.o bucket_locks.o \ generic-radix-tree.o obj-$(CONFIG_STRING_SELFTEST) += test_string.o @@ -90,6 +90,8 @@ endif obj-$(CONFIG_DEBUG_INFO_REDUCED) += debug_info.o CFLAGS_debug_info.o += $(call cc-option, -femit-struct-debug-detailed=any) +obj-y += math/ + obj-$(CONFIG_GENERIC_IOMAP) += iomap.o obj-$(CONFIG_GENERIC_PCI_IOMAP) += pci_iomap.o obj-$(CONFIG_HAS_IOMEM) += iomap_copy.o devres.o @@ -108,7 +110,6 @@ obj-$(CONFIG_DEBUG_LIST) += list_debug.o obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o obj-$(CONFIG_BITREVERSE) += bitrev.o -obj-$(CONFIG_RATIONAL) += rational.o obj-$(CONFIG_CRC_CCITT) += crc-ccitt.o obj-$(CONFIG_CRC16) += crc16.o obj-$(CONFIG_CRC_T10DIF)+= crc-t10dif.o @@ -182,8 +183,6 @@ obj-$(CONFIG_ATOMIC64_SELFTEST) += atomi obj-$(CONFIG_CPU_RMAP) += cpu_rmap.o -obj-$(CONFIG_CORDIC) += cordic.o - obj-$(CONFIG_DQL) += dynamic_queue_limits.o obj-$(CONFIG_GLOB) += glob.o @@ -225,8 +224,6 @@ obj-$(CONFIG_ASN1) += asn1_decoder.o obj-$(CONFIG_FONT_SUPPORT) += fonts/ -obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o - hostprogs-y := gen_crc32table hostprogs-y += gen_crc64table clean-files := crc32table.h --- /dev/null +++ a/lib/math/cordic.c @@ -0,0 +1,92 @@ +/* + * Copyright (c) 2011 Broadcom Corporation + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY + * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION + * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN + * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ +#include <linux/module.h> +#include <linux/cordic.h> + +static const s32 arctan_table[] = { + 2949120, + 1740967, + 919879, + 466945, + 234379, + 117304, + 58666, + 29335, + 14668, + 7334, + 3667, + 1833, + 917, + 458, + 229, + 115, + 57, + 29 +}; + +/* + * cordic_calc_iq() - calculates the i/q coordinate for given angle + * + * theta: angle in degrees for which i/q coordinate is to be calculated + * coord: function output parameter holding the i/q coordinate + */ +struct cordic_iq cordic_calc_iq(s32 theta) +{ + struct cordic_iq coord; + s32 angle, valtmp; + unsigned iter; + int signx = 1; + int signtheta; + + coord.i = CORDIC_ANGLE_GEN; + coord.q = 0; + angle = 0; + + theta = CORDIC_FIXED(theta); + signtheta = (theta < 0) ? -1 : 1; + theta = ((theta + CORDIC_FIXED(180) * signtheta) % CORDIC_FIXED(360)) - + CORDIC_FIXED(180) * signtheta; + + if (CORDIC_FLOAT(theta) > 90) { + theta -= CORDIC_FIXED(180); + signx = -1; + } else if (CORDIC_FLOAT(theta) < -90) { + theta += CORDIC_FIXED(180); + signx = -1; + } + + for (iter = 0; iter < CORDIC_NUM_ITER; iter++) { + if (theta > angle) { + valtmp = coord.i - (coord.q >> iter); + coord.q += (coord.i >> iter); + angle += arctan_table[iter]; + } else { + valtmp = coord.i + (coord.q >> iter); + coord.q -= (coord.i >> iter); + angle -= arctan_table[iter]; + } + coord.i = valtmp; + } + + coord.i *= signx; + coord.q *= signx; + return coord; +} +EXPORT_SYMBOL(cordic_calc_iq); + +MODULE_DESCRIPTION("CORDIC algorithm"); +MODULE_AUTHOR("Broadcom Corporation"); +MODULE_LICENSE("Dual BSD/GPL"); --- /dev/null +++ a/lib/math/div64.c @@ -0,0 +1,192 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2003 Bernardo Innocenti <bernie@xxxxxxxxxxx> + * + * Based on former do_div() implementation from asm-parisc/div64.h: + * Copyright (C) 1999 Hewlett-Packard Co + * Copyright (C) 1999 David Mosberger-Tang <davidm@xxxxxxxxxx> + * + * + * Generic C version of 64bit/32bit division and modulo, with + * 64bit result and 32bit remainder. + * + * The fast case for (n>>32 == 0) is handled inline by do_div(). + * + * Code generated for this function might be very inefficient + * for some CPUs. __div64_32() can be overridden by linking arch-specific + * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S + * or by defining a preprocessor macro in arch/include/asm/div64.h. + */ + +#include <linux/export.h> +#include <linux/kernel.h> +#include <linux/math64.h> + +/* Not needed on 64bit architectures */ +#if BITS_PER_LONG == 32 + +#ifndef __div64_32 +uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) +{ + uint64_t rem = *n; + uint64_t b = base; + uint64_t res, d = 1; + uint32_t high = rem >> 32; + + /* Reduce the thing a bit first */ + res = 0; + if (high >= base) { + high /= base; + res = (uint64_t) high << 32; + rem -= (uint64_t) (high*base) << 32; + } + + while ((int64_t)b > 0 && b < rem) { + b = b+b; + d = d+d; + } + + do { + if (rem >= b) { + rem -= b; + res += d; + } + b >>= 1; + d >>= 1; + } while (d); + + *n = res; + return rem; +} +EXPORT_SYMBOL(__div64_32); +#endif + +/** + * div_s64_rem - signed 64bit divide with 64bit divisor and remainder + * @dividend: 64bit dividend + * @divisor: 64bit divisor + * @remainder: 64bit remainder + */ +#ifndef div_s64_rem +s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) +{ + u64 quotient; + + if (dividend < 0) { + quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); + *remainder = -*remainder; + if (divisor > 0) + quotient = -quotient; + } else { + quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); + if (divisor < 0) + quotient = -quotient; + } + return quotient; +} +EXPORT_SYMBOL(div_s64_rem); +#endif + +/** + * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder + * @dividend: 64bit dividend + * @divisor: 64bit divisor + * @remainder: 64bit remainder + * + * This implementation is a comparable to algorithm used by div64_u64. + * But this operation, which includes math for calculating the remainder, + * is kept distinct to avoid slowing down the div64_u64 operation on 32bit + * systems. + */ +#ifndef div64_u64_rem +u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) +{ + u32 high = divisor >> 32; + u64 quot; + + if (high == 0) { + u32 rem32; + quot = div_u64_rem(dividend, divisor, &rem32); + *remainder = rem32; + } else { + int n = fls(high); + quot = div_u64(dividend >> n, divisor >> n); + + if (quot != 0) + quot--; + + *remainder = dividend - quot * divisor; + if (*remainder >= divisor) { + quot++; + *remainder -= divisor; + } + } + + return quot; +} +EXPORT_SYMBOL(div64_u64_rem); +#endif + +/** + * div64_u64 - unsigned 64bit divide with 64bit divisor + * @dividend: 64bit dividend + * @divisor: 64bit divisor + * + * This implementation is a modified version of the algorithm proposed + * by the book 'Hacker's Delight'. The original source and full proof + * can be found here and is available for use without restriction. + * + * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' + */ +#ifndef div64_u64 +u64 div64_u64(u64 dividend, u64 divisor) +{ + u32 high = divisor >> 32; + u64 quot; + + if (high == 0) { + quot = div_u64(dividend, divisor); + } else { + int n = fls(high); + quot = div_u64(dividend >> n, divisor >> n); + + if (quot != 0) + quot--; + if ((dividend - quot * divisor) >= divisor) + quot++; + } + + return quot; +} +EXPORT_SYMBOL(div64_u64); +#endif + +/** + * div64_s64 - signed 64bit divide with 64bit divisor + * @dividend: 64bit dividend + * @divisor: 64bit divisor + */ +#ifndef div64_s64 +s64 div64_s64(s64 dividend, s64 divisor) +{ + s64 quot, t; + + quot = div64_u64(abs(dividend), abs(divisor)); + t = (dividend ^ divisor) >> 63; + + return (quot ^ t) - t; +} +EXPORT_SYMBOL(div64_s64); +#endif + +#endif /* BITS_PER_LONG == 32 */ + +/* + * Iterative div/mod for use when dividend is not expected to be much + * bigger than divisor. + */ +u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) +{ + return __iter_div_u64_rem(dividend, divisor, remainder); +} +EXPORT_SYMBOL(iter_div_u64_rem); --- /dev/null +++ a/lib/math/gcd.c @@ -0,0 +1,84 @@ +#include <linux/kernel.h> +#include <linux/gcd.h> +#include <linux/export.h> + +/* + * This implements the binary GCD algorithm. (Often attributed to Stein, + * but as Knuth has noted, appears in a first-century Chinese math text.) + * + * This is faster than the division-based algorithm even on x86, which + * has decent hardware division. + */ + +#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) + +/* If __ffs is available, the even/odd algorithm benchmarks slower. */ + +/** + * gcd - calculate and return the greatest common divisor of 2 unsigned longs + * @a: first value + * @b: second value + */ +unsigned long gcd(unsigned long a, unsigned long b) +{ + unsigned long r = a | b; + + if (!a || !b) + return r; + + b >>= __ffs(b); + if (b == 1) + return r & -r; + + for (;;) { + a >>= __ffs(a); + if (a == 1) + return r & -r; + if (a == b) + return a << __ffs(r); + + if (a < b) + swap(a, b); + a -= b; + } +} + +#else + +/* If normalization is done by loops, the even/odd algorithm is a win. */ +unsigned long gcd(unsigned long a, unsigned long b) +{ + unsigned long r = a | b; + + if (!a || !b) + return r; + + /* Isolate lsbit of r */ + r &= -r; + + while (!(b & r)) + b >>= 1; + if (b == r) + return r; + + for (;;) { + while (!(a & r)) + a >>= 1; + if (a == r) + return r; + if (a == b) + return a; + + if (a < b) + swap(a, b); + a -= b; + a >>= 1; + if (a & r) + a += b; + a >>= 1; + } +} + +#endif + +EXPORT_SYMBOL_GPL(gcd); --- /dev/null +++ a/lib/math/int_sqrt.c @@ -0,0 +1,70 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2013 Davidlohr Bueso <davidlohr.bueso@xxxxxx> + * + * Based on the shift-and-subtract algorithm for computing integer + * square root from Guy L. Steele. + */ + +#include <linux/kernel.h> +#include <linux/export.h> +#include <linux/bitops.h> + +/** + * int_sqrt - computes the integer square root + * @x: integer of which to calculate the sqrt + * + * Computes: floor(sqrt(x)) + */ +unsigned long int_sqrt(unsigned long x) +{ + unsigned long b, m, y = 0; + + if (x <= 1) + return x; + + m = 1UL << (__fls(x) & ~1UL); + while (m != 0) { + b = y + m; + y >>= 1; + + if (x >= b) { + x -= b; + y += m; + } + m >>= 2; + } + + return y; +} +EXPORT_SYMBOL(int_sqrt); + +#if BITS_PER_LONG < 64 +/** + * int_sqrt64 - strongly typed int_sqrt function when minimum 64 bit input + * is expected. + * @x: 64bit integer of which to calculate the sqrt + */ +u32 int_sqrt64(u64 x) +{ + u64 b, m, y = 0; + + if (x <= ULONG_MAX) + return int_sqrt((unsigned long) x); + + m = 1ULL << ((fls64(x) - 1) & ~1ULL); + while (m != 0) { + b = y + m; + y >>= 1; + + if (x >= b) { + x -= b; + y += m; + } + m >>= 2; + } + + return y; +} +EXPORT_SYMBOL(int_sqrt64); +#endif --- /dev/null +++ a/lib/math/Kconfig @@ -0,0 +1,11 @@ +config CORDIC + tristate "CORDIC algorithm" + help + This option provides an implementation of the CORDIC algorithm; + calculations are in fixed point. Module will be called cordic. + +config PRIME_NUMBERS + tristate + +config RATIONAL + bool --- /dev/null +++ a/lib/math/lcm.c @@ -0,0 +1,25 @@ +#include <linux/compiler.h> +#include <linux/gcd.h> +#include <linux/export.h> +#include <linux/lcm.h> + +/* Lowest common multiple */ +unsigned long lcm(unsigned long a, unsigned long b) +{ + if (a && b) + return (a / gcd(a, b)) * b; + else + return 0; +} +EXPORT_SYMBOL_GPL(lcm); + +unsigned long lcm_not_zero(unsigned long a, unsigned long b) +{ + unsigned long l = lcm(a, b); + + if (l) + return l; + + return (b ? : a); +} +EXPORT_SYMBOL_GPL(lcm_not_zero); --- /dev/null +++ a/lib/math/Makefile @@ -0,0 +1,5 @@ +obj-y += div64.o gcd.o lcm.o int_sqrt.o reciprocal_div.o + +obj-$(CONFIG_CORDIC) += cordic.o +obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o +obj-$(CONFIG_RATIONAL) += rational.o --- /dev/null +++ a/lib/math/prime_numbers.c @@ -0,0 +1,315 @@ +#define pr_fmt(fmt) "prime numbers: " fmt "\n" + +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/prime_numbers.h> +#include <linux/slab.h> + +#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) + +struct primes { + struct rcu_head rcu; + unsigned long last, sz; + unsigned long primes[]; +}; + +#if BITS_PER_LONG == 64 +static const struct primes small_primes = { + .last = 61, + .sz = 64, + .primes = { + BIT(2) | + BIT(3) | + BIT(5) | + BIT(7) | + BIT(11) | + BIT(13) | + BIT(17) | + BIT(19) | + BIT(23) | + BIT(29) | + BIT(31) | + BIT(37) | + BIT(41) | + BIT(43) | + BIT(47) | + BIT(53) | + BIT(59) | + BIT(61) + } +}; +#elif BITS_PER_LONG == 32 +static const struct primes small_primes = { + .last = 31, + .sz = 32, + .primes = { + BIT(2) | + BIT(3) | + BIT(5) | + BIT(7) | + BIT(11) | + BIT(13) | + BIT(17) | + BIT(19) | + BIT(23) | + BIT(29) | + BIT(31) + } +}; +#else +#error "unhandled BITS_PER_LONG" +#endif + +static DEFINE_MUTEX(lock); +static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); + +static unsigned long selftest_max; + +static bool slow_is_prime_number(unsigned long x) +{ + unsigned long y = int_sqrt(x); + + while (y > 1) { + if ((x % y) == 0) + break; + y--; + } + + return y == 1; +} + +static unsigned long slow_next_prime_number(unsigned long x) +{ + while (x < ULONG_MAX && !slow_is_prime_number(++x)) + ; + + return x; +} + +static unsigned long clear_multiples(unsigned long x, + unsigned long *p, + unsigned long start, + unsigned long end) +{ + unsigned long m; + + m = 2 * x; + if (m < start) + m = roundup(start, x); + + while (m < end) { + __clear_bit(m, p); + m += x; + } + + return x; +} + +static bool expand_to_next_prime(unsigned long x) +{ + const struct primes *p; + struct primes *new; + unsigned long sz, y; + + /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, + * there is always at least one prime p between n and 2n - 2. + * Equivalently, if n > 1, then there is always at least one prime p + * such that n < p < 2n. + * + * http://mathworld.wolfram.com/BertrandsPostulate.html + * https://en.wikipedia.org/wiki/Bertrand's_postulate + */ + sz = 2 * x; + if (sz < x) + return false; + + sz = round_up(sz, BITS_PER_LONG); + new = kmalloc(sizeof(*new) + bitmap_size(sz), + GFP_KERNEL | __GFP_NOWARN); + if (!new) + return false; + + mutex_lock(&lock); + p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); + if (x < p->last) { + kfree(new); + goto unlock; + } + + /* Where memory permits, track the primes using the + * Sieve of Eratosthenes. The sieve is to remove all multiples of known + * primes from the set, what remains in the set is therefore prime. + */ + bitmap_fill(new->primes, sz); + bitmap_copy(new->primes, p->primes, p->sz); + for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) + new->last = clear_multiples(y, new->primes, p->sz, sz); + new->sz = sz; + + BUG_ON(new->last <= x); + + rcu_assign_pointer(primes, new); + if (p != &small_primes) + kfree_rcu((struct primes *)p, rcu); + +unlock: + mutex_unlock(&lock); + return true; +} + +static void free_primes(void) +{ + const struct primes *p; + + mutex_lock(&lock); + p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); + if (p != &small_primes) { + rcu_assign_pointer(primes, &small_primes); + kfree_rcu((struct primes *)p, rcu); + } + mutex_unlock(&lock); +} + +/** + * next_prime_number - return the next prime number + * @x: the starting point for searching to test + * + * A prime number is an integer greater than 1 that is only divisible by + * itself and 1. The set of prime numbers is computed using the Sieve of + * Eratoshenes (on finding a prime, all multiples of that prime are removed + * from the set) enabling a fast lookup of the next prime number larger than + * @x. If the sieve fails (memory limitation), the search falls back to using + * slow trial-divison, up to the value of ULONG_MAX (which is reported as the + * final prime as a sentinel). + * + * Returns: the next prime number larger than @x + */ +unsigned long next_prime_number(unsigned long x) +{ + const struct primes *p; + + rcu_read_lock(); + p = rcu_dereference(primes); + while (x >= p->last) { + rcu_read_unlock(); + + if (!expand_to_next_prime(x)) + return slow_next_prime_number(x); + + rcu_read_lock(); + p = rcu_dereference(primes); + } + x = find_next_bit(p->primes, p->last, x + 1); + rcu_read_unlock(); + + return x; +} +EXPORT_SYMBOL(next_prime_number); + +/** + * is_prime_number - test whether the given number is prime + * @x: the number to test + * + * A prime number is an integer greater than 1 that is only divisible by + * itself and 1. Internally a cache of prime numbers is kept (to speed up + * searching for sequential primes, see next_prime_number()), but if the number + * falls outside of that cache, its primality is tested using trial-divison. + * + * Returns: true if @x is prime, false for composite numbers. + */ +bool is_prime_number(unsigned long x) +{ + const struct primes *p; + bool result; + + rcu_read_lock(); + p = rcu_dereference(primes); + while (x >= p->sz) { + rcu_read_unlock(); + + if (!expand_to_next_prime(x)) + return slow_is_prime_number(x); + + rcu_read_lock(); + p = rcu_dereference(primes); + } + result = test_bit(x, p->primes); + rcu_read_unlock(); + + return result; +} +EXPORT_SYMBOL(is_prime_number); + +static void dump_primes(void) +{ + const struct primes *p; + char *buf; + + buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + + rcu_read_lock(); + p = rcu_dereference(primes); + + if (buf) + bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); + pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", + p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); + + rcu_read_unlock(); + + kfree(buf); +} + +static int selftest(unsigned long max) +{ + unsigned long x, last; + + if (!max) + return 0; + + for (last = 0, x = 2; x < max; x++) { + bool slow = slow_is_prime_number(x); + bool fast = is_prime_number(x); + + if (slow != fast) { + pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", + x, slow ? "yes" : "no", fast ? "yes" : "no"); + goto err; + } + + if (!slow) + continue; + + if (next_prime_number(last) != x) { + pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", + last, x, next_prime_number(last)); + goto err; + } + last = x; + } + + pr_info("selftest(%lu) passed, last prime was %lu", x, last); + return 0; + +err: + dump_primes(); + return -EINVAL; +} + +static int __init primes_init(void) +{ + return selftest(selftest_max); +} + +static void __exit primes_exit(void) +{ + free_primes(); +} + +module_init(primes_init); +module_exit(primes_exit); + +module_param_named(selftest, selftest_max, ulong, 0400); + +MODULE_AUTHOR("Intel Corporation"); +MODULE_LICENSE("GPL"); --- /dev/null +++ a/lib/math/rational.c @@ -0,0 +1,65 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * rational fractions + * + * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@xxxxxxxxx> + * + * helper functions when coping with rational numbers + */ + +#include <linux/rational.h> +#include <linux/compiler.h> +#include <linux/export.h> + +/* + * calculate best rational approximation for a given fraction + * taking into account restricted register size, e.g. to find + * appropriate values for a pll with 5 bit denominator and + * 8 bit numerator register fields, trying to set up with a + * frequency ratio of 3.1415, one would say: + * + * rational_best_approximation(31415, 10000, + * (1 << 8) - 1, (1 << 5) - 1, &n, &d); + * + * you may look at given_numerator as a fixed point number, + * with the fractional part size described in given_denominator. + * + * for theoretical background, see: + * http://en.wikipedia.org/wiki/Continued_fraction + */ + +void rational_best_approximation( + unsigned long given_numerator, unsigned long given_denominator, + unsigned long max_numerator, unsigned long max_denominator, + unsigned long *best_numerator, unsigned long *best_denominator) +{ + unsigned long n, d, n0, d0, n1, d1; + n = given_numerator; + d = given_denominator; + n0 = d1 = 0; + n1 = d0 = 1; + for (;;) { + unsigned long t, a; + if ((n1 > max_numerator) || (d1 > max_denominator)) { + n1 = n0; + d1 = d0; + break; + } + if (d == 0) + break; + t = d; + a = n / d; + d = n % d; + n = t; + t = n0 + a * n1; + n0 = n1; + n1 = t; + t = d0 + a * d1; + d0 = d1; + d1 = t; + } + *best_numerator = n1; + *best_denominator = d1; +} + +EXPORT_SYMBOL(rational_best_approximation); --- /dev/null +++ a/lib/math/reciprocal_div.c @@ -0,0 +1,69 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/bug.h> +#include <linux/kernel.h> +#include <asm/div64.h> +#include <linux/reciprocal_div.h> +#include <linux/export.h> + +/* + * For a description of the algorithm please have a look at + * include/linux/reciprocal_div.h + */ + +struct reciprocal_value reciprocal_value(u32 d) +{ + struct reciprocal_value R; + u64 m; + int l; + + l = fls(d - 1); + m = ((1ULL << 32) * ((1ULL << l) - d)); + do_div(m, d); + ++m; + R.m = (u32)m; + R.sh1 = min(l, 1); + R.sh2 = max(l - 1, 0); + + return R; +} +EXPORT_SYMBOL(reciprocal_value); + +struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec) +{ + struct reciprocal_value_adv R; + u32 l, post_shift; + u64 mhigh, mlow; + + /* ceil(log2(d)) */ + l = fls(d - 1); + /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to + * be handled before calling "reciprocal_value_adv", please see the + * comment at include/linux/reciprocal_div.h. + */ + WARN(l == 32, + "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor", + d, __func__); + post_shift = l; + mlow = 1ULL << (32 + l); + do_div(mlow, d); + mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec)); + do_div(mhigh, d); + + for (; post_shift > 0; post_shift--) { + u64 lo = mlow >> 1, hi = mhigh >> 1; + + if (lo >= hi) + break; + + mlow = lo; + mhigh = hi; + } + + R.m = (u32)mhigh; + R.sh = post_shift; + R.exp = l; + R.is_wide_m = mhigh > U32_MAX; + + return R; +} +EXPORT_SYMBOL(reciprocal_value_adv); --- a/lib/prime_numbers.c +++ /dev/null @@ -1,315 +0,0 @@ -#define pr_fmt(fmt) "prime numbers: " fmt "\n" - -#include <linux/module.h> -#include <linux/mutex.h> -#include <linux/prime_numbers.h> -#include <linux/slab.h> - -#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) - -struct primes { - struct rcu_head rcu; - unsigned long last, sz; - unsigned long primes[]; -}; - -#if BITS_PER_LONG == 64 -static const struct primes small_primes = { - .last = 61, - .sz = 64, - .primes = { - BIT(2) | - BIT(3) | - BIT(5) | - BIT(7) | - BIT(11) | - BIT(13) | - BIT(17) | - BIT(19) | - BIT(23) | - BIT(29) | - BIT(31) | - BIT(37) | - BIT(41) | - BIT(43) | - BIT(47) | - BIT(53) | - BIT(59) | - BIT(61) - } -}; -#elif BITS_PER_LONG == 32 -static const struct primes small_primes = { - .last = 31, - .sz = 32, - .primes = { - BIT(2) | - BIT(3) | - BIT(5) | - BIT(7) | - BIT(11) | - BIT(13) | - BIT(17) | - BIT(19) | - BIT(23) | - BIT(29) | - BIT(31) - } -}; -#else -#error "unhandled BITS_PER_LONG" -#endif - -static DEFINE_MUTEX(lock); -static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); - -static unsigned long selftest_max; - -static bool slow_is_prime_number(unsigned long x) -{ - unsigned long y = int_sqrt(x); - - while (y > 1) { - if ((x % y) == 0) - break; - y--; - } - - return y == 1; -} - -static unsigned long slow_next_prime_number(unsigned long x) -{ - while (x < ULONG_MAX && !slow_is_prime_number(++x)) - ; - - return x; -} - -static unsigned long clear_multiples(unsigned long x, - unsigned long *p, - unsigned long start, - unsigned long end) -{ - unsigned long m; - - m = 2 * x; - if (m < start) - m = roundup(start, x); - - while (m < end) { - __clear_bit(m, p); - m += x; - } - - return x; -} - -static bool expand_to_next_prime(unsigned long x) -{ - const struct primes *p; - struct primes *new; - unsigned long sz, y; - - /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, - * there is always at least one prime p between n and 2n - 2. - * Equivalently, if n > 1, then there is always at least one prime p - * such that n < p < 2n. - * - * http://mathworld.wolfram.com/BertrandsPostulate.html - * https://en.wikipedia.org/wiki/Bertrand's_postulate - */ - sz = 2 * x; - if (sz < x) - return false; - - sz = round_up(sz, BITS_PER_LONG); - new = kmalloc(sizeof(*new) + bitmap_size(sz), - GFP_KERNEL | __GFP_NOWARN); - if (!new) - return false; - - mutex_lock(&lock); - p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); - if (x < p->last) { - kfree(new); - goto unlock; - } - - /* Where memory permits, track the primes using the - * Sieve of Eratosthenes. The sieve is to remove all multiples of known - * primes from the set, what remains in the set is therefore prime. - */ - bitmap_fill(new->primes, sz); - bitmap_copy(new->primes, p->primes, p->sz); - for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) - new->last = clear_multiples(y, new->primes, p->sz, sz); - new->sz = sz; - - BUG_ON(new->last <= x); - - rcu_assign_pointer(primes, new); - if (p != &small_primes) - kfree_rcu((struct primes *)p, rcu); - -unlock: - mutex_unlock(&lock); - return true; -} - -static void free_primes(void) -{ - const struct primes *p; - - mutex_lock(&lock); - p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); - if (p != &small_primes) { - rcu_assign_pointer(primes, &small_primes); - kfree_rcu((struct primes *)p, rcu); - } - mutex_unlock(&lock); -} - -/** - * next_prime_number - return the next prime number - * @x: the starting point for searching to test - * - * A prime number is an integer greater than 1 that is only divisible by - * itself and 1. The set of prime numbers is computed using the Sieve of - * Eratoshenes (on finding a prime, all multiples of that prime are removed - * from the set) enabling a fast lookup of the next prime number larger than - * @x. If the sieve fails (memory limitation), the search falls back to using - * slow trial-divison, up to the value of ULONG_MAX (which is reported as the - * final prime as a sentinel). - * - * Returns: the next prime number larger than @x - */ -unsigned long next_prime_number(unsigned long x) -{ - const struct primes *p; - - rcu_read_lock(); - p = rcu_dereference(primes); - while (x >= p->last) { - rcu_read_unlock(); - - if (!expand_to_next_prime(x)) - return slow_next_prime_number(x); - - rcu_read_lock(); - p = rcu_dereference(primes); - } - x = find_next_bit(p->primes, p->last, x + 1); - rcu_read_unlock(); - - return x; -} -EXPORT_SYMBOL(next_prime_number); - -/** - * is_prime_number - test whether the given number is prime - * @x: the number to test - * - * A prime number is an integer greater than 1 that is only divisible by - * itself and 1. Internally a cache of prime numbers is kept (to speed up - * searching for sequential primes, see next_prime_number()), but if the number - * falls outside of that cache, its primality is tested using trial-divison. - * - * Returns: true if @x is prime, false for composite numbers. - */ -bool is_prime_number(unsigned long x) -{ - const struct primes *p; - bool result; - - rcu_read_lock(); - p = rcu_dereference(primes); - while (x >= p->sz) { - rcu_read_unlock(); - - if (!expand_to_next_prime(x)) - return slow_is_prime_number(x); - - rcu_read_lock(); - p = rcu_dereference(primes); - } - result = test_bit(x, p->primes); - rcu_read_unlock(); - - return result; -} -EXPORT_SYMBOL(is_prime_number); - -static void dump_primes(void) -{ - const struct primes *p; - char *buf; - - buf = kmalloc(PAGE_SIZE, GFP_KERNEL); - - rcu_read_lock(); - p = rcu_dereference(primes); - - if (buf) - bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); - pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", - p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); - - rcu_read_unlock(); - - kfree(buf); -} - -static int selftest(unsigned long max) -{ - unsigned long x, last; - - if (!max) - return 0; - - for (last = 0, x = 2; x < max; x++) { - bool slow = slow_is_prime_number(x); - bool fast = is_prime_number(x); - - if (slow != fast) { - pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", - x, slow ? "yes" : "no", fast ? "yes" : "no"); - goto err; - } - - if (!slow) - continue; - - if (next_prime_number(last) != x) { - pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", - last, x, next_prime_number(last)); - goto err; - } - last = x; - } - - pr_info("selftest(%lu) passed, last prime was %lu", x, last); - return 0; - -err: - dump_primes(); - return -EINVAL; -} - -static int __init primes_init(void) -{ - return selftest(selftest_max); -} - -static void __exit primes_exit(void) -{ - free_primes(); -} - -module_init(primes_init); -module_exit(primes_exit); - -module_param_named(selftest, selftest_max, ulong, 0400); - -MODULE_AUTHOR("Intel Corporation"); -MODULE_LICENSE("GPL"); --- a/lib/rational.c +++ /dev/null @@ -1,65 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * rational fractions - * - * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@xxxxxxxxx> - * - * helper functions when coping with rational numbers - */ - -#include <linux/rational.h> -#include <linux/compiler.h> -#include <linux/export.h> - -/* - * calculate best rational approximation for a given fraction - * taking into account restricted register size, e.g. to find - * appropriate values for a pll with 5 bit denominator and - * 8 bit numerator register fields, trying to set up with a - * frequency ratio of 3.1415, one would say: - * - * rational_best_approximation(31415, 10000, - * (1 << 8) - 1, (1 << 5) - 1, &n, &d); - * - * you may look at given_numerator as a fixed point number, - * with the fractional part size described in given_denominator. - * - * for theoretical background, see: - * http://en.wikipedia.org/wiki/Continued_fraction - */ - -void rational_best_approximation( - unsigned long given_numerator, unsigned long given_denominator, - unsigned long max_numerator, unsigned long max_denominator, - unsigned long *best_numerator, unsigned long *best_denominator) -{ - unsigned long n, d, n0, d0, n1, d1; - n = given_numerator; - d = given_denominator; - n0 = d1 = 0; - n1 = d0 = 1; - for (;;) { - unsigned long t, a; - if ((n1 > max_numerator) || (d1 > max_denominator)) { - n1 = n0; - d1 = d0; - break; - } - if (d == 0) - break; - t = d; - a = n / d; - d = n % d; - n = t; - t = n0 + a * n1; - n0 = n1; - n1 = t; - t = d0 + a * d1; - d0 = d1; - d1 = t; - } - *best_numerator = n1; - *best_denominator = d1; -} - -EXPORT_SYMBOL(rational_best_approximation); --- a/lib/reciprocal_div.c +++ /dev/null @@ -1,69 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -#include <linux/bug.h> -#include <linux/kernel.h> -#include <asm/div64.h> -#include <linux/reciprocal_div.h> -#include <linux/export.h> - -/* - * For a description of the algorithm please have a look at - * include/linux/reciprocal_div.h - */ - -struct reciprocal_value reciprocal_value(u32 d) -{ - struct reciprocal_value R; - u64 m; - int l; - - l = fls(d - 1); - m = ((1ULL << 32) * ((1ULL << l) - d)); - do_div(m, d); - ++m; - R.m = (u32)m; - R.sh1 = min(l, 1); - R.sh2 = max(l - 1, 0); - - return R; -} -EXPORT_SYMBOL(reciprocal_value); - -struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec) -{ - struct reciprocal_value_adv R; - u32 l, post_shift; - u64 mhigh, mlow; - - /* ceil(log2(d)) */ - l = fls(d - 1); - /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to - * be handled before calling "reciprocal_value_adv", please see the - * comment at include/linux/reciprocal_div.h. - */ - WARN(l == 32, - "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor", - d, __func__); - post_shift = l; - mlow = 1ULL << (32 + l); - do_div(mlow, d); - mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec)); - do_div(mhigh, d); - - for (; post_shift > 0; post_shift--) { - u64 lo = mlow >> 1, hi = mhigh >> 1; - - if (lo >= hi) - break; - - mlow = lo; - mhigh = hi; - } - - R.m = (u32)mhigh; - R.sh = post_shift; - R.exp = l; - R.is_wide_m = mhigh > U32_MAX; - - return R; -} -EXPORT_SYMBOL(reciprocal_value_adv); _ Patches currently in -mm which might be from andriy.shevchenko@xxxxxxxxxxxxxxx are lib-move-mathematic-helpers-to-separate-folder.patch lib-math-move-int_pow-from-pwm_blc-for-wider-use.patch