+ mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event.patch added to -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled
     Subject: mm: stall movable allocations until kswapd progresses during serious external fragmentation event
has been added to the -mm tree.  Its filename is
     mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event.patch

This patch should soon appear at
    http://ozlabs.org/~akpm/mmots/broken-out/mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event.patch
and later at
    http://ozlabs.org/~akpm/mmotm/broken-out/mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event.patch

Before you just go and hit "reply", please:
   a) Consider who else should be cc'ed
   b) Prefer to cc a suitable mailing list as well
   c) Ideally: find the original patch on the mailing list and do a
      reply-to-all to that, adding suitable additional cc's

*** Remember to use Documentation/process/submit-checklist.rst when testing your code ***

The -mm tree is included into linux-next and is updated
there every 3-4 working days

------------------------------------------------------
From: Mel Gorman <mgorman@xxxxxxxxxxxxxxxxxxx>
Subject: mm: stall movable allocations until kswapd progresses during serious external fragmentation event

An event that potentially causes external fragmentation problems has
already been described but there are degrees of severity.  A "serious"
event is defined as one that steals a contiguous range of pages of an
order lower than fragment_stall_order (PAGE_ALLOC_COSTLY_ORDER by
default).  If a movable allocation request that is allowed to sleep needs
to steal a small block then it schedules until kswapd makes progress or a
timeout passes.  The watermarks are also boosted slightly faster so that
kswapd makes greater effort to reclaim enough pages to avoid the
fragmentation event.

This stall is not guaranteed to avoid serious fragmentation events.  If
memory pressure is high enough, the pages freed by kswapd may be
reallocated or the free pages may not be in pageblocks that contain only
movable pages.  Furthermore an allocation request that cannot stall (e.g. 
atomic allocations) or unmovable/reclaimable allocations will still
proceed without stalling.  The reason is that movable allocations can be
migrated and stalling for kswapd to make progress means that compaction
has targets.  Unmovable/reclaimable allocations on the other hand do not
benefit from stalling as their pages cannot move.

The worst-case scenario for stalling is a combination of both high memory
pressure where kswapd is having trouble keeping free pages over the
pfmemalloc_reserve and movable allocations are fragmenting memory.  In
this case, an allocation request may sleep for longer.  There are both
vmstats to identify stalls are happening and a tracepoint to quantify what
the stall durations are.  Note that the granularity of the stall detection
is a jiffy so the delay accounting is not precise.

1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------

4.20-rc3 extfrag events < order 9:   804694
4.20-rc3+patch:                      408912 (49% reduction)
4.20-rc3+patch1-4:                    18421 (98% reduction)
4.20-rc3+patch1-5:                    16788 (98% reduction)

                                   4.20.0-rc3             4.20.0-rc3
                                   boost-v5r8             stall-v5r8
Amean     fault-base-1      652.71 (   0.00%)      651.40 (   0.20%)
Amean     fault-huge-1      178.93 (   0.00%)      174.49 *   2.48%*

thpfioscale Percentage Faults Huge
                              4.20.0-rc3             4.20.0-rc3
                              boost-v5r8             stall-v5r8
Percentage huge-1        5.12 (   0.00%)        5.56 (   8.77%)

Fragmentation events are further reduced.  Note that in previous versions,
it was reduced to negligible levels but the logic has been corrected to
avoid exceessive reclaim and slab shrinkage in the meantime to avoid IO
regressions that may not be tolerable.

The latencies and allocation success rates are roughly similar.  Over the
course of 16 minutes, there were 2 stalls due to fragmentation avoidance
for 8 microseconds.

1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------

4.20-rc3 extfrag events < order 9:  291392
4.20-rc3+patch:                     191187 (34% reduction)
4.20-rc3+patch1-4:                   13464 (95% reduction)
4.20-rc3+patch1-5:                   15089 (99.7% reduction)

                                   4.20.0-rc3             4.20.0-rc3
                                   boost-v5r8             stall-v5r8
Amean     fault-base-1     1481.67 (   0.00%)        0.00 * 100.00%*
Amean     fault-huge-1     1063.88 (   0.00%)      540.81 *  49.17%*

                              4.20.0-rc3             4.20.0-rc3
                              boost-v5r8             stall-v5r8
Percentage huge-1       83.46 (   0.00%)      100.00 (  19.82%)

The fragmentation events were increased which is bad, but this is offset
by the fact that THP allocation rates had a lower latency and a perfect
allocation success rate.  There were 102 stalls over the course of 16
minutes for a total stall time of roughly 0.4 seconds.

