The patch titled time: uninline jiffies.h has been added to the -mm tree. Its filename is time-uninline-jiffiesh.patch See http://www.zip.com.au/~akpm/linux/patches/stuff/added-to-mm.txt to find out what to do about this ------------------------------------------------------ Subject: time: uninline jiffies.h From: Ingo Molnar <mingo@xxxxxxx> There are load of fat functions hidden in jiffies.h. Uninline them. No code changes. Signed-off-by: Ingo Molnar <mingo@xxxxxxx> Signed-off-by: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Cc: john stultz <johnstul@xxxxxxxxxx> Cc: Roman Zippel <zippel@xxxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxx> --- include/linux/jiffies.h | 223 ++------------------------------------ kernel/time.c | 218 +++++++++++++++++++++++++++++++++++++ 2 files changed, 234 insertions(+), 207 deletions(-) diff -puN include/linux/jiffies.h~time-uninline-jiffiesh include/linux/jiffies.h --- a/include/linux/jiffies.h~time-uninline-jiffiesh +++ a/include/linux/jiffies.h @@ -259,215 +259,24 @@ static inline u64 get_jiffies_64(void) #endif /* - * Convert jiffies to milliseconds and back. - * - * Avoid unnecessary multiplications/divisions in the - * two most common HZ cases: + * Convert various time units to each other: */ -static inline unsigned int jiffies_to_msecs(const unsigned long j) -{ -#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) - return (MSEC_PER_SEC / HZ) * j; -#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) - return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); -#else - return (j * MSEC_PER_SEC) / HZ; -#endif -} - -static inline unsigned int jiffies_to_usecs(const unsigned long j) -{ -#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) - return (USEC_PER_SEC / HZ) * j; -#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) - return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); -#else - return (j * USEC_PER_SEC) / HZ; -#endif -} - -static inline unsigned long msecs_to_jiffies(const unsigned int m) -{ - if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) - return MAX_JIFFY_OFFSET; -#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) - return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); -#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) - return m * (HZ / MSEC_PER_SEC); -#else - return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; -#endif -} - -static inline unsigned long usecs_to_jiffies(const unsigned int u) -{ - if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) - return MAX_JIFFY_OFFSET; -#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) - return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); -#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) - return u * (HZ / USEC_PER_SEC); -#else - return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC; -#endif -} - -/* - * The TICK_NSEC - 1 rounds up the value to the next resolution. Note - * that a remainder subtract here would not do the right thing as the - * resolution values don't fall on second boundries. I.e. the line: - * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. - * - * Rather, we just shift the bits off the right. - * - * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec - * value to a scaled second value. - */ -static __inline__ unsigned long -timespec_to_jiffies(const struct timespec *value) -{ - unsigned long sec = value->tv_sec; - long nsec = value->tv_nsec + TICK_NSEC - 1; - - if (sec >= MAX_SEC_IN_JIFFIES){ - sec = MAX_SEC_IN_JIFFIES; - nsec = 0; - } - return (((u64)sec * SEC_CONVERSION) + - (((u64)nsec * NSEC_CONVERSION) >> - (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; - -} - -static __inline__ void -jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) -{ - /* - * Convert jiffies to nanoseconds and separate with - * one divide. - */ - u64 nsec = (u64)jiffies * TICK_NSEC; - value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); -} - -/* Same for "timeval" - * - * Well, almost. The problem here is that the real system resolution is - * in nanoseconds and the value being converted is in micro seconds. - * Also for some machines (those that use HZ = 1024, in-particular), - * there is a LARGE error in the tick size in microseconds. - - * The solution we use is to do the rounding AFTER we convert the - * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. - * Instruction wise, this should cost only an additional add with carry - * instruction above the way it was done above. - */ -static __inline__ unsigned long -timeval_to_jiffies(const struct timeval *value) -{ - unsigned long sec = value->tv_sec; - long usec = value->tv_usec; - - if (sec >= MAX_SEC_IN_JIFFIES){ - sec = MAX_SEC_IN_JIFFIES; - usec = 0; - } - return (((u64)sec * SEC_CONVERSION) + - (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> - (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; -} - -static __inline__ void -jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) -{ - /* - * Convert jiffies to nanoseconds and separate with - * one divide. - */ - u64 nsec = (u64)jiffies * TICK_NSEC; - long tv_usec; - - value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); - tv_usec /= NSEC_PER_USEC; - value->tv_usec = tv_usec; -} - -/* - * Convert jiffies/jiffies_64 to clock_t and back. - */ -static inline clock_t jiffies_to_clock_t(long x) -{ -#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 - return x / (HZ / USER_HZ); -#else - u64 tmp = (u64)x * TICK_NSEC; - do_div(tmp, (NSEC_PER_SEC / USER_HZ)); - return (long)tmp; -#endif -} - -static inline unsigned long clock_t_to_jiffies(unsigned long x) -{ -#if (HZ % USER_HZ)==0 - if (x >= ~0UL / (HZ / USER_HZ)) - return ~0UL; - return x * (HZ / USER_HZ); -#else - u64 jif; - - /* Don't worry about loss of precision here .. */ - if (x >= ~0UL / HZ * USER_HZ) - return ~0UL; - - /* .. but do try to contain it here */ - jif = x * (u64) HZ; - do_div(jif, USER_HZ); - return jif; -#endif -} - -static inline u64 jiffies_64_to_clock_t(u64 x) -{ -#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 - do_div(x, HZ / USER_HZ); -#else - /* - * There are better ways that don't overflow early, - * but even this doesn't overflow in hundreds of years - * in 64 bits, so.. - */ - x *= TICK_NSEC; - do_div(x, (NSEC_PER_SEC / USER_HZ)); -#endif - return x; -} - -static inline u64 nsec_to_clock_t(u64 x) -{ -#if (NSEC_PER_SEC % USER_HZ) == 0 - do_div(x, (NSEC_PER_SEC / USER_HZ)); -#elif (USER_HZ % 512) == 0 - x *= USER_HZ/512; - do_div(x, (NSEC_PER_SEC / 512)); -#else - /* - * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, - * overflow after 64.99 years. - * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... - */ - x *= 9; - do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) - / USER_HZ)); -#endif - return x; -} +extern unsigned int jiffies_to_msecs(const unsigned long j); +extern unsigned int jiffies_to_usecs(const unsigned long j); +extern unsigned long msecs_to_jiffies(const unsigned int m); +extern unsigned long usecs_to_jiffies(const unsigned int u); +extern unsigned long timespec_to_jiffies(const struct timespec *value); +extern void jiffies_to_timespec(const unsigned long jiffies, + struct timespec *value); +extern unsigned long timeval_to_jiffies(const struct timeval *value); +extern void jiffies_to_timeval(const unsigned long jiffies, + struct timeval *value); +extern clock_t jiffies_to_clock_t(long x); +extern unsigned long clock_t_to_jiffies(unsigned long x); +extern u64 jiffies_64_to_clock_t(u64 x); +extern u64 nsec_to_clock_t(u64 x); +extern int nsec_to_timestamp(char *s, u64 t); -static inline int nsec_to_timestamp(char *s, u64 t) -{ - unsigned long nsec_rem = do_div(t, NSEC_PER_SEC); - return sprintf(s, "[%5lu.%06lu]", (unsigned long)t, - nsec_rem/NSEC_PER_USEC); -} #define TIMESTAMP_SIZE 30 #endif diff -puN kernel/time.c~time-uninline-jiffiesh kernel/time.c --- a/kernel/time.c~time-uninline-jiffiesh +++ a/kernel/time.c @@ -470,6 +470,224 @@ struct timeval ns_to_timeval(const s64 n return tv; } +/* + * Convert jiffies to milliseconds and back. + * + * Avoid unnecessary multiplications/divisions in the + * two most common HZ cases: + */ +unsigned int jiffies_to_msecs(const unsigned long j) +{ +#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) + return (MSEC_PER_SEC / HZ) * j; +#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) + return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); +#else + return (j * MSEC_PER_SEC) / HZ; +#endif +} +EXPORT_SYMBOL(jiffies_to_msecs); + +unsigned int jiffies_to_usecs(const unsigned long j) +{ +#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) + return (USEC_PER_SEC / HZ) * j; +#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) + return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); +#else + return (j * USEC_PER_SEC) / HZ; +#endif +} +EXPORT_SYMBOL(jiffies_to_usecs); + +unsigned long msecs_to_jiffies(const unsigned int m) +{ + if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) + return