The patch titled Subject: thp: update documentation has been added to the -mm tree. Its filename is thp-update-documentation.patch This patch should soon appear at http://ozlabs.org/~akpm/mmots/broken-out/thp-update-documentation.patch and later at http://ozlabs.org/~akpm/mmotm/broken-out/thp-update-documentation.patch Before you just go and hit "reply", please: a) Consider who else should be cc'ed b) Prefer to cc a suitable mailing list as well c) Ideally: find the original patch on the mailing list and do a reply-to-all to that, adding suitable additional cc's *** Remember to use Documentation/SubmitChecklist when testing your code *** The -mm tree is included into linux-next and is updated there every 3-4 working days ------------------------------------------------------ From: "Kirill A. Shutemov" <kirill.shutemov@xxxxxxxxxxxxxxx> Subject: thp: update documentation The patch updates Documentation/vm/transhuge.txt to reflect changes in THP design. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx> Acked-by: Jerome Marchand <jmarchan@xxxxxxxxxx> Cc: Sasha Levin <sasha.levin@xxxxxxxxxx> Cc: Aneesh Kumar K.V <aneesh.kumar@xxxxxxxxxxxxxxxxxx> Cc: Vlastimil Babka <vbabka@xxxxxxx> Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx> Cc: Hugh Dickins <hughd@xxxxxxxxxx> Cc: Dave Hansen <dave.hansen@xxxxxxxxx> Cc: Mel Gorman <mgorman@xxxxxxx> Cc: Rik van Riel <riel@xxxxxxxxxx> Cc: Vlastimil Babka <vbabka@xxxxxxx> Cc: Naoya Horiguchi <n-horiguchi@xxxxxxxxxxxxx> Cc: Steve Capper <steve.capper@xxxxxxxxxx> Cc: Johannes Weiner <hannes@xxxxxxxxxxx> Cc: Michal Hocko <mhocko@xxxxxxx> Cc: Christoph Lameter <cl@xxxxxxxxx> Cc: David Rientjes <rientjes@xxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- Documentation/vm/transhuge.txt | 149 +++++++++++++++++++------------ 1 file changed, 95 insertions(+), 54 deletions(-) diff -puN Documentation/vm/transhuge.txt~thp-update-documentation Documentation/vm/transhuge.txt --- a/Documentation/vm/transhuge.txt~thp-update-documentation +++ a/Documentation/vm/transhuge.txt @@ -35,10 +35,10 @@ miss is going to run faster. == Design == -- "graceful fallback": mm components which don't have transparent - hugepage knowledge fall back to breaking a transparent hugepage and - working on the regular pages and their respective regular pmd/pte - mappings +- "graceful fallback": mm components which don't have transparent hugepage + knowledge fall back to breaking huge pmd mapping into table of ptes and, + if necessary, split a transparent hugepage. Therefore these components + can continue working on the regular pages or regular pte mappings. - if a hugepage allocation fails because of memory fragmentation, regular pages should be gracefully allocated instead and mixed in @@ -221,9 +221,18 @@ thp_collapse_alloc_failed is incremented of pages that should be collapsed into one huge page but failed the allocation. -thp_split is incremented every time a huge page is split into base +thp_split_page is incremented every time a huge page is split into base pages. This can happen for a variety of reasons but a common reason is that a huge page is old and is being reclaimed. + This action implies splitting all PMD the page mapped with. + +thp_split_page_failed is is incremented if kernel fails to split huge + page. This can happen if the page was pinned by somebody. + +thp_split_pmd is incremented every time a PMD split into table of PTEs. + This can happen, for instance, when application calls mprotect() or + munmap() on part of huge page. It doesn't split huge page, only + page table entry. thp_zero_page_alloc is incremented every time a huge zero page is successfully allocated. It includes allocations which where @@ -274,10 +283,8 @@ is complete, so they won't ever notice t if any driver is going to mangle over the page structure of the tail page (like for checking page->mapping or other bits that are relevant for the head page and not the tail page), it should be updated to jump -to check head page instead (while serializing properly against -split_huge_page() to avoid the head and tail pages to disappear from -under it, see the futex code to see an example of that, hugetlbfs also -needed special handling in futex code for similar reasons). +to check