+ zsmalloc-fix-zs_can_compact-integer-overflow.patch added to -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled
     Subject: zsmalloc: fix zs_can_compact() integer overflow
has been added to the -mm tree.  Its filename is
     zsmalloc-fix-zs_can_compact-integer-overflow.patch

This patch should soon appear at
    http://ozlabs.org/~akpm/mmots/broken-out/zsmalloc-fix-zs_can_compact-integer-overflow.patch
and later at
    http://ozlabs.org/~akpm/mmotm/broken-out/zsmalloc-fix-zs_can_compact-integer-overflow.patch

Before you just go and hit "reply", please:
   a) Consider who else should be cc'ed
   b) Prefer to cc a suitable mailing list as well
   c) Ideally: find the original patch on the mailing list and do a
      reply-to-all to that, adding suitable additional cc's

*** Remember to use Documentation/SubmitChecklist when testing your code ***

The -mm tree is included into linux-next and is updated
there every 3-4 working days

------------------------------------------------------
From: Sergey Senozhatsky <sergey.senozhatsky@xxxxxxxxx>
Subject: zsmalloc: fix zs_can_compact() integer overflow

zs_can_compact() has two race conditions in its core calculation:

unsigned long obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
				zs_stat_get(class, OBJ_USED);

1) classes are not locked, so the numbers of allocated and used
   objects can change by the concurrent ops happening on other CPUs
2) shrinker invokes it from preemptible context

Depending on the circumstances, thus, OBJ_ALLOCATED can become
less than OBJ_USED, which can result in either very high or
negative `total_scan' value calculated later in do_shrink_slab().

do_shrink_slab() has some logic to prevent those cases:

 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-64
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62
 vmscan: shrink_slab: zs_shrinker_scan+0x0/0x28 [zsmalloc] negative objects to delete nr=-62

However, due to the way `total_scan' is calculated, not every
shrinker->count_objects() overflow can be spotted and handled.
To demonstrate the latter, I added some debugging code to do_shrink_slab()
(x86_64) and the results were:

 vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615]
 vmscan: but total_scan > 0: 92679974445502
 vmscan: resulting total_scan: 92679974445502
[..]
 vmscan: OVERFLOW: shrinker->count_objects() == -1 [18446744073709551615]
 vmscan: but total_scan > 0: 22634041808232578
 vmscan: resulting total_scan: 22634041808232578

Even though shrinker->count_objects() has returned an overflowed value,
the resulting `total_scan' is positive, and, what is more worrisome, it
is insanely huge. This value is getting used later on in
shrinker->scan_objects() loop:

        while (total_scan >= batch_size ||
               total_scan >= freeable) {
                unsigned long ret;
                unsigned long nr_to_scan = min(batch_size, total_scan);

                shrinkctl->nr_to_scan = nr_to_scan;
                ret = shrinker->scan_objects(shrinker, shrinkctl);
                if (ret == SHRINK_STOP)
                        break;
                freed += ret;

                count_vm_events(SLABS_SCANNED, nr_to_scan);
                total_scan -= nr_to_scan;

                cond_resched();
        }

`total_scan >= batch_size' is true for a very-very long time and
'total_scan >= freeable' is also true for quite some time, because
`freeable < 0' and `total_scan' is large enough, for example,
22634041808232578. The only break condition, in the given scheme of
things, is shrinker->scan_objects() == SHRINK_STOP test, which is a
bit too weak to rely on, especially in heavy zsmalloc-usage scenarios.

To fix the issue, take a pool stat snapshot and use it instead of
racy zs_stat_get() calls.

Link: http://lkml.kernel.org/r/20160509140052.3389-1-sergey.senozhatsky@xxxxxxxxx
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@xxxxxxxxx>
Cc: Minchan Kim <minchan@xxxxxxxxxx>
Cc: <stable@xxxxxxxxxxxxxxx>        [4.3+]
Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
---

 mm/zsmalloc.c |    7 +++++--
 1 file changed, 5 insertions(+), 2 deletions(-)

diff -puN mm/zsmalloc.c~zsmalloc-fix-zs_can_compact-integer-overflow mm/zsmalloc.c
--- a/mm/zsmalloc.c~zsmalloc-fix-zs_can_compact-integer-overflow
+++ a/mm/zsmalloc.c
@@ -1728,10 +1728,13 @@ static struct page *isolate_source_page(
 static unsigned long zs_can_compact(struct size_class *class)
 {
 	unsigned long obj_wasted;
+	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
+	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
 
-	obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
-		zs_stat_get(class, OBJ_USED);
+	if (obj_allocated <= obj_used)
+		return 0;
 
+	obj_wasted = obj_allocated - obj_used;
 	obj_wasted /= get_maxobj_per_zspage(class->size,
 			class->pages_per_zspage);
 
_

Patches currently in -mm which might be from sergey.senozhatsky@xxxxxxxxx are

zsmalloc-fix-zs_can_compact-integer-overflow.patch
zsmalloc-require-gfp-in-zs_malloc.patch
zsmalloc-require-gfp-in-zs_malloc-v2.patch
zram-user-per-cpu-compression-streams.patch
zram-user-per-cpu-compression-streams-fix.patch
zram-remove-max_comp_streams-internals.patch

--
To unsubscribe from this list: send the line "unsubscribe mm-commits" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html



[Index of Archives]     [Kernel Newbies FAQ]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Photo]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux