Signed-off-by: David Daney <ddaney@xxxxxxxxxxxxxxxxxx> --- drivers/usb/host/Kconfig | 8 + drivers/usb/host/Makefile | 1 + drivers/usb/host/dwc_otg/Kbuild | 16 + drivers/usb/host/dwc_otg/dwc_otg_attr.c | 854 ++++++++ drivers/usb/host/dwc_otg/dwc_otg_attr.h | 63 + drivers/usb/host/dwc_otg/dwc_otg_cil.c | 2887 ++++++++++++++++++++++++++ drivers/usb/host/dwc_otg/dwc_otg_cil.h | 866 ++++++++ drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c | 689 ++++++ drivers/usb/host/dwc_otg/dwc_otg_driver.h | 63 + drivers/usb/host/dwc_otg/dwc_otg_hcd.c | 2878 +++++++++++++++++++++++++ drivers/usb/host/dwc_otg/dwc_otg_hcd.h | 661 ++++++ drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c | 1890 +++++++++++++++++ drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c | 695 +++++++ drivers/usb/host/dwc_otg/dwc_otg_octeon.c | 1078 ++++++++++ drivers/usb/host/dwc_otg/dwc_otg_plat.h | 236 +++ drivers/usb/host/dwc_otg/dwc_otg_regs.h | 2355 +++++++++++++++++++++ 16 files changed, 15240 insertions(+), 0 deletions(-) create mode 100644 drivers/usb/host/dwc_otg/Kbuild create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.h create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.h create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_driver.h create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.h create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_octeon.c create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_plat.h create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_regs.h diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig index 9b43b22..342dc54 100644 --- a/drivers/usb/host/Kconfig +++ b/drivers/usb/host/Kconfig @@ -381,3 +381,11 @@ config USB_HWA_HCD To compile this driver a module, choose M here: the module will be called "hwa-hc". + +config USB_DWC_OTG + tristate "Cavium Octeon USB" + depends on USB && CPU_CAVIUM_OCTEON + ---help--- + The Cavium Octeon on-chip USB controller. To compile this + driver as a module, choose M here: the module will be called + "dwc_otg". diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile index f58b249..76faf12 100644 --- a/drivers/usb/host/Makefile +++ b/drivers/usb/host/Makefile @@ -15,6 +15,7 @@ endif xhci-objs := xhci-hcd.o xhci-mem.o xhci-pci.o xhci-ring.o xhci-hub.o xhci-dbg.o obj-$(CONFIG_USB_WHCI_HCD) += whci/ +obj-$(CONFIG_USB_DWC_OTG) += dwc_otg/ obj-$(CONFIG_PCI) += pci-quirks.o diff --git a/drivers/usb/host/dwc_otg/Kbuild b/drivers/usb/host/dwc_otg/Kbuild new file mode 100644 index 0000000..cb32638 --- /dev/null +++ b/drivers/usb/host/dwc_otg/Kbuild @@ -0,0 +1,16 @@ +# +# Makefile for DWC_otg Highspeed USB controller driver +# + +# Use one of the following flags to compile the software in host-only or +# device-only mode. +#EXTRA_CFLAGS += -DDWC_HOST_ONLY +#EXTRA_CFLAGS += -DDWC_DEVICE_ONLY + +EXTRA_CFLAGS += -DDWC_HOST_ONLY +obj-$(CONFIG_USB_DWC_OTG) += dwc_otg.o + +dwc_otg-y := dwc_otg_octeon.o dwc_otg_attr.o +dwc_otg-y += dwc_otg_cil.o dwc_otg_cil_intr.o +dwc_otg-y += dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o + diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.c b/drivers/usb/host/dwc_otg/dwc_otg_attr.c new file mode 100644 index 0000000..d854a79 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.c @@ -0,0 +1,854 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +/* + * + * The diagnostic interface will provide access to the controller for + * bringing up the hardware and testing. The Linux driver attributes + * feature will be used to provide the Linux Diagnostic + * Interface. These attributes are accessed through sysfs. + */ + +/** @page "Linux Module Attributes" + * + * The Linux module attributes feature is used to provide the Linux + * Diagnostic Interface. These attributes are accessed through sysfs. + * The diagnostic interface will provide access to the controller for + * bringing up the hardware and testing. + + The following table shows the attributes. + <table> + <tr> + <td><b> Name</b></td> + <td><b> Description</b></td> + <td><b> Access</b></td> + </tr> + + <tr> + <td> mode </td> + <td> Returns the current mode: 0 for device mode, 1 for host mode</td> + <td> Read</td> + </tr> + + <tr> + <td> hnpcapable </td> + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. + Read returns the current value.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> srpcapable </td> + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. + Read returns the current value.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> hnp </td> + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> srp </td> + <td> Initiates the Session Request Protocol. Read returns the status.