head page instead. Taking reference on any head/tail page would +prevent page from being split by anyone. NOTE: these aren't new constraints to the GUP API, and they match the same constrains that applies to hugetlbfs too, so any driver capable @@ -312,9 +319,9 @@ unaffected. libhugetlbfs will also work == Graceful fallback == Code walking pagetables but unware about huge pmds can simply call -split_huge_page_pmd(vma, addr, pmd) where the pmd is the one returned by +split_huge_pmd(vma, pmd, addr) where the pmd is the one returned by pmd_offset. It's trivial to make the code transparent hugepage aware -by just grepping for "pmd_offset" and adding split_huge_page_pmd where +by just grepping for "pmd_offset" and adding split_huge_pmd where missing after pmd_offset returns the pmd. Thanks to the graceful fallback design, with a one liner change, you can avoid to write hundred if not thousand of lines of complex code to make your code @@ -323,7 +330,8 @@ hugepage aware. If you're not walking pagetables but you run into a physical hugepage but you can't handle it natively in your code, you can split it by calling split_huge_page(page). This is what the Linux VM does before -it tries to swapout the hugepage for example. +it tries to swapout the hugepage for example. split_huge_page() can fail +if the page is pinned and you must handle this correctly. Example to make mremap.c transparent hugepage aware with a one liner change: @@ -335,14 +343,14 @@ diff --git a/mm/mremap.c b/mm/mremap.c return NULL; pmd = pmd_offset(pud, addr); -+ split_huge_page_pmd(vma, addr, pmd); ++ split_huge_pmd(vma, pmd, addr); if (pmd_none_or_clear_bad(pmd)) return NULL; == Locking in hugepage aware code == We want as much code as possible hugepage aware, as calling -split_huge_page() or split_huge_page_pmd() has a cost. +split_huge_page() or split_huge_pmd() has a cost. To make pagetable walks huge pmd aware, all you need to do is to call pmd_trans_huge() on the pmd returned by pmd_offset. You must hold the @@ -351,47 +359,80 @@ created from under you by khugepaged (kh takes the mmap_sem in write mode in addition to the anon_vma lock). If pmd_trans_huge returns false, you just fallback in the old code paths. If instead pmd_trans_huge returns true, you have to take the -mm->page_table_lock and re-run pmd_trans_huge. Taking the -page_table_lock will prevent the huge pmd to be converted into a -regular pmd from under you (split_huge_page can run in parallel to the +page table lock (pmd_lock()) and re-run pmd_trans_huge. Taking the +page table lock will prevent the huge pmd to be converted into a +regular pmd from under you (split_huge_pmd can run in parallel to the pagetable walk). If the second pmd_trans_huge returns false, you -should just drop the page_table_lock and fallback to the old code as -before. Otherwise you should run pmd_trans_splitting on the pmd. In -case pmd_trans_splitting returns true, it means split_huge_page is -already in the middle of splitting the page. So if pmd_trans_splitting -returns true it's enough to drop the page_table_lock and call -wait_split_huge_page and then fallback the old code paths. You are -guaranteed by the time wait_split_huge_page returns, the pmd isn't -huge anymore. If pmd_trans_splitting returns false, you can proceed to -process the huge pmd and the hugepage natively. Once finished you can -drop the page_table_lock. +should just drop the page table lock and fallback to the old code as +before. Otherwise you can proceed to process the huge pmd and the +hugepage natively. Once finished you can drop the page table lock. + +== Refcounts and transparent huge pages == + +Refcounting on THP is mostly consistent with refcounting on other compound +pages: + + - get_page()/put_page() and GUP operate in head page's ->_count. + + - ->_count in tail pages is always zero: get_page_unless_zero() never + succeed on tail pages. + + - map/unmap of the pages with PTE entry increment/decrement ->_mapcount + on relevant sub-page of the compound page. + + - map/unmap of the whole compound page accounted in compound_mapcount + (stored in first tail page). + +PageDoubleMap() indicates that ->_mapcount in all subpages is offset up by one. +This additional reference is required