2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------

4.20-rc3 extfrag events < order 9:  215698
4.20-rc3+patch:                     200210 (7% reduction)
4.20-rc3+patch1-4:                   14263 (93% reduction)
4.20-rc3+patch1-5:                   11702 (95% reduction)

                                   4.20.0-rc3             4.20.0-rc3
                                   boost-v5r8             stall-v5r8
Amean     fault-base-5     1306.87 (   0.00%)     1340.96 (  -2.61%)
Amean     fault-huge-5     1348.94 (   0.00%)     2089.44 ( -54.89%)

                              4.20.0-rc3             4.20.0-rc3
                              boost-v5r8             stall-v5r8
Percentage huge-5        7.91 (   0.00%)        2.43 ( -69.26%)

There is a slight reduction in fragmentation events but it's slight enough
that it may be due to luck.  Unfortunately, both the latencies and success
rates were lower.  However, this is highly likely to be due to luck given
that there were just 12 stalls for 76 microseconds.  Direct reclaim was
also eliminated but that is likely a co-incidence.

2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------

4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch:                    147463 (11% reduction)
4.20-rc3+patch1-4:                  11095 (93% reduction)
4.20-rc3+patch1-5:                  10677 (94% reduction)

thpfioscale Fault Latencies
                                   4.20.0-rc3             4.20.0-rc3
                                   boost-v5r8             stall-v5r8
Amean     fault-base-5     7419.67 (   0.00%)     6853.97 (   7.62%)
Amean     fault-huge-5     3263.80 (   0.00%)     1799.26 *  44.87%*

                              4.20.0-rc3             4.20.0-rc3
                              boost-v5r8             stall-v5r8
Percentage huge-5       87.98 (   0.00%)       98.97 (  12.49%)

The fragmentation events are slightly reduced with the latencies and
allocation success rates much improved.  There were 462 stalls over the
course of 68 minutes with a total stall time of roughly 1.9 seconds.

This patch has a marginal rate on fragmentation rates as it's rare for the
stall logic to actually trigger but the small stalls can be enough for
kswapd to catch up.  How much that helps is variable but probably
worthwhile for long-term allocation success rates.  It is possible to
eliminate fragmentation events entirely with tuning due to this patch
although that would require careful evaluation to determine if it's
worthwhile.

Link: http://lkml.kernel.org/r/20181123114528.28802-6-mgorman@xxxxxxxxxxxxxxxxxxx
Signed-off-by: Mel Gorman <mgorman@xxxxxxxxxxxxxxxxxxx>
Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx>
Cc: David Rientjes <rientjes@xxxxxxxxxx>
Cc: Michal Hocko <mhocko@xxxxxxxxxx>
Cc: Vlastimil Babka <vbabka@xxxxxxx>
Cc: Zi Yan <zi.yan@xxxxxxxxxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
---


--- a/Documentation/sysctl/vm.txt~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/Documentation/sysctl/vm.txt
@@ -31,6 +31,7 @@ Currently, these files are in /proc/sys/
 - dirty_writeback_centisecs
 - drop_caches
 - extfrag_threshold
+- fragment_stall_order
 - hugetlb_shm_group
 - laptop_mode
 - legacy_va_layout
@@ -275,6 +276,28 @@ any throttling.
 
 ==============================================================
 
+fragment_stall_order
+
+External fragmentation control is managed on a pageblock level where the
+page allocator tries to avoid mixing pages of different mobility within page
+blocks (e.g. order 9 on 64-bit x86). If external fragmentation is perfectly
+controlled then a THP allocation will often succeed up to the number of
+movable pageblocks in the system as reported by /proc/pagetypeinfo.
+
+When memory is low, the system may have to mix pageblocks and will wake
+kswapd to try control future fragmentation. fragment_stall_order controls if
+the allocating task will stall if possible until kswapd makes some progress
+in preference to fragmenting the system. This incurs a small stall penalty
+in exchange for future success at allocating huge pages. If the stalls
+are undesirable and high-order allocations are irrelevant then this can
+be disabled by writing 0 to the tunable. Writing the pageblock order will
+strongly (but not perfectly) control external fragmentation.
+
+The default (4) will stall for fragmenting allocations less than or equal
+to the PAGE_ALLOC_COSTLY_ORDER (defined as order-3 at the time of writing).
+
+==============================================================
+
 hugetlb_shm_group
 
 hugetlb_shm_group contains group id that is allowed to create SysV
--- a/include/linux/mm.h~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/include/linux/mm.h
@@ -2270,6 +2270,7 @@ extern void zone_pcp_reset(struct zone *
 extern int min_free_kbytes;
 extern int watermark_boost_factor;
 extern int watermark_scale_factor;
+extern int fragment_stall_order;
 
