From: Sergey Senozhatsky <sergey.senozhatsky.work@xxxxxxxxx> Subject: zsmalloc: introduce zs_huge_class_size() Patch series "zsmalloc/zram: drop zram's max_zpage_size", v3. ZRAM's max_zpage_size is a bad thing. It forces zsmalloc to store normal objects as huge ones, which results in bigger zsmalloc memory usage. Drop it and use actual zsmalloc huge-class value when decide if the object is huge or not. This patch (of 2): Not every object can be share its zspage with other objects, e.g. when the object is as big as zspage or nearly as big a zspage. For such objects zsmalloc has a so called huge class - every object which belongs to huge class consumes the entire zspage (which consists of a physical page). On x86_64, PAGE_SHIFT 12 box, the first non-huge class size is 3264, so starting down from size 3264, objects can share page(-s) and thus minimize memory wastage. ZRAM, however, has its own statically defined watermark for huge objects - "3 * PAGE_SIZE / 4 = 3072", and forcibly stores every object larger than this watermark (3072) as a PAGE_SIZE object, in other words, to a huge class, while zsmalloc can keep some of those objects in non-huge classes. This results in increased memory consumption. zsmalloc knows better if the object is huge or not. Introduce zs_huge_class_size() function which tells if the given object can be stored in one of non-huge classes or not. This will let us to drop ZRAM's huge object watermark and fully rely on zsmalloc when we decide if the object is huge. [sergey.senozhatsky.work@xxxxxxxxx: add pool param to zs_huge_class_size()] Link: http://lkml.kernel.org/r/20180314081833.1096-2-sergey.senozhatsky@xxxxxxxxx Link: http://lkml.kernel.org/r/20180306070639.7389-2-sergey.senozhatsky@xxxxxxxxx Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@xxxxxxxxx> Acked-by: Minchan Kim <minchan@xxxxxxxxxx> Cc: Mike Rapoport <rppt@xxxxxxxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- include/linux/zsmalloc.h | 2 + mm/zsmalloc.c | 41 +++++++++++++++++++++++++++++++++++++ 2 files changed, 43 insertions(+) diff -puN include/linux/zsmalloc.h~zsmalloc-introduce-zs_huge_class_size-function include/linux/zsmalloc.h --- a/include/linux/zsmalloc.h~zsmalloc-introduce-zs_huge_class_size-function +++ a/include/linux/zsmalloc.h @@ -47,6 +47,8 @@ void zs_destroy_pool(struct zs_pool *poo unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t flags); void zs_free(struct zs_pool *pool, unsigned long obj); +size_t zs_huge_class_size(struct zs_pool *pool); + void *zs_map_object(struct zs_pool *pool, unsigned long handle, enum zs_mapmode mm); void zs_unmap_object(struct zs_pool *pool, unsigned long handle); diff -puN mm/zsmalloc.c~zsmalloc-introduce-zs_huge_class_size-function mm/zsmalloc.c --- a/mm/zsmalloc.c~zsmalloc-introduce-zs_huge_class_size-function +++ a/mm/zsmalloc.c @@ -193,6 +193,7 @@ static struct vfsmount *zsmalloc_mnt; * (see: fix_fullness_group()) */ static const int fullness_threshold_frac = 4; +static size_t huge_class_size; struct size_class { spinlock_t lock; @@ -1407,6 +1408,25 @@ void zs_unmap_object(struct zs_pool *poo } EXPORT_SYMBOL_GPL(zs_unmap_object); +/** + * zs_huge_class_size() - Returns the size (in bytes) of the first huge + * zsmalloc &size_class. + * @pool: zsmalloc pool to use + * + * The function returns the size of the first huge class - any object of equal + * or bigger size will be stored in zspage consisting of a single physical + * page. + * + * Context: Any context. + * + * Return: the size (in bytes) of the first huge zsmalloc &size_class. + */ +size_t zs_huge_class_size(struct zs_pool *pool) +{ + return huge_class_size; +} +EXPORT_SYMBOL_GPL(zs_huge_class_size); + static unsigned long obj_malloc(struct size_class *class, struct zspage *zspage, unsigned long handle) { @@ -2364,6 +2384,27 @@ struct zs_pool *zs_create_pool(const cha objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; /* + * We iterate from biggest down to smallest classes, + * so huge_class_size holds the size of the first huge + * class. Any object bigger than or equal to that will + * endup in the huge class. + */ + if (pages_per_zspage != 1 && objs_per_zspage != 1 && + !huge_class_size) { + huge_class_size = size; + /* + * The object uses ZS_HANDLE_SIZE bytes to store the + * handle. We need to subtract it, because zs_malloc() + * unconditionally adds handle size before it performs + * size class search - so object may be smaller than + * huge class size, yet it still can end up in the huge + * class because it grows by ZS_HANDLE_SIZE extra bytes + * right before class lookup. + */ + huge_class_size -= (ZS_HANDLE_SIZE - 1); + } + + /* * size_class is used for normal zsmalloc operation such * as alloc/free for that size. Although it is natural that we * have one size_class for each size, there is a chance that we _ -- To unsubscribe from this list: send the line "unsubscribe mm-commits" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html