The patch titled Subject: zsmalloc: zsmalloc documentation has been removed from the -mm tree. Its filename was zsmalloc-zsmalloc-documentation.patch This patch was dropped because it was merged into mainline or a subsystem tree ------------------------------------------------------ From: Minchan Kim <minchan@xxxxxxxxxx> Subject: zsmalloc: zsmalloc documentation Create zsmalloc doc which explains design concept and stat information. Signed-off-by: Minchan Kim <minchan@xxxxxxxxxx> Cc: Juneho Choi <juno.choi@xxxxxxx> Cc: Gunho Lee <gunho.lee@xxxxxxx> Cc: Luigi Semenzato <semenzato@xxxxxxxxxx> Cc: Dan Streetman <ddstreet@xxxxxxxx> Cc: Seth Jennings <sjennings@xxxxxxxxxxxxxx> Cc: Nitin Gupta <ngupta@xxxxxxxxxx> Cc: Jerome Marchand <jmarchan@xxxxxxxxxx> Cc: Sergey Senozhatsky <sergey.senozhatsky@xxxxxxxxx> Cc: Joonsoo Kim <iamjoonsoo.kim@xxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- Documentation/vm/zsmalloc.txt | 70 ++++++++++++++++++++++++++++++++ MAINTAINERS | 1 mm/zsmalloc.c | 29 ------------- 3 files changed, 71 insertions(+), 29 deletions(-) diff -puN /dev/null Documentation/vm/zsmalloc.txt --- /dev/null +++ a/Documentation/vm/zsmalloc.txt @@ -0,0 +1,70 @@ +zsmalloc +-------- + +This allocator is designed for use with zram. Thus, the allocator is +supposed to work well under low memory conditions. In particular, it +never attempts higher order page allocation which is very likely to +fail under memory pressure. On the other hand, if we just use single +(0-order) pages, it would suffer from very high fragmentation -- +any object of size PAGE_SIZE/2 or larger would occupy an entire page. +This was one of the major issues with its predecessor (xvmalloc). + +To overcome these issues, zsmalloc allocates a bunch of 0-order pages +and links them together using various 'struct page' fields. These linked +pages act as a single higher-order page i.e. an object can span 0-order +page boundaries. The code refers to these linked pages as a single entity +called zspage. + +For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE +since this satisfies the requirements of all its current users (in the +worst case, page is incompressible and is thus stored "as-is" i.e. in +uncompressed form). For allocation requests larger than this size, failure +is returned (see zs_malloc). + +Additionally, zs_malloc() does not return a dereferenceable pointer. +Instead, it returns an opaque handle (unsigned long) which encodes actual +location of the allocated object. The reason for this indirection is that +zsmalloc does not keep zspages permanently mapped since that would cause +issues on 32-bit systems where the VA region for kernel space mappings +is very small. So, before using the allocating memory, the object has to +be mapped using zs_map_object() to get a usable pointer and subsequently +unmapped using zs_unmap_object(). + +stat +---- + +With CONFIG_ZSMALLOC_STAT, we could see zsmalloc internal information via +/sys/kernel/debug/zsmalloc/<user name>. Here is a sample of stat output: + +# cat /sys/kernel/debug/zsmalloc/zram0/classes + + class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage + .. + .. + 9 176 0 1 186 129 8 4 + 10 192 1 0 2880 2872 135 3 + 11 208 0 1 819 795 42 2 + 12 224 0 1 219 159 12 4 + .. + .. + + +class: index +size: object size zspage stores +almost_empty: the number of ZS_ALMOST_EMPTY zspages(see below) +almost_full: the number of ZS_ALMOST_FULL zspages(see below) +obj_allocated: the number of objects allocated +obj_used: the number of objects allocated to the user +pages_used: the number of pages allocated for the class +pages_per_zspage: the number of 0-order pages to make a zspage + +We assign a zspage to ZS_ALMOST_EMPTY fullness group when: + n <= N / f, where +n = number of allocated objects +N = total number of objects zspage can store +f = fullness_threshold_frac(ie, 4 at the moment) + +Similarly, we assign zspage to: + ZS_ALMOST_FULL when n > N / f + ZS_EMPTY when n == 0 + ZS_FULL when n == N diff -puN MAINTAINERS~zsmalloc-zsmalloc-documentation MAINTAINERS --- a/MAINTAINERS~zsmalloc-zsmalloc-documentation +++ a/MAINTAINERS @@ -10972,6 +10972,7 @@ L: linux-mm@xxxxxxxxx S: Maintained F: mm/zsmalloc.c F: include/linux/zsmalloc.h +F: Documentation/vm/zsmalloc.txt ZSWAP COMPRESSED SWAP CACHING M: Seth Jennings <sjennings@xxxxxxxxxxxxxx> diff -puN mm/zsmalloc.c~zsmalloc-zsmalloc-documentation mm/zsmalloc.c --- a/mm/zsmalloc.c~zsmalloc-zsmalloc-documentation +++ a/mm/zsmalloc.c @@ -12,35 +12,6 @@ */ /* - * This allocator is designed for use with zram. Thus, the allocator is - * supposed to work well under low memory conditions. In particular, it - * never attempts higher order page allocation which is very likely to - * fail under memory pressure. On the other hand, if we just use single - * (0-order) pages, it would suffer from very high fragmentation -- - * any object of size PAGE_SIZE/2 or larger would occupy an entire page. - * This was one of the major issues with its predecessor (xvmalloc). - * - * To overcome these issues, zsmalloc allocates a bunch of 0-order pages - * and links them together using various 'struct page' fields. These linked - * pages act as a single higher-order page i.e. an object can span 0-order - * page boundaries. The code refers to these linked pages as a single entity - * called zspage. - * - * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE - * since this satisfies the requirements of all its current users (in the - * worst case, page is incompressible and is thus stored "as-is" i.e. in - * uncompressed form). For allocation requests larger than this size, failure - * is returned (see zs_malloc). - * - * Additionally, zs_malloc() does not return a dereferenceable pointer. - * Instead, it returns an opaque handle (unsigned long) which encodes actual - * location of the allocated object. The reason for this indirection is that - * zsmalloc does not keep zspages permanently mapped since that would cause - * issues on 32-bit systems where the VA region for kernel space mappings - * is very small. So, before using the allocating memory, the object has to - * be mapped using zs_map_object() to get a usable pointer and subsequently - * unmapped using zs_unmap_object(). - * * Following is how we use various fields and flags of underlying * struct page(s) to form a zspage. * _ Patches currently in -mm which might be from minchan@xxxxxxxxxx are origin.patch mm-vmscan-fix-the-page-state-calculation-in-too_many_isolated.patch mm-page_isolation-check-pfn-validity-before-access.patch x86-add-pmd_-for-thp.patch x86-add-pmd_-for-thp-fix.patch sparc-add-pmd_-for-thp.patch sparc-add-pmd_-for-thp-fix.patch powerpc-add-pmd_-for-thp.patch arm-add-pmd_mkclean-for-thp.patch arm64-add-pmd_-for-thp.patch mm-support-madvisemadv_free.patch mm-support-madvisemadv_free-fix.patch mm-support-madvisemadv_free-fix-2.patch mm-dont-split-thp-page-when-syscall-is-called.patch mm-dont-split-thp-page-when-syscall-is-called-fix.patch mm-dont-split-thp-page-when-syscall-is-called-fix-2.patch mm-free-swp_entry-in-madvise_free.patch mm-move-lazy-free-pages-to-inactive-list.patch mm-move-lazy-free-pages-to-inactive-list-fix.patch mm-move-lazy-free-pages-to-inactive-list-fix-fix.patch mm-move-lazy-free-pages-to-inactive-list-fix-fix-fix.patch zram-cosmetic-zram_attr_ro-code-formatting-tweak.patch zram-use-idr-instead-of-zram_devices-array.patch zram-factor-out-device-reset-from-reset_store.patch zram-reorganize-code-layout.patch zram-add-dynamic-device-add-remove-functionality.patch zram-add-dynamic-device-add-remove-functionality-fix.patch zram-remove-max_num_devices-limitation.patch zram-report-every-added-and-removed-device.patch zram-trivial-correct-flag-operations-comment.patch zram-return-zram-device_id-value-from-zram_add.patch zram-introduce-automatic-device_id-generation.patch zram-introduce-automatic-device_id-generation-fix.patch zram-do-not-let-user-enforce-new-device-dev_id.patch -- To unsubscribe from this list: send the line "unsubscribe mm-commits" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html