to get race-free detection of unmap of +subpages when we have them mapped with both PMDs and PTEs. + +This is optimization required to lower overhead of per-subpage mapcount +tracking. The alternative is alter ->_mapcount in all subpages on each +map/unmap of the whole compound page. -== compound_lock, get_user_pages and put_page == +We set PG_double_map when a PMD of the page got split for the first time, +but still have PMD mapping. The addtional references go away with last +compound_mapcount. split_huge_page internally has to distribute the refcounts in the head -page to the tail pages before clearing all PG_head/tail bits from the -page structures. It can do that easily for refcounts taken by huge pmd -mappings. But the GUI API as created by hugetlbfs (that returns head -and tail pages if running get_user_pages on an address backed by any -hugepage), requires the refcount to be accounted on the tail pages and -not only in the head pages, if we want to be able to run -split_huge_page while there are gup pins established on any tail -page. Failure to be able to run split_huge_page if there's any gup pin -on any tail page, would mean having to split all hugepages upfront in -get_user_pages which is unacceptable as too many gup users are -performance critical and they must work natively on hugepages like -they work natively on hugetlbfs already (hugetlbfs is simpler because -hugetlbfs pages cannot be split so there wouldn't be requirement of -accounting the pins on the tail pages for hugetlbfs). If we wouldn't -account the gup refcounts on the tail pages during gup, we won't know -anymore which tail page is pinned by gup and which is not while we run -split_huge_page. But we still have to add the gup pin to the head page -too, to know when we can free the compound page in case it's never -split during its lifetime. That requires changing not just -get_page, but put_page as well so that when put_page runs on a tail -page (and only on a tail page) it will find its respective head page, -and then it will decrease the head page refcount in addition to the -tail page refcount. To obtain a head page reliably and to decrease its -refcount without race conditions, put_page has to serialize against -__split_huge_page_refcount using a special per-page lock called -compound_lock. +page to the tail pages before clearing all PG_head/tail bits from the page +structures. It can be done easily for refcounts taken by page table +entries. But we don't have enough information on how to distribute any +additional pins (i.e. from get_user_pages). split_huge_page() fails any +requests to split pinned huge page: it expects page count to be equal to +sum of mapcount of all sub-pages plus one (split_huge_page caller must +have reference for head page). + +split_huge_page uses migration entries to stabilize page->_count and +page->_mapcount. + +We safe against physical memory scanners too: the only legitimate way +scanner can get reference to a page is get_page_unless_zero(). + +All tail pages has zero ->_count until atomic_add(). It prevent scanner +from geting reference to tail page up to the point. After the atomic_add() +we don't care about ->_count value. We already known how many references +with should uncharge from head page. + +For head page get_page_unless_zero() will succeed and we don't mind. It's +clear where reference should go after split: it will stay on head page. + +Note that split_huge_pmd() doesn't have any limitation on refcounting: +pmd can be split at any point and never fails. + +== Partial unmap and deferred_split_huge_page() == + +Unmapping part of THP (with munmap() or other way) is not going to free +memory immediately. Instead, we detect that a subpage of THP is not in use +in page_remove_rmap() and queue the THP for splitting if memory pressure +comes. Splitting will free up unused subpages. + +Splitting the page right away is not an option due to locking context in +the place where we can detect partial unmap. It's also might be +counterproductive since in many cases partial unmap unmap happens during +exit(2) if an THP crosses VMA boundary. + +Function deferred_split_huge_page() is used to queue page for splitting. +The splitting itself will happen when we