 /* nommu.c */
 extern atomic_long_t mmap_pages_allocated;
--- a/include/linux/mmzone.h~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/include/linux/mmzone.h
@@ -889,6 +889,8 @@ int watermark_boost_factor_sysctl_handle
 					void __user *, size_t *, loff_t *);
 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 					void __user *, size_t *, loff_t *);
+int fragment_stall_order_sysctl_handler(struct ctl_table *, int,
+					void __user *, size_t *, loff_t *);
 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 					void __user *, size_t *, loff_t *);
--- a/include/linux/vm_event_item.h~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/include/linux/vm_event_item.h
@@ -43,6 +43,7 @@ enum vm_event_item { PGPGIN, PGPGOUT, PS
 		PAGEOUTRUN, PGROTATED,
 		DROP_PAGECACHE, DROP_SLAB,
 		OOM_KILL,
+		FRAGMENTSTALL,
 #ifdef CONFIG_NUMA_BALANCING
 		NUMA_PTE_UPDATES,
 		NUMA_HUGE_PTE_UPDATES,
--- a/include/trace/events/kmem.h~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/include/trace/events/kmem.h
@@ -315,6 +315,27 @@ TRACE_EVENT(mm_page_alloc_extfrag,
 		__entry->change_ownership)
 );
 
+TRACE_EVENT(mm_fragmentation_stall,
+
+	TP_PROTO(int nid, unsigned long duration),
+
+	TP_ARGS(nid, duration),
+
+	TP_STRUCT__entry(
+		__field(	int,		nid		)
+		__field(	unsigned long,	duration	)
+	),
+
+	TP_fast_assign(
+		__entry->nid		= nid;
+		__entry->duration	= duration
+	),
+
+	TP_printk("nid=%d duration=%lu",
+		__entry->nid,
+		__entry->duration)
+);
+
 #endif /* _TRACE_KMEM_H */
 
 /* This part must be outside protection */
--- a/kernel/sysctl.c~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/kernel/sysctl.c
@@ -126,6 +126,7 @@ static int zero;
 static int __maybe_unused one = 1;
 static int __maybe_unused two = 2;
 static int __maybe_unused four = 4;
+static int __maybe_unused max_order = MAX_ORDER;
 static unsigned long one_ul = 1;
 static int one_hundred = 100;
 static int one_thousand = 1000;
@@ -1480,6 +1481,15 @@ static struct ctl_table vm_table[] = {
 		.extra2		= &one_thousand,
 	},
 	{
+		.procname	= "fragment_stall_order",
+		.data		= &fragment_stall_order,
+		.maxlen		= sizeof(fragment_stall_order),
+		.mode		= 0644,
+		.proc_handler	= fragment_stall_order_sysctl_handler,
+		.extra1		= &zero,
+		.extra2		= &max_order,
+	},
+	{
 		.procname	= "percpu_pagelist_fraction",
 		.data		= &percpu_pagelist_fraction,
 		.maxlen		= sizeof(percpu_pagelist_fraction),
--- a/mm/internal.h~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/mm/internal.h
@@ -500,6 +500,7 @@ unsigned long reclaim_clean_pages_from_l
 #define ALLOC_NOFRAGMENT	  0x0
 #endif
 #define ALLOC_KSWAPD		0x200 /* allow waking of kswapd */
+#define ALLOC_FRAGMENT_STALL	0x400 /* stall if fragmenting heavily */
 
 enum ttu_flags;
 struct tlbflush_unmap_batch;
--- a/mm/page_alloc.c~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/mm/page_alloc.c
@@ -264,6 +264,7 @@ int min_free_kbytes = 1024;
 int user_min_free_kbytes = -1;
 int watermark_boost_factor __read_mostly = 15000;
 int watermark_scale_factor = 10;
+int fragment_stall_order __read_mostly = (PAGE_ALLOC_COSTLY_ORDER + 1);
 
 static unsigned long nr_kernel_pages __meminitdata;
 static unsigned long nr_all_pages __meminitdata;
@@ -2254,9 +2255,10 @@ static bool can_steal_fallback(unsigned
 	return false;
 }
 
-static inline void boost_watermark(struct zone *zone)
+static inline void __boost_watermark(struct zone *zone, bool fast_boost)
 {
 	unsigned long max_boost;
+	unsigned long nr;
 
 	if (!watermark_boost_factor)
 		return;
@@ -2264,9 +2266,45 @@ static inline void boost_watermark(struc
 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
 			watermark_boost_factor, 10000);
 	max_boost = max(pageblock_nr_pages, max_boost);
+	nr = pageblock_nr_pages;
 
-	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
-		max_boost);
+	/* Scale relative to the MIGRATE_PCPTYPES similar to min_free_kbytes */
+	if (fast_boost)
+		nr += pageblock_nr_pages * (MIGRATE_PCPTYPES << 1);
+
+	zone->watermark_boost = min(zone->watermark_boost + nr, max_boost);
+}
+
+static inline void boost_watermark(struct zone *zone, bool fast_boost)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&zone->lock, flags);
+	__boost_watermark(zone, fast_boost);
+	spin_unlock_irqrestore(&zone->lock, flags);
+}
+
+static void stall_fragmentation(struct zone *pzone)
+{
+	DEFINE_WAIT(wait);
+	long remaining = 0;
+	long timeout = HZ/50;
+	pg_data_t *pgdat = pzone->zone_pgdat;
+
+	if (current->flags & PF_MEMALLOC)
+		return;
+
+	boost_watermark(pzone, true);
+	prepare_to_wait(&pgdat->pfmemalloc_wait, &wait, TASK_INTERRUPTIBLE);
+	if (waitqueue_active(&pgdat->kswapd_wait))
+		wake_up_interruptible(&pgdat->kswapd_wait);
+	remaining = schedule_timeout(timeout);
+	finish_wait(&pgdat->pfmemalloc_wait, &wait);
+	if (remaining != timeout) {
+		trace_mm_fragmentation_stall(pgdat->node_id,
+			jiffies_to_usecs(timeout - remaining));
+		count_vm_event(FRAGMENTSTALL);
+	}
 }
 
 /*
@@ -2277,7 +2315,7 @@ static inline void boost_watermark(struc
  * of pages are free or compatible, we can change migratetype of the pageblock
  * itself, so pages freed in the future will be put on the correct free list.
  */
-static void steal_suitable_fallback(struct zone *zone, struct page *page,
+static bool steal_suitable_fallback(struct zone *zone, struct page *page,
 		unsigned int alloc_flags, int start_type, bool whole_block)
 {
 	unsigned int current_order = page_order(page);
@@ -2305,10 +2343,15 @@ static void steal_suitable_fallback(stru
 	 * likelihood of future fallbacks. Wake kswapd now as the node
 	 * may be balanced overall and kswapd will not wake naturally.
 	 */
-	boost_watermark(zone);
+	__boost_watermark(zone, false);
 	if (alloc_flags & ALLOC_KSWAPD)
 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
 
+	if ((alloc_flags & ALLOC_FRAGMENT_STALL) &&
+	    current_order < fragment_stall_order) {
+		return false;
+	}
+
 	/* We are not allowed to try stealing from the whole block */
 	if (!whole_block)
 		goto single_page;
@@ -2349,11 +2392,12 @@ static void steal_suitable_fallback(stru
 			page_group_by_mobility_disabled)
 		set_pageblock_migratetype(page, start_type);
 
-	return;
+	return true;
 
 single_page:
 	area = &zone->free_area[current_order];
 	list_move(&page->lru, &area->free_list[start_type]);
+	return true;
 }
 
 /*
@@ -2592,14 +2636,15 @@ do_steal:
 	page = list_first_entry(&area->free_list[fallback_mt],
 							struct page, lru);
 
-	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
-								can_steal);
+	if (!steal_suitable_fallback(zone, page, alloc_flags,
+					start_migratetype, can_steal)) {
+		return false;
+	}
 
 	trace_mm_page_alloc_extfrag(page, order, current_order,
 		start_migratetype, fallback_mt);
 
 	return true;
-
 }
 
 /*
@@ -3467,9 +3512,11 @@ get_page_from_freelist(gfp_t gfp_mask, u
 						const struct alloc_context *ac)
 {
 	struct zoneref *z;
+	struct zone *pzone;
 	struct zone *zone;
 	struct pglist_data *last_pgdat_dirty_limit = NULL;
 	bool no_fallback;
+	bool fragment_stall;
 
 retry:
 	/*
@@ -3477,7 +3524,10 @@ retry:
 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
 	 */
 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
+	fragment_stall = alloc_flags & ALLOC_FRAGMENT_STALL;
 	z = ac->preferred_zoneref;
+	pzone = z->zone;
+
 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
 								ac->nodemask) {
 		struct page *page;
@@ -3516,7 +3566,7 @@ retry:
 			}
 		}
 