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> buspower </td> + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> bussuspend </td> + <td> Suspends the USB bus.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> busconnected </td> + <td> Gets the connection status of the bus</td> + <td> Read</td> + </tr> + + <tr> + <td> gotgctl </td> + <td> Gets or sets the Core Control Status Register.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gusbcfg </td> + <td> Gets or sets the Core USB Configuration Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> grxfsiz </td> + <td> Gets or sets the Receive FIFO Size Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gnptxfsiz </td> + <td> Gets or sets the non-periodic Transmit Size Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gpvndctl </td> + <td> Gets or sets the PHY Vendor Control Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> ggpio </td> + <td> Gets the value in the lower 16-bits of the General Purpose IO Register + or sets the upper 16 bits.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> guid </td> + <td> Gets or sets the value of the User ID Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> gsnpsid </td> + <td> Gets the value of the Synopsys ID Regester</td> + <td> Read</td> + </tr> + + <tr> + <td> devspeed </td> + <td> Gets or sets the device speed setting in the DCFG register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> enumspeed </td> + <td> Gets the device enumeration Speed.</td> + <td> Read</td> + </tr> + + <tr> + <td> hptxfsiz </td> + <td> Gets the value of the Host Periodic Transmit FIFO</td> + <td> Read</td> + </tr> + + <tr> + <td> hprt0 </td> + <td> Gets or sets the value in the Host Port Control and Status Register</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regoffset </td> + <td> Sets the register offset for the next Register Access</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regvalue </td> + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> remote_wakeup </td> + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote + Wakeup signalling bit in the Device Control Register is set for 1 + milli-second.</td> + <td> Read/Write</td> + </tr> + + <tr> + <td> regdump </td> + <td> Dumps the contents of core registers.</td> + <td> Read</td> + </tr> + + <tr> + <td> hcddump </td> + <td> Dumps the current HCD state.</td> + <td> Read</td> + </tr> + + <tr> + <td> hcd_frrem </td> + <td> Shows the average value of the Frame Remaining + field in the Host Frame Number/Frame Remaining register when an SOF interrupt + occurs. This can be used to determine the average interrupt latency. Also + shows the average Frame Remaining value for start_transfer and the "a" and + "b" sample points. The "a" and "b" sample points may be used during debugging + bto determine how long it takes to execute a section of the HCD code.</td> + <td> Read</td> + </tr> + + <tr> + <td> rd_reg_test </td> + <td> Displays the time required to read the GNPTXFSIZ register many times + (the output shows the number of times the register is read). + <td> Read</td> + </tr> + + <tr> + <td> wr_reg_test </td> + <td> Displays the time required to write the GNPTXFSIZ register many times + (the output shows the number of times the register is written). + <td> Read</td> + </tr> + + </table> + + Example usage: + To get the current mode: + cat /sys/devices/lm0/mode + + To power down the USB: + echo 0 > /sys/devices/lm0/buspower + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/stat.h> /* permission constants */ + +#include <asm/io.h> + +#include "dwc_otg_plat.h" +#include "dwc_otg_attr.h" +#include "dwc_otg_driver.h" +#ifndef DWC_HOST_ONLY +#include "dwc_otg_pcd.h" +#endif +#include "dwc_otg_hcd.h" + +/* + * MACROs for defining sysfs attribute + */ +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + static ssize_t _otg_attr_name_##_show (struct device *_dev, \ + struct device_attribute *attr, \ + char *buf) \ + { \ + struct dwc_otg_device *otg_dev = _dev->platform_data; \ + uint32_t val; \ + val = dwc_read_reg32(_addr_); \ + val = (val & (_mask_)) >> _shift_; \ + return sprintf(buf, "%s = 0x%x\n", _string_, val); \ + } + +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + static ssize_t _otg_attr_name_##_store (struct device *_dev, \ + struct device_attribute *attr, \ + const char *buf, size_t count) \ + { \ + struct dwc_otg_device *otg_dev = _dev->platform_data; \ + uint32_t set = simple_strtoul(buf, NULL, 16); \ + uint32_t clear = set; \ + clear = ((~clear) << _shift_) & _mask_; \ + set = (set << _shift_) & _mask_; \ + dev_dbg(_dev, \ + "Storing Address=%p Set=0x%08x Clear=0x%08x\n", \ + _addr_, set, clear); \ + dwc_modify_reg32(_addr_, clear, set); \ + return count; \ + } + +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \ + _otg_attr_name_##_store); + +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _addr_, \ + _mask_, _shift_, _string_) \ + DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, \ + _addr_, _mask_, _shift_, _string_) \ + DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL); + +/* + * MACROs for defining sysfs attribute for 32-bit registers + */ +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ + static ssize_t _otg_attr_name_##_show(struct device *_dev, \ + struct device_attribute *attr, \ + char *buf) \ + { \ + struct dwc_otg_device *otg_dev = _dev->platform_data; \ + uint32_t val; \ + val = dwc_read_reg32(_addr_); \ + return sprintf(buf, "%s = 0x%08x\n", _string_, val); \ + } + +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \ + static ssize_t _otg_attr_name_##_store(struct device *_dev, \ + struct device_attribute *attr, \ + const char *buf, size_t count) \ + { \ + struct dwc_otg_device *otg_dev = _dev->platform_data; \ + uint32_t val = simple_strtoul(buf, NULL, 16); \ + dev_dbg(_dev, "Storing Address=%p Val=0x%08x\n", _addr_, val); \ + dwc_write_reg32(_addr_, val); \ + return count; \ + } + +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \ + DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ + DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \ + DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show, \ + _otg_attr_name_##_store); + +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \ + DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \ + DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL); + +/** + * Show the register offset of the Register Access. + */ +static ssize_t regoffset_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n", + otg_dev->reg_offset); +} + +/** + * Set the register offset for the next Register Access Read/Write + */ +static ssize_t regoffset_store(struct device *_dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t offset = simple_strtoul(buf, NULL, 16); + + if (offset < SZ_256K) + otg_dev->reg_offset = offset; + else + dev_err(_dev, "invalid offset\n"); + + return count; +} + +DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store); + +/** + * Show the value of the register at the offset in the reg_offset + * attribute. + */ +static ssize_t regvalue_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t val; + uint32_t *addr; + + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { + /* Calculate the address */ + addr = (uint32_t *) (otg_dev->reg_offset + + (uint8_t *) otg_dev->base); + + val = dwc_read_reg32(addr); + return snprintf(buf, + sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1, + "Reg@0x%06x = 0x%08x\n", otg_dev->reg_offset, + val); + } else { + dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->reg_offset); + return sprintf(buf, "invalid offset\n"); + } +} + +/** + * Store the value in the register at the offset in the reg_offset + * attribute. + * + */ +static ssize_t regvalue_store(struct device *_dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t *addr; + uint32_t val = simple_strtoul(buf, NULL, 16); + + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { + /* Calculate the address */ + addr = (uint32_t *) (otg_dev->reg_offset + + (uint8_t *) otg_dev->base); + + dwc_write_reg32(addr, val); + } else { + dev_err(_dev, "Invalid Register Offset (0x%08x)\n", + otg_dev->reg_offset); + } + return count; +} + +DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store); + +/* + * Attributes + */ +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode, + &(otg_dev->core_if->core_global_regs->gotgctl), + (1 << 20), 20, "Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable, + &(otg_dev->core_if->core_global_regs->gusbcfg), + (1 << 9), 9, "Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable, + &(otg_dev->core_if->core_global_regs->gusbcfg), + (1 << 8), 8, "Mode"); +#if 0 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode"); +#endif +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, otg_dev->core_if->host_if->hprt0, + 0x01, 0, "Bus Connected"); + +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl, + &(otg_dev->core_if->core_global_regs->gotgctl), + "GOTGCTL"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg, + &(otg_dev->core_if->core_global_regs->gusbcfg), + "GUSBCFG"); +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz, + &(otg_dev->core_if->core_global_regs->grxfsiz), + "GRXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz, + &(otg_dev->core_if->core_global_regs->gnptxfsiz), + "GNPTXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl, + &(otg_dev->core_if->core_global_regs->gpvndctl