+ lock-validator-design-docs.patch added to -mm tree

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The patch titled

     lock validator: design docs

has been added to the -mm tree.  Its filename is

     lock-validator-design-docs.patch

See http://www.zip.com.au/~akpm/linux/patches/stuff/added-to-mm.txt to find
out what to do about this

------------------------------------------------------
Subject: lock validator: design docs
From: Ingo Molnar <mingo@xxxxxxx>


Lock validator design documentation.

Signed-off-by: Ingo Molnar <mingo@xxxxxxx>
Signed-off-by: Arjan van de Ven <arjan@xxxxxxxxxxxxxxx>
Signed-off-by: Andrew Morton <akpm@xxxxxxxx>
---

 Documentation/lockdep-design.txt |  224 +++++++++++++++++++++++++++++
 1 file changed, 224 insertions(+)

diff -puN /dev/null Documentation/lockdep-design.txt
--- /dev/null	2006-05-29 10:18:53.280907750 -0700
+++ devel-akpm/Documentation/lockdep-design.txt	2006-05-29 18:12:58.000000000 -0700
@@ -0,0 +1,224 @@
+Runtime locking correctness validator
+=====================================
+
+started by Ingo Molnar <mingo@xxxxxxxxxx>
+additions by Arjan van de Ven <arjan@xxxxxxxxxxxxxxx>
+
+Lock-type
+---------
+
+The basic object the validator operates upon is the 'type' or 'class' of
+locks.
+
+A class of locks is a group of locks that are logically the same with
+respect to locking rules, even if the locks may have multiple (possibly
+tens of thousands of) instantiations. For example a lock in the inode
+struct is one class, while each inode has its own instantiation of that
+lock class.
+
+The validator tracks the 'state' of lock-types, and it tracks
+dependencies between different lock-types. The validator maintains a
+rolling proof that the state and the dependencies are correct.
+
+Unlike an lock instantiation, the lock-type itself never goes away: when
+a lock-type is used for the first time after bootup it gets registered,
+and all subsequent uses of that lock-type will be attached to this
+lock-type.
+
+State
+-----
+
+The validator tracks lock-type usage history into 5 separate state bits:
+
+- 'ever held in hardirq context'                    [ == hardirq-safe   ]
+- 'ever held in softirq context'                    [ == softirq-safe   ]
+- 'ever held with hardirqs enabled'                 [ == hardirq-unsafe ]
+- 'ever held with softirqs and hardirqs enabled'    [ == softirq-unsafe ]
+
+- 'ever used'                                       [ == !unused        ]
+
+Single-lock state rules:
+------------------------
+
+A softirq-unsafe lock-type is automatically hardirq-unsafe as well. The
+following states are exclusive, and only one of them is allowed to be
+set for any lock-type:
+
+ <hardirq-safe> and <hardirq-unsafe>
+ <softirq-safe> and <softirq-unsafe>
+
+The validator detects and reports lock usage that violate these
+single-lock state rules.
+
+Multi-lock dependency rules:
+----------------------------
+
+The same lock-type must not be acquired twice, because this could lead
+to lock recursion deadlocks.
+
+Furthermore, two locks may not be taken in different order:
+
+ <L1> -> <L2>
+ <L2> -> <L1>
+
+because this could lead to lock inversion deadlocks. (The validator
+finds such dependencies in arbitrary complexity, i.e. there can be any
+other locking sequence between the acquire-lock operations, the
+validator will still track all dependencies between locks.)
+
+Furthermore, the following usage based lock dependencies are not allowed
+between any two lock-types:
+
+   <hardirq-safe>   ->  <hardirq-unsafe>
+   <softirq-safe>   ->  <softirq-unsafe>