MAX_JIFFY_OFFSET; +#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) + return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); +#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) + return m * (HZ / MSEC_PER_SEC); +#else + return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; +#endif +} +EXPORT_SYMBOL(msecs_to_jiffies); + +unsigned long usecs_to_jiffies(const unsigned int u) +{ + if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) + return MAX_JIFFY_OFFSET; +#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) + return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); +#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) + return u * (HZ / USEC_PER_SEC); +#else + return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC; +#endif +} +EXPORT_SYMBOL(usecs_to_jiffies); + +/* + * The TICK_NSEC - 1 rounds up the value to the next resolution. Note + * that a remainder subtract here would not do the right thing as the + * resolution values don't fall on second boundries. I.e. the line: + * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. + * + * Rather, we just shift the bits off the right. + * + * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec + * value to a scaled second value. + */ +unsigned long +timespec_to_jiffies(const struct timespec *value) +{ + unsigned long sec = value->tv_sec; + long nsec = value->tv_nsec + TICK_NSEC - 1; + + if (sec >= MAX_SEC_IN_JIFFIES){ + sec = MAX_SEC_IN_JIFFIES; + nsec = 0; + } + return (((u64)sec * SEC_CONVERSION) + + (((u64)nsec * NSEC_CONVERSION) >> + (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; + +} +EXPORT_SYMBOL(timespec_to_jiffies); + +void +jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) +{ + /* + * Convert jiffies to nanoseconds and separate with + * one divide. + */ + u64 nsec = (u64)jiffies * TICK_NSEC; + value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); +} + +/* Same for "timeval" + * + * Well, almost. The problem here is that the real system resolution is + * in nanoseconds and the value being converted is in micro seconds. + * Also for some machines (those that use HZ = 1024, in-particular), + * there is a LARGE error in the tick size in microseconds. + + * The solution we use is to do the rounding AFTER we convert the + * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. + * Instruction wise, this should cost only an additional add with carry + * instruction above the way it was done above. + */ +unsigned long +timeval_to_jiffies(const struct timeval *value) +{ + unsigned long sec = value->tv_sec; + long usec = value->tv_usec; + + if (sec >= MAX_SEC_IN_JIFFIES){ + sec = MAX_SEC_IN_JIFFIES; + usec = 0; + } + return (((u64)sec * SEC_CONVERSION) + + (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> + (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; +} + +void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) +{ + /* + * Convert jiffies to nanoseconds and separate with + * one divide. + */ + u64 nsec = (u64)jiffies * TICK_NSEC; + long tv_usec; + + value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec); + tv_usec /= NSEC_PER_USEC; + value->tv_usec = tv_usec; +} + +/* + * Convert jiffies/jiffies_64 to clock_t and back. + */ +clock_t jiffies_to_clock_t(long x) +{ +#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 + return x / (HZ / USER_HZ); +#else + u64 tmp = (u64)x * TICK_NSEC; + do_div(tmp, (NSEC_PER_SEC / USER_HZ)); + return (long)tmp; +#endif +} +EXPORT_SYMBOL(jiffies_to_clock_t); + +unsigned long clock_t_to_jiffies(unsigned long x) +{ +#if (HZ % USER_HZ)==0 + if (x >= ~0UL / (HZ / USER_HZ)) + return ~0UL; + return x * (HZ / USER_HZ); +#else + u64 jif; + + /* Don't worry about loss of precision here .. */ + if (x >= ~0UL / HZ * USER_HZ) + return ~0UL; + + /* .. but do try to contain it here */ + jif = x * (u64) HZ; + do_div(jif, USER_HZ); + return jif; +#endif +} +EXPORT_SYMBOL(clock_t_to_jiffies); + +u64 jiffies_64_to_clock_t(u64 x) +{ +#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 + do_div(x, HZ / USER_HZ); +#else + /* + * There are better ways that don't overflow early, + * but even this doesn't overflow in hundreds of years + * in 64 bits, so.. + */ + x *= TICK_NSEC; + do_div(x, (NSEC_PER_SEC / USER_HZ)); +#endif + return x; +} + +EXPORT_SYMBOL(jiffies_64_to_clock_t); + +u64 nsec_to_clock_t(u64 x) +{ +#if (NSEC_PER_SEC % USER_HZ) == 0 + do_div(x, (NSEC_PER_SEC / USER_HZ)); +#elif (USER_HZ % 512) == 0 + x *= USER_HZ/512; + do_div(x, (NSEC_PER_SEC / 512)); +#else + /* + * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, + * overflow after 64.99 years. + * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... + */ + x *= 9; + do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) / + USER_HZ)); +#endif + return x; +} + +int nsec_to_timestamp(char *s, u64 t) +{ + unsigned long nsec_rem = do_div(t, NSEC_PER_SEC); + return sprintf(s, "[%5lu.