The code for emulating MIPSr6 madd.s & msub.s instructions has previously been implemented as 2 different functions, namely ieee754sp_maddf & ieee754sp_msubf. The difference in behaviour of these 2 instructions is merely the sign of the product, so we can easily share the code implementing them. Do this for the single precision variant, removing the original ieee754sp_msubf in favor of reusing the code from ieee754sp_maddf. Signed-off-by: Paul Burton <paul.burton@xxxxxxxxxx> --- arch/mips/math-emu/Makefile | 2 +- arch/mips/math-emu/sp_maddf.c | 22 +++- arch/mips/math-emu/sp_msubf.c | 258 ------------------------------------------ 3 files changed, 21 insertions(+), 261 deletions(-) delete mode 100644 arch/mips/math-emu/sp_msubf.c diff --git a/arch/mips/math-emu/Makefile b/arch/mips/math-emu/Makefile index a19641d..3389aff 100644 --- a/arch/mips/math-emu/Makefile +++ b/arch/mips/math-emu/Makefile @@ -6,7 +6,7 @@ obj-y += cp1emu.o ieee754dp.o ieee754sp.o ieee754.o \ dp_div.o dp_mul.o dp_sub.o dp_add.o dp_fsp.o dp_cmp.o dp_simple.o \ dp_tint.o dp_fint.o dp_maddf.o dp_msubf.o dp_2008class.o dp_fmin.o dp_fmax.o \ sp_div.o sp_mul.o sp_sub.o sp_add.o sp_fdp.o sp_cmp.o sp_simple.o \ - sp_tint.o sp_fint.o sp_maddf.o sp_msubf.o sp_2008class.o sp_fmin.o sp_fmax.o \ + sp_tint.o sp_fint.o sp_maddf.o sp_2008class.o sp_fmin.o sp_fmax.o \ dsemul.o lib-y += ieee754d.o \ diff --git a/arch/mips/math-emu/sp_maddf.c b/arch/mips/math-emu/sp_maddf.c index dd1dd83..93b7132 100644 --- a/arch/mips/math-emu/sp_maddf.c +++ b/arch/mips/math-emu/sp_maddf.c @@ -14,8 +14,12 @@ #include "ieee754sp.h" -union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, - union ieee754sp y) +enum maddf_flags { + maddf_negate_product = 1 << 0, +}; + +static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, + union ieee754sp y, enum maddf_flags flags) { int re; int rs; @@ -154,6 +158,8 @@ union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, re = xe + ye; rs = xs ^ ys; + if (flags & maddf_negate_product) + rs ^= 1; /* shunt to top of word */ xm <<= 32 - (SP_FBITS + 1); @@ -253,3 +259,15 @@ union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, } return ieee754sp_format(zs, ze, zm); } + +union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, + union ieee754sp y) +{ + return _sp_maddf(z, x, y, 0); +} + +union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, + union ieee754sp y) +{ + return _sp_maddf(z, x, y, maddf_negate_product); +} diff --git a/arch/mips/math-emu/sp_msubf.c b/arch/mips/math-emu/sp_msubf.c deleted file mode 100644 index 81c38b980..0000000 --- a/arch/mips/math-emu/sp_msubf.c +++ /dev/null @@ -1,258 +0,0 @@ -/* - * IEEE754 floating point arithmetic - * single precision: MSUB.f (Fused Multiply Subtract) - * MSUBF.fmt: FPR[fd] = FPR[fd] - (FPR[fs] x FPR[ft]) - * - * MIPS floating point support - * Copyright (C) 2015 Imagination Technologies, Ltd. - * Author: Markos Chandras <markos.chandras@xxxxxxxxxx> - * - * This program is free software; you can distribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; version 2 of the License. - */ - -#include "ieee754sp.h" - -union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, - union ieee754sp y) -{ - int re; - int rs; - unsigned rm; - unsigned short lxm; - unsigned short hxm; - unsigned short lym; - unsigned short hym; - unsigned lrm; - unsigned hrm; - unsigned t; - unsigned at; - int s; - - COMPXSP; - COMPYSP; - u32 zm; int ze; int zs __maybe_unused; int zc; - - EXPLODEXSP; - EXPLODEYSP; - EXPLODESP(z, zc, zs, ze, zm) - - FLUSHXSP; - FLUSHYSP; - FLUSHSP(z, zc, zs, ze, zm); - - ieee754_clearcx(); - - switch (zc) { - case IEEE754_CLASS_SNAN: - ieee754_setcx(IEEE754_INVALID_OPERATION); - return ieee754sp_nanxcpt(z); - case IEEE754_CLASS_DNORM: - SPDNORMx(zm, ze); - /* QNAN is handled separately below */ - } - - switch (CLPAIR(xc, yc)) { - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): - return ieee754sp_nanxcpt(y); - - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): - case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): - return ieee754sp_nanxcpt(x); - - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): - return y; - - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): - case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): - return x; - - /* - * Infinity handling - */ - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): - if (zc == IEEE754_CLASS_QNAN) - return z; - ieee754_setcx(IEEE754_INVALID_OPERATION); - return ieee754sp_indef(); - - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): - case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): - if (zc == IEEE754_CLASS_QNAN) - return z; - return ieee754sp_inf(xs ^ ys); - - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): - case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): - if (zc == IEEE754_CLASS_INF) - return ieee754sp_inf(zs); - /* Multiplication is 0 so just return z */ - return z; - - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): - SPDNORMX; - - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): - if (zc == IEEE754_CLASS_QNAN) - return z; - else if (zc == IEEE754_CLASS_INF) - return ieee754sp_inf(zs); - SPDNORMY; - break; - - case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): - if (zc == IEEE754_CLASS_QNAN) - return z; - else if (zc == IEEE754_CLASS_INF) - return ieee754sp_inf(zs); - SPDNORMX; - break; - - case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): - if (zc == IEEE754_CLASS_QNAN) - return z; - else if (zc == IEEE754_CLASS_INF) - return ieee754sp_inf(zs); - /* fall through to real compuation */ - } - - /* Finally get to do some computation */ - - /* - * Do the multiplication bit first - * - * rm = xm * ym, re = xe + ye basically - * - * At this point xm and ym should have been normalized. - */ - - /* rm = xm * ym, re = xe+ye basically */ - assert(xm & SP_HIDDEN_BIT); - assert(ym & SP_HIDDEN_BIT); - - re = xe + ye; - rs = xs ^ ys; - - /* shunt to top of word */ - xm <<= 32 - (SP_FBITS + 1); - ym <<= 32 - (SP_FBITS + 1); - - /* - * Multiply 32 bits xm, ym to give high 32 bits rm with stickness. - */ - lxm = xm & 0xffff; - hxm = xm >> 16; - lym = ym & 0xffff; - hym = ym >> 16; - - lrm = lxm * lym; /* 16 * 16 => 32 */ - hrm = hxm * hym; /* 16 * 16 => 32 */ - - t = lxm * hym; /* 16 * 16 => 32 */ - at = lrm + (t << 16); - hrm += at < lrm; - lrm = at; - hrm = hrm + (t >> 16); - - t = hxm * lym; /* 16 * 16 => 32 */ - at = lrm + (t << 16); - hrm += at < lrm; - lrm = at; - hrm = hrm + (t >> 16); - - rm = hrm | (lrm != 0); - - /* - * Sticky shift down to normal rounding precision. - */ - if ((int) rm < 0) { - rm = (rm >> (32 - (SP_FBITS + 1 + 3))) | - ((rm << (SP_FBITS + 1 + 3)) != 0); - re++; - } else { - rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) | - ((rm << (SP_FBITS + 1 + 3 + 1)) != 0); - } - assert(rm & (SP_HIDDEN_BIT << 3)); - - /* And now the subtraction */ - - /* Flip sign of r and handle as add */ - rs ^= 1; - - assert(zm & SP_HIDDEN_BIT); - - /* - * Provide guard,round and stick bit space. - */ - zm <<= 3; - - if (ze > re) { - /* - * Have to shift y fraction right to align. - */ - s = ze - re; - SPXSRSYn(s); - } else if (re > ze) { - /* - * Have to shift x fraction right to align. - */ - s = re - ze; - SPXSRSYn(s); - } - assert(ze == re); - assert(ze <= SP_EMAX); - - if (zs == rs) { - /* - * Generate 28 bit result of adding two 27 bit numbers - * leaving result in zm, zs and ze. - */ - zm = zm + rm; - - if (zm >> (SP_FBITS + 1 + 3)) { /* carry out */ - SPXSRSX1(); /* shift preserving sticky */ - } - } else { - if (zm >= rm) { - zm = zm - rm; - } else { - zm = rm - zm; - zs = rs; - } - if (zm == 0) - return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); - - /* - * Normalize in extended single precision - */ - while ((zm >> (SP_MBITS + 3)) == 0) { - zm <<= 1; - ze--; - } - - } - return ieee754sp_format(zs, ze, zm); -} -- 2.8.0