+
+The first rule comes from the fact the a hardirq-safe lock could be
+taken by a hardirq context, interrupting a hardirq-unsafe lock - and
+thus could result in a lock inversion deadlock. Likewise, a softirq-safe
+lock could be taken by an softirq context, interrupting a softirq-unsafe
+lock.
+
+The above rules are enforced for any locking sequence that occurs in the
+kernel: when acquiring a new lock, the validator checks whether there is
+any rule violation between the new lock and any of the held locks.
+
+When a lock-type changes its state, the following aspects of the above
+dependency rules are enforced:
+
+- if a new hardirq-safe lock is discovered, we check whether it
+  took any hardirq-unsafe lock in the past.
+
+- if a new softirq-safe lock is discovered, we check whether it took
+  any softirq-unsafe lock in the past.
+
+- if a new hardirq-unsafe lock is discovered, we check whether any
+  hardirq-safe lock took it in the past.
+
+- if a new softirq-unsafe lock is discovered, we check whether any
+  softirq-safe lock took it in the past.
+
+(Again, we do these checks too on the basis that an interrupt context
+could interrupt _any_ of the irq-unsafe or hardirq-unsafe locks, which
+could lead to a lock inversion deadlock - even if that lock scenario did
+not trigger in practice yet.)
+
+Exception 1: Nested data types leading to nested locking
+--------------------------------------------------------
+
+There are a few cases where the Linux kernel acquires more than one
+instance of the same lock-type. Such cases typically happen when there
+is some sort of hierarchy within objects of the same type. In these
+cases there is an inherent "natural" ordering between the two objects
+(defined by the properties of the hierarchy), and the kernel grabs the
+locks in this fixed order on each of the objects.
+
+An example of such an object hieararchy that results in "nested locking"
+is that of a "whole disk" block-dev object and a "partition" block-dev
+object; the partition is "part of" the whole device and as long as one
+always takes the whole disk lock as a higher lock than the partition
+lock, the lock ordering is fully correct. The validator does not
+automatically detect this natural ordering, as the locking rule behind
+the ordering is not static.
+
+In order to teach the validator about this correct usage model, new
+versions of the various locking primitives were added that allow you to
+specify a "nesting level". An example call, for the block device mutex,
+looks like this:
+
+enum bdev_bd_mutex_lock_type
+{
+       BD_MUTEX_NORMAL,
+       BD_MUTEX_WHOLE,
+       BD_MUTEX_PARTITION
+};
+
+ mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
+
+In this case the locking is done on a bdev object that is known to be a
+partition.
+
+The validator treats a lock that is taken in such a nested fasion as a
+separate (sub)class for the purposes of validation.
+
+Note: When changing code to use the _nested() primitives, be careful and
+check really thoroughly that the hiearchy is correctly mapped; otherwise
+you can get false positives or false negatives.
+
+Exception 2: Out of order unlocking
+-----------------------------------
+
+In the Linux kernel, locks are released in the opposite order in which
+they were taken, with a few exceptions. The validator is optimized for
+the common case, and in fact treats an "out of order" unlock as a
+locking bug. (the rationale is that the code is doing something rare,
+which can be a sign of a bug)
+
+There are some cases where releasing the locks out of order is