%06lu]", (unsigned long)t, + nsec_rem/NSEC_PER_USEC); +} __attribute__((weak)) unsigned long long timestamp_clock(void) { return sched_clock(); _ Patches currently in -mm which might be from mingo@xxxxxxx are origin.patch forcedeth-hardirq-lockdep-warning.patch bonding-lockdep-annotation.patch spinlock-debug-all-cpu-backtrace.patch spinlock-debug-all-cpu-backtrace-fix.patch spinlock-debug-all-cpu-backtrace-fix-2.patch spinlock-debug-all-cpu-backtrace-fix-3.patch remove-the-old-bd_mutex-lockdep-annotation.patch new-bd_mutex-lockdep-annotation.patch nfsd-lockdep-annotation.patch sched-force-sbin-init-off-isolated-cpus.patch sched-remove-unnecessary-sched-group-allocations.patch sched-remove-unnecessary-sched-group-allocations-fix.patch lower-migration-thread-stop-machine-prio.patch sched-introduce-child-field-in-sched_domain.patch sched-cleanup-sched_group-cpu_power-setup.patch sched-fixing-wrong-comment-for-find_idlest_cpu.patch scheduler-numa-aware-placement-of-sched_group_allnodes.patch sched-add-above-background-load-function.patch mm-implement-swap-prefetching.patch sched-cleanup-remove-task_t-convert-to-struct-task_struct-prefetch.patch genirq-convert-the-x86_64-architecture-to-irq-chips.patch genirq-convert-the-i386-architecture-to-irq-chips.patch genirq-irq-convert-the-move_irq-flag-from-a-32bit-word-to-a-single-bit.patch genirq-irq-add-moved_masked_irq.patch genirq-x86_64-irq-reenable-migrating-irqs-to-other-cpus.patch genirq-msi-simplify-msi-enable-and-disable.patch genirq-msi-make-the-msi-boolean-tests-return-either-0-or-1.patch genirq-msi-implement-helper-functions-read_msi_msg-and-write_msi_msg.patch genirq-msi-refactor-the-msi_ops.patch genirq-msi-simplify-the-msi-irq-limit-policy.patch genirq-irq-add-a-dynamic-irq-creation-api.patch genirq-ia64-irq-dynamic-irq-support.patch genirq-i386-irq-dynamic-irq-support.patch genirq-x86_64-irq-dynamic-irq-support.patch genirq-msi-make-the-msi-code-irq-based-and-not-vector-based.patch genirq-x86_64-irq-move-msi-message-composition-into-io_apicc.patch genirq-i386-irq-move-msi-message-composition-into-io_apicc.patch genirq-msi-only-build-msi-apicc-on-ia64.patch genirq-x86_64-irq-remove-the-msi-assumption-that-irq-==-vector.patch genirq-i386-irq-remove-the-msi-assumption-that-irq-==-vector.patch genirq-irq-remove-msi-hacks.patch genirq-irq-generalize-the-check-for-hardirq_bits.patch genirq-x86_64-irq-make-the-external-irq-handlers-report-their-vector-not-the-irq-number.patch genirq-x86_64-irq-make-vector_irq-per-cpu.patch genirq-x86_64-irq-make-vector_irq-per-cpu-warning-fix.patch genirq-x86_64-irq-kill-gsi_irq_sharing.patch genirq-x86_64-irq-kill-irq-compression.patch msi-simplify-msi-sanity-checks-by-adding-with-generic-irq-code.patch msi-only-use-a-single-irq_chip-for-msi-interrupts.patch msi-refactor-and-move-the-msi-irq_chip-into-the-arch-code.patch msi-move-the-ia64-code-into-arch-ia64.patch htirq-tidy-up-the-htirq-code.patch genirq-clean-up-irq-flow-type-naming.patch gtod-exponential-update_wall_time.patch gtod-persistent-clock-support-core.patch gtod-persistent-clock-support-i386.patch time-uninline-jiffiesh.patch time-fix-msecs_to_jiffies-bug.patch time-fix-timeout-overflow.patch cleanup-uninline-irq_enter-and-move-it-into-a.patch dynticks-extend-next_timer_interrupt-to-use-a.patch hrtimers-namespace-and-enum-cleanup.patch hrtimers-clean-up-locking.patch hrtimers-state-tracking.patch hrtimers-clean-up-callback-tracking.patch hrtimers-move-and-add-documentation.patch clockevents-core.patch clockevents-drivers-for-i386.patch high-res-timers-core.patch high-res-timers-core-fix.patch dynticks-core.patch dyntick-add-nohz-stats-to-proc-stat.patch dynticks-i386-arch-code.patch high-res-timers-dynticks-enable-i386-support.patch debugging-feature-timer-stats.patch detect-atomic-counter-underflows.patch debug-shared-irqs.patch make-frame_pointer-default=y.patch mutex-subsystem-synchro-test-module.patch vdso-print-fatal-signals.patch vdso-improve-print_fatal_signals-support-by-adding-memory-maps.patch - To unsubscribe from this list: send the line "unsubscribe mm-commits" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html