get memory pressure via shrinker +interface. _ Patches currently in -mm which might be from kirill.shutemov@xxxxxxxxxxxxxxx are rcu-force-alignment-on-struct-callback_head-rcu_head.patch mm-make-optimistic-check-for-swapin-readahead-fix.patch mm-make-swapin-readahead-to-improve-thp-collapse-rate-fix.patch mm-make-swapin-readahead-to-improve-thp-collapse-rate-fix-2.patch mm-make-swapin-readahead-to-improve-thp-collapse-rate-fix-3.patch mm-drop-page-slab_page.patch slab-slub-use-page-rcu_head-instead-of-page-lru-plus-cast.patch zsmalloc-use-page-private-instead-of-page-first_page.patch mm-pack-compound_dtor-and-compound_order-into-one-word-in-struct-page.patch mm-make-compound_head-robust.patch mm-make-compound_head-robust-fix.patch mm-use-unsigned-int-for-page-order.patch mm-use-unsigned-int-for-compound_dtor-compound_order-on-64bit.patch page-flags-trivial-cleanup-for-pagetrans-helpers.patch page-flags-move-code-around.patch page-flags-introduce-page-flags-policies-wrt-compound-pages.patch page-flags-introduce-page-flags-policies-wrt-compound-pages-fix.patch page-flags-introduce-page-flags-policies-wrt-compound-pages-fix-fix.patch page-flags-introduce-page-flags-policies-wrt-compound-pages-fix-3.patch page-flags-define-pg_locked-behavior-on-compound-pages.patch page-flags-define-behavior-of-fs-io-related-flags-on-compound-pages.patch page-flags-define-behavior-of-lru-related-flags-on-compound-pages.patch page-flags-define-behavior-slb-related-flags-on-compound-pages.patch page-flags-define-behavior-of-xen-related-flags-on-compound-pages.patch page-flags-define-pg_reserved-behavior-on-compound-pages.patch page-flags-define-pg_reserved-behavior-on-compound-pages-fix.patch page-flags-define-pg_swapbacked-behavior-on-compound-pages.patch page-flags-define-pg_swapcache-behavior-on-compound-pages.patch page-flags-define-pg_mlocked-behavior-on-compound-pages.patch page-flags-define-pg_uncached-behavior-on-compound-pages.patch page-flags-define-pg_uptodate-behavior-on-compound-pages.patch page-flags-look-at-head-page-if-the-flag-is-encoded-in-page-mapping.patch mm-sanitize-page-mapping-for-tail-pages.patch mm-proc-adjust-pss-calculation.patch rmap-add-argument-to-charge-compound-page.patch memcg-adjust-to-support-new-thp-refcounting.patch mm-thp-adjust-conditions-when-we-can-reuse-the-page-on-wp-fault.patch mm-adjust-foll_split-for-new-refcounting.patch mm-handle-pte-mapped-tail-pages-in-gerneric-fast-gup-implementaiton.patch thp-mlock-do-not-allow-huge-pages-in-mlocked-area.patch khugepaged-ignore-pmd-tables-with-thp-mapped-with-ptes.patch thp-rename-split_huge_page_pmd-to-split_huge_pmd.patch mm-vmstats-new-thp-splitting-event.patch mm-temporally-mark-thp-broken.patch thp-drop-all-split_huge_page-related-code.patch mm-drop-tail-page-refcounting.patch futex-thp-remove-special-case-for-thp-in-get_futex_key.patch ksm-prepare-to-new-thp-semantics.patch mm-thp-remove-compound_lock.patch arm64-thp-remove-infrastructure-for-handling-splitting-pmds.patch arm-thp-remove-infrastructure-for-handling-splitting-pmds.patch mips-thp-remove-infrastructure-for-handling-splitting-pmds.patch powerpc-thp-remove-infrastructure-for-handling-splitting-pmds.patch s390-thp-remove-infrastructure-for-handling-splitting-pmds.patch sparc-thp-remove-infrastructure-for-handling-splitting-pmds.patch tile-thp-remove-infrastructure-for-handling-splitting-pmds.patch x86-thp-remove-infrastructure-for-handling-splitting-pmds.patch mm-thp-remove-infrastructure-for-handling-splitting-pmds.patch mm-rework-mapcount-accounting-to-enable-4k-mapping-of-thps.patch mm-differentiate-page_mapped-from-page_mapcount-for-compound-pages.patch mm-numa-skip-pte-mapped-thp-on-numa-fault.patch thp-implement-split_huge_pmd.patch thp-add-option-to-setup-migration-entries-during-pmd-split.patch thp-mm-split_huge_page-caller-need-to-lock-page.patch thp-reintroduce-split_huge_page.patch migrate_pages-try-to-split-pages-on-qeueuing.patch thp-introduce-deferred_split_huge_page.patch mm-re-enable-thp.patch thp-update-documentation.patch thp-allow-mlocked-thp-again.patch mm-support-madvisemadv_free-fix-3.patch -- To unsubscribe from this list: send the line "unsubscribe mm-commits" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html