+unavoidable and dictated by the algorithm that is being implemented.
+Therefore, the validator can be told about this, using a special
+unlocking variant of the primitives. An example call looks like this:
+
+ spin_unlock_non_nested(&target->d_lock);
+
+Here the d_lock is released by the VFS in a different order than it was
+taken, as required by the d_move() algorithm.
+
+Note: the _non_nested() primitives are more expensive than the "normal"
+primitives, and in almost all cases it's trivial to use the natural
+unlock order. There are gains in doing this that are outside the realm
+of the validator regardless so it's strongly suggested to make sure that
+unlocking always happens in the natural order whenever reasonable,
+rather than blindly changing code to use the _non_nested() variants.
+
+Proof of 100% correctness:
+--------------------------
+
+The validator achieves perfect, mathematical 'closure' (proof of locking
+correctness) in the sense that for every simple, standalone single-task
+locking sequence that occured at least once during the lifetime of the
+kernel, the validator proves it with a 100% certainty that no
+combination and timing of these locking sequences can cause any type of
+lock related deadlock. [*]
+
+I.e. complex multi-CPU and multi-task locking scenarios do not have to
+occur in practice to prove a deadlock: only the simple 'component'
+locking chains have to occur at least once (anytime, in any
+task/context) for the validator to be able to prove correctness. (For
+example, complex deadlocks that would normally need more than 3 CPUs and
+a very unlikely constellation of tasks, irq-contexts and timings to
+occur, can be detected on a plain, lightly loaded single-CPU system as
+well!)
+
+This radically decreases the complexity of locking related QA of the
+kernel: what has to be done during QA is to trigger as many "simple"
+single-task locking dependencies in the kernel as possible, at least
+once, to prove locking correctness - instead of having to trigger every
+possible combination of locking interaction between CPUs, combined with
+every possible hardirq and softirq nesting scenario (which is impossible
+to do in practice).
+
+[*] assuming that the validator itself is 100% correct, and no other
+    part of the system corrupts the state of the validator in any way.
+    We also assume that all NMI/SMM paths [which could interrupt
+    even hardirq-disabled codepaths] are correct and do not interfere
+    with the validator. We also assume that the 64-bit 'chain hash'
+    value is unique for every lock-chain in the system. Also, lock
+    recursion must not be higher than 20.
+
+Performance:
+------------
+
+The above rules require _massive_ amounts of runtime checking. If we did
+that for every lock taken and for every irqs-enable event, it would
+render the system practically unusably slow. The complexity of checking
+is O(N^2), so even with just a few hundred lock-types we'd have to do
+tens of thousands of checks for every event.
+
+This problem is solved by checking any given 'locking scenario' (unique
+sequence of locks taken after each other) only once. A simple stack of
+held locks is maintained, and a lightweight 64-bit hash value is
+calculated, which hash is unique for every lock chain. The hash value,
+when the chain is validated for the first time, is then put into a hash
+table, which hash-table can be checked in a lockfree manner. If the
+locking chain occurs again later on, the hash table tells us that we
+dont have to validate the chain again.
_

Patches currently in -mm which might be from mingo@xxxxxxx are

hrtimer-export-symbols.patch
x86_64-fix-stack-mmap-randomization-for-compat.patch
git-acpi.patch
lock-validator-sound-oss-emu10k1-midic-cleanup.patch
fix-drivers-mfd-ucb1x00-corec-irq-probing-bug.patch
git-infiniband.patch
git-netdev-all.patch
fix-for-serial-uart-lockup.patch
lock-validator-lockdep-small-xfs-init_rwsem-cleanup.patch
swapless-pm-add-r-w-migration-entries.patch
i386-break-out-of-recursion-in-stackframe-walk.patch
x86-re-enable-generic-numa.patch
vdso-randomize-the-i386-vdso-by-moving-it-into-a-vma.patch
vdso-randomize-the-i386-vdso-by-moving-it-into-a-vma-tidy.patch
vdso-randomize-the-i386-vdso-by-moving-it-into-a-vma-arch_vma_name-fix.patch
work-around-ppc64-bootup-bug-by-making-mutex-debugging-save-restore-irqs.patch
kernel-kernel-cpuc-to-mutexes.patch
cond-resched-might-sleep-fix.patch
define-__raw_get_cpu_var-and-use-it.patch
ide-cd-end-of-media-error-fix.patch
spin-rwlock-init-cleanups.patch
lock-validator-introduce-warn_on_oncecond.patch
time-clocksource-infrastructure.patch
sched-comment-bitmap-size-accounting.patch
sched-fix-interactive-ceiling-code.patch
sched-implement-smpnice.patch
sched-protect-calculation-of-max_pull-from-integer-wrap.patch
sched-store-weighted-load-on-up.patch
sched-add-discrete-weighted-cpu-load-function.patch
sched-prevent-high-load-weight-tasks-suppressing-balancing.patch
sched-improve-stability-of-smpnice-load-balancing.patch
sched-improve-smpnice-load-balancing-when-load-per-task.patch
smpnice-dont-consider-sched-groups-which-are-lightly-loaded-for-balancing.patch
smpnice-dont-consider-sched-groups-which-are-lightly-loaded-for-balancing-fix.patch
sched-modify-move_tasks-to-improve-load-balancing-outcomes.patch
sched-avoid-unnecessarily-moving-highest-priority-task-move_tasks.patch
sched-avoid-unnecessarily-moving-highest-priority-task-move_tasks-fix-2.patch
sched_domain-handle-kmalloc-failure.patch
sched_domain-handle-kmalloc-failure-fix.patch
sched_domain-dont-use-gfp_atomic.patch
sched_domain-use-kmalloc_node.patch
sched_domain-allocate-sched_group-structures-dynamically.patch
sched-add-above-background-load-function.patch
mm-implement-swap-prefetching-fix.patch
pi-futex-futex-code-cleanups.patch
pi-futex-robust-futex-docs-fix.patch
pi-futex-introduce-debug_check_no_locks_freed.patch
pi-futex-introduce-warn_on_smp.patch
pi-futex-add-plist-implementation.patch
pi-futex-scheduler-support-for-pi.patch
pi-futex-rt-mutex-core.patch
pi-futex-rt-mutex-docs.patch
pi-futex-rt-mutex-docs-update.patch
pi-futex-rt-mutex-debug.patch
pi-futex-rt-mutex-tester.patch
pi-futex-rt-mutex-futex-api.patch
pi-futex-futex_lock_pi-futex_unlock_pi-support.patch
futex_requeue-optimization.patch
genirq-rename-desc-handler-to-desc-chip.patch
genirq-rename-desc-handler-to-desc-chip-power-fix.patch
genirq-rename-desc-handler-to-desc-chip-ia64-fix.patch
genirq-rename-desc-handler-to-desc-chip-ia64-fix-2.patch
genirq-sem2mutex-probe_sem-probing_active.patch
genirq-cleanup-merge-irq_affinity-into-irq_desc.patch
genirq-cleanup-remove-irq_descp.patch
genirq-cleanup-remove-fastcall.patch
genirq-cleanup-misc-code-cleanups.patch
genirq-cleanup-reduce-irq_desc_t-use-mark-it-obsolete.patch
genirq-cleanup-include-linux-irqh.patch
genirq-cleanup-merge-irq_dir-smp_affinity_entry-into-irq_desc.patch
genirq-cleanup-merge-pending_irq_cpumask-into-irq_desc.patch
genirq-cleanup-turn-arch_has_irq_per_cpu-into-config_irq_per_cpu.patch
genirq-debug-better-debug-printout-in-enable_irq.patch
genirq-add-retrigger-irq-op-to-consolidate-hw_irq_resend.patch
genirq-doc-comment-include-linux-irqh-structures.patch
genirq-doc-handle_irq_event-and-__do_irq-comments.patch
genirq-cleanup-no_irq_type-cleanups.patch
genirq-doc-add-design-documentation.patch
genirq-add-genirq-sw-irq-retrigger.patch
genirq-add-irq_noprobe-support.patch
genirq-add-irq_norequest-support.patch
genirq-add-irq_noautoen-support.patch
genirq-update-copyrights.patch
genirq-core.patch
genirq-add-irq-chip-support.patch
genirq-add-handle_bad_irq.patch
genirq-add-irq-wake-power-management-support.patch
genirq-add-sa_trigger-support.patch
genirq-cleanup-no_irq_type-no_irq_chip-rename.patch
genirq-convert-the-x86_64-architecture-to-irq-chips.patch
genirq-convert-the-i386-architecture-to-irq-chips.patch
genirq-convert-the-i386-architecture-to-irq-chips-fix-2.patch
genirq-more-verbose-debugging-on-unexpected-irq-vectors.patch
lock-validator-floppyc-irq-release-fix.patch
lock-validator-forcedethc-fix.patch
lock-validator-mutex-section-binutils-workaround.patch
lock-validator-add-__module_address-method.patch
lock-validator-better-lock-debugging.patch
lock-validator-locking-api-self-tests.patch
lock-validator-locking-init-debugging-improvement.patch
lock-validator-beautify-x86_64-stacktraces.patch
lock-validator-x86_64-document-stack-frame-internals.patch
lock-validator-stacktrace.patch
lock-validator-fown-locking-workaround.patch
lock-validator-sk_callback_lock-workaround.patch
lock-validator-irqtrace-core.patch
lock-validator-irqtrace-cleanup-include-asm-i386-irqflagsh.patch
lock-validator-irqtrace-cleanup-include-asm-x86_64-irqflagsh.patch
lock-validator-lockdep-add-local_irq_enable_in_hardirq-api.patch
lock-validator-add-per_cpu_offset.patch
lock-validator-add-per_cpu_offset-fix.patch
lock-validator-core.patch
lock-validator-procfs.patch
lock-validator-design-docs.patch
lock-validator-prove-rwsem-locking-correctness.patch
lock-validator-prove-spinlock-rwlock-locking-correctness.patch
lock-validator-prove-mutex-locking-correctness.patch
lock-validator-print-all-lock-types-on-sysrq-d.patch
lock-validator-x86_64-early-init.patch
lock-validator-smp-alternatives-workaround.patch
lock-validator-do-not-recurse-in-printk.patch
lock-validator-disable-nmi-watchdog-if-config_lockdep.patch
lock-validator-special-locking-bdev.patch
lock-validator-special-locking-direct-io.patch
lock-validator-special-locking-serial.patch
lock-validator-special-locking-dcache.patch
lock-validator-special-locking-i_mutex.patch
lock-validator-special-locking-s_lock.patch
lock-validator-special-locking-futex.patch
lock-validator-special-locking-genirq.patch
lock-validator-special-locking-completions.patch
lock-validator-special-locking-waitqueues.patch
lock-validator-special-locking-mm.patch
lock-validator-special-locking-slab.patch
lock-validator-special-locking-skb_queue_head_init.patch
lock-validator-special-locking-timerc.patch
lock-validator-special-locking-schedc.patch
lock-validator-special-locking-hrtimerc.patch
lock-validator-special-locking-sock_lock_init.patch
lock-validator-special-locking-af_unix.patch
lock-validator-special-locking-bh_lock_sock.patch
lock-validator-special-locking-mmap_sem.patch
lock-validator-special-locking-sb-s_umount.patch
lock-validator-special-locking-sb-s_umount-fix.patch
lock-validator-special-locking-jbd.patch
lock-validator-special-locking-posix-timers.patch
lock-validator-special-locking-sch_genericc.patch
lock-validator-special-locking-xfrm.patch
lock-validator-special-locking-sound-core-seq-seq_portsc.patch
lock-validator-enable-lock-validator-in-kconfig.patch
lock-validator-enable-lock-validator-in-kconfig-x86-only.patch
lock-validator-special-locking-kgdb.patch
detect-atomic-counter-underflows.patch
debug-shared-irqs.patch
make-frame_pointer-default=y.patch
mutex-subsystem-synchro-test-module.patch
vdso-print-fatal-signals.patch
vdso-improve-print_fatal_signals-support-by-adding-memory-maps.patch

-
To unsubscribe from this list: send the line "unsubscribe mm-commits" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html

[Index of Archives]     [Kernel Newbies FAQ]     [Kernel Archive]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [Bugtraq]     [Photo]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]

  Powered by Linux