-		if (no_fallback && nr_online_nodes > 1 &&
+		if ((no_fallback || fragment_stall) && nr_online_nodes > 1 &&
 		    zone != ac->preferred_zoneref->zone) {
 			int local_nid;
 
@@ -3525,9 +3575,12 @@ retry:
 			 * fragmenting fallbacks. Locality is more important
 			 * than fragmentation avoidance.
 			 */
-			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
+			local_nid = zone_to_nid(pzone);
 			if (zone_to_nid(zone) != local_nid) {
+				if (fragment_stall)
+					stall_fragmentation(pzone);
 				alloc_flags &= ~ALLOC_NOFRAGMENT;
+				alloc_flags &= ~ALLOC_FRAGMENT_STALL;
 				goto retry;
 			}
 		}
@@ -3603,8 +3656,12 @@ try_this_zone:
 	 * It's possible on a UMA machine to get through all zones that are
 	 * fragmented. If avoiding fragmentation, reset and try again.
 	 */
-	if (no_fallback) {
+	if (no_fallback || fragment_stall) {
+		if (fragment_stall)
+			stall_fragmentation(pzone);
+
 		alloc_flags &= ~ALLOC_NOFRAGMENT;
+		alloc_flags &= ~ALLOC_FRAGMENT_STALL;
 		goto retry;
 	}
 
@@ -4319,6 +4376,17 @@ retry_cpuset:
 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
 
 	/*
+	 * Consider stalling on heavy for movable allocations in preference to
+	 * fragmenting unmovable/reclaimable pageblocks. A caller that is
+	 * willing to direct reclaim is already willing to stall.
+	 * Unmovable/reclaimable allocations do not stall as kswapd is not
+	 * guaranteed to free pages in their respective pageblocks.
+	 */
+	if ((gfp_mask & (__GFP_MOVABLE|__GFP_DIRECT_RECLAIM)) ==
+			(__GFP_MOVABLE|__GFP_DIRECT_RECLAIM))
+		alloc_flags |= ALLOC_FRAGMENT_STALL;
+
+	/*
 	 * We need to recalculate the starting point for the zonelist iterator
 	 * because we might have used different nodemask in the fast path, or
 	 * there was a cpuset modification and we are retrying - otherwise we
@@ -4339,6 +4407,7 @@ retry_cpuset:
 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 	if (page)
 		goto got_pg;
+	alloc_flags &= ~ALLOC_FRAGMENT_STALL;
 
 	/*
 	 * For costly allocations, try direct compaction first, as it's likely
@@ -7702,6 +7771,18 @@ int watermark_boost_factor_sysctl_handle
 	void __user *buffer, size_t *length, loff_t *ppos)
 {
 	int rc;
+
+	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+	if (rc)
+		return rc;
+
+	return 0;
+}
+
+int fragment_stall_order_sysctl_handler(struct ctl_table *table, int write,
+	void __user *buffer, size_t *length, loff_t *ppos)
+{
+	int rc;
 
 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
 	if (rc)
--- a/mm/vmscan.c~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/mm/vmscan.c
@@ -3704,7 +3704,8 @@ restart:
 		 * able to safely make forward progress. Wake them
 		 */
 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
-				allow_direct_reclaim(pgdat))
+				((!raise_priority && nr_boost_reclaim) ||
+				 allow_direct_reclaim(pgdat)))
 			wake_up_all(&pgdat->pfmemalloc_wait);
 
 		/* Check if kswapd should be suspending */
--- a/mm/vmstat.c~mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event
+++ a/mm/vmstat.c
@@ -1211,6 +1211,7 @@ const char * const vmstat_text[] = {
 	"drop_pagecache",
 	"drop_slab",
 	"oom_kill",
+	"fragment_stall",
 
 #ifdef CONFIG_NUMA_BALANCING
 	"numa_pte_updates",
_

Patches currently in -mm which might be from mgorman@xxxxxxxxxxxxxxxxxxx are

mm-page_alloc-spread-allocations-across-zones-before-introducing-fragmentation.patch
mm-move-zone-watermark-accesses-behind-an-accessor.patch
mm-use-alloc_flags-to-record-if-kswapd-can-wake.patch
mm-reclaim-small-amounts-of-memory-when-an-external-fragmentation-event-occurs.patch
mm-stall-movable-allocations-until-kswapd-progresses-during-serious-external-fragmentation-event.patch




[Index of Archives]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux