- lockdep-design-docs.patch removed from -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled

     lockdep: design docs

has been removed from the -mm tree.  Its filename is

     lockdep-design-docs.patch

This patch was dropped because it was merged into mainline or a subsystem tree

------------------------------------------------------
Subject: lockdep: design docs
From: Ingo Molnar <mingo@xxxxxxx>

Lock validator design documentation.

Signed-off-by: Ingo Molnar <mingo@xxxxxxx>
Signed-off-by: Arjan van de Ven <arjan@xxxxxxxxxxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxx>
---

 Documentation/lockdep-design.txt |  197 +++++++++++++++++++++++++++++
 1 file changed, 197 insertions(+)

diff -puN /dev/null Documentation/lockdep-design.txt
--- /dev/null
+++ a/Documentation/lockdep-design.txt
@@ -0,0 +1,197 @@
+Runtime locking correctness validator
+=====================================
+
+started by Ingo Molnar <mingo@xxxxxxxxxx>
+additions by Arjan van de Ven <arjan@xxxxxxxxxxxxxxx>
+
+Lock-class
+----------
+
+The basic object the validator operates upon is a 'class' of locks.
+
+A class of locks is a group of locks that are logically the same with
+respect to locking rules, even if the locks may have multiple (possibly
+tens of thousands of) instantiations. For example a lock in the inode
+struct is one class, while each inode has its own instantiation of that
+lock class.
+
+The validator tracks the 'state' of lock-classes, and it tracks
+dependencies between different lock-classes. The validator maintains a
+rolling proof that the state and the dependencies are correct.
+
+Unlike an lock instantiation, the lock-class itself never goes away: when
+a lock-class is used for the first time after bootup it gets registered,
+and all subsequent uses of that lock-class will be attached to this
+lock-class.
+
+State
+-----
+
+The validator tracks lock-class usage history into 5 separate state bits:
+
+- 'ever held in hardirq context'                    [ == hardirq-safe   ]
+- 'ever held in softirq context'                    [ == softirq-safe   ]
+- 'ever held with hardirqs enabled'                 [ == hardirq-unsafe ]
+- 'ever held with softirqs and hardirqs enabled'    [ == softirq-unsafe ]
+
+- 'ever used'                                       [ == !unused        ]
+
+Single-lock state rules:
+------------------------
+
+A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
+following states are exclusive, and only one of them is allowed to be
+set for any lock-class:
+
+ <hardirq-safe> and <hardirq-unsafe>
+ <softirq-safe> and <softirq-unsafe>
+
+The validator detects and reports lock usage that violate these
+single-lock state rules.
+
+Multi-lock dependency rules:
+----------------------------
+
+The same lock-class must not be acquired twice, because this could lead
+to lock recursion deadlocks.
+
+Furthermore, two locks may not be taken in different order:
+
+ <L1> -> <L2>
+ <L2> -> <L1>
+
+because this could lead to lock inversion deadlocks. (The validator
+finds such dependencies in arbitrary complexity, i.e. there can be any
+other locking sequence between the acquire-lock operations, the
+validator will still track all dependencies between locks.)
+
+Furthermore, the following usage based lock dependencies are not allowed
+between any two lock-classes:
+
+   <hardirq-safe>   ->  <hardirq-unsafe>
+   <softirq-safe>   ->  <softirq-unsafe>
+
+The first rule comes from the fact the a hardirq-safe lock could be
+taken by a hardirq context, interrupting a hardirq-unsafe lock - and
+thus could result in a lock inversion deadlock. Likewise, a softirq-safe
+lock could be taken by an softirq context, interrupting a softirq-unsafe
+lock.
+
+The above rules are enforced for any locking sequence that occurs in the
+kernel: when acquiring a new lock, the validator checks whether there is
+any rule violation between the new lock and any of the held locks.
+
+When a lock-class changes its state, the following aspects of the above
+dependency rules are enforced:
+
+- if a new hardirq-safe lock is discovered, we check whether it
+  took any hardirq-unsafe lock in the past.
+
+- if a new softirq-safe lock is discovered, we check whether it took
+  any softirq-unsafe lock in the past.
+
+- if a new hardirq-unsafe lock is discovered, we check whether any
+  hardirq-safe lock took it in the past.
+
+- if a new softirq-unsafe lock is discovered, we check whether any
+  softirq-safe lock took it in the past.
+
+(Again, we do these checks too on the basis that an interrupt context
+could interrupt _any_ of the irq-unsafe or hardirq-unsafe locks, which
+could lead to a lock inversion deadlock - even if that lock scenario did
+not trigger in practice yet.)
+
+Exception: Nested data dependencies leading to nested locking
+-------------------------------------------------------------
+
+There are a few cases where the Linux kernel acquires more than one
+instance of the same lock-class. Such cases typically happen when there
+is some sort of hierarchy within objects of the same type. In these
+cases there is an inherent "natural" ordering between the two objects
+(defined by the properties of the hierarchy), and the kernel grabs the
+locks in this fixed order on each of the objects.
+
+An example of such an object hieararchy that results in "nested locking"
+is that of a "whole disk" block-dev object and a "partition" block-dev
+object; the partition is "part of" the whole device and as long as one
+always takes the whole disk lock as a higher lock than the partition
+lock, the lock ordering is fully correct. The validator does not
+automatically detect this natural ordering, as the locking rule behind
+the ordering is not static.
+
+In order to teach the validator about this correct usage model, new
+versions of the various locking primitives were added that allow you to
+specify a "nesting level". An example call, for the block device mutex,
+looks like this:
+
+enum bdev_bd_mutex_lock_class
+{
+       BD_MUTEX_NORMAL,
+       BD_MUTEX_WHOLE,
+       BD_MUTEX_PARTITION
+};
+
+ mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
+
+In this case the locking is done on a bdev object that is known to be a
+partition.
+
+The validator treats a lock that is taken in such a nested fasion as a
+separate (sub)class for the purposes of validation.
+
+Note: When changing code to use the _nested() primitives, be careful and
+check really thoroughly that the hiearchy is correctly mapped; otherwise
+you can get false positives or false negatives.
+
+Proof of 100% correctness:
+--------------------------
+
+The validator achieves perfect, mathematical 'closure' (proof of locking
+correctness) in the sense that for every simple, standalone single-task
+locking sequence that occured at least once during the lifetime of the
+kernel, the validator proves it with a 100% certainty that no
+combination and timing of these locking sequences can cause any class of
+lock related deadlock. [*]
+
+I.e. complex multi-CPU and multi-task locking scenarios do not have to
+occur in practice to prove a deadlock: only the simple 'component'
+locking chains have to occur at least once (anytime, in any
+task/context) for the validator to be able to prove correctness. (For
+example, complex deadlocks that would normally need more than 3 CPUs and
+a very unlikely constellation of tasks, irq-contexts and timings to
+occur, can be detected on a plain, lightly loaded single-CPU system as
+well!)
+
+This radically decreases the complexity of locking related QA of the
+kernel: what has to be done during QA is to trigger as many "simple"
+single-task locking dependencies in the kernel as possible, at least
+once, to prove locking correctness - instead of having to trigger every
+possible combination of locking interaction between CPUs, combined with
+every possible hardirq and softirq nesting scenario (which is impossible
+to do in practice).
+
+[*] assuming that the validator itself is 100% correct, and no other
+    part of the system corrupts the state of the validator in any way.
+    We also assume that all NMI/SMM paths [which could interrupt
+    even hardirq-disabled codepaths] are correct and do not interfere
+    with the validator. We also assume that the 64-bit 'chain hash'
+    value is unique for every lock-chain in the system. Also, lock
+    recursion must not be higher than 20.
+
+Performance:
+------------
+
+The above rules require _massive_ amounts of runtime checking. If we did
+that for every lock taken and for every irqs-enable event, it would
+render the system practically unusably slow. The complexity of checking
+is O(N^2), so even with just a few hundred lock-classes we'd have to do
+tens of thousands of checks for every event.
+
+This problem is solved by checking any given 'locking scenario' (unique
+sequence of locks taken after each other) only once. A simple stack of
+held locks is maintained, and a lightweight 64-bit hash value is
+calculated, which hash is unique for every lock chain. The hash value,
+when the chain is validated for the first time, is then put into a hash
+table, which hash-table can be checked in a lockfree manner. If the
+locking chain occurs again later on, the hash table tells us that we
+dont have to validate the chain again.
_

Patches currently in -mm which might be from mingo@xxxxxxx are

origin.patch
disable-debugging-version-of-write_lock.patch
lock-validator-fix-ns83820c-irq-flags-bug.patch
revert-gregkh-pci-pci-test-that-drivers-properly-call-pci_set_master.patch
my-name-is-ingo-molnar-you-killed-my-make-allyesconfig-prepare-to-die.patch
sched-fix-bug-in-__migrate_task.patch
small-kernel-schedc-cleanup.patch
x86-re-enable-generic-numa.patch
sched-add-above-background-load-function.patch
mm-implement-swap-prefetching.patch
sched-cleanup-remove-task_t-convert-to-struct-task_struct-prefetch.patch
genirq-convert-the-x86_64-architecture-to-irq-chips.patch
genirq-convert-the-i386-architecture-to-irq-chips.patch
genirq-irq-convert-the-move_irq-flag-from-a-32bit-word-to-a-single-bit.patch
genirq-irq-add-moved_masked_irq.patch
genirq-x86_64-irq-reenable-migrating-irqs-to-other-cpus.patch
genirq-msi-simplify-msi-enable-and-disable.patch
genirq-msi-make-the-msi-boolean-tests-return-either-0-or-1.patch
genirq-msi-implement-helper-functions-read_msi_msg-and-write_msi_msg.patch
genirq-msi-refactor-the-msi_ops.patch
genirq-msi-simplify-the-msi-irq-limit-policy.patch
genirq-irq-add-a-dynamic-irq-creation-api.patch
genirq-ia64-irq-dynamic-irq-support.patch
genirq-i386-irq-dynamic-irq-support.patch
genirq-x86_64-irq-dynamic-irq-support.patch
genirq-msi-make-the-msi-code-irq-based-and-not-vector-based.patch
genirq-x86_64-irq-move-msi-message-composition-into-io_apicc.patch
genirq-i386-irq-move-msi-message-composition-into-io_apicc.patch
genirq-msi-only-build-msi-apicc-on-ia64.patch
genirq-x86_64-irq-remove-the-msi-assumption-that-irq-==-vector.patch
genirq-i386-irq-remove-the-msi-assumption-that-irq-==-vector.patch
genirq-irq-remove-msi-hacks.patch
genirq-irq-generalize-the-check-for-hardirq_bits.patch
genirq-x86_64-irq-make-the-external-irq-handlers-report-their-vector-not-the-irq-number.patch
genirq-x86_64-irq-make-vector_irq-per-cpu.patch
genirq-x86_64-irq-kill-gsi_irq_sharing.patch
genirq-x86_64-irq-kill-irq-compression.patch
detect-atomic-counter-underflows.patch
debug-shared-irqs.patch
make-frame_pointer-default=y.patch
mutex-subsystem-synchro-test-module.patch
vdso-print-fatal-signals.patch
vdso-improve-print_fatal_signals-support-by-adding-memory-maps.patch

-
To unsubscribe from this list: send the line "unsubscribe mm-commits" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html

[Index of Archives]     [Kernel Newbies FAQ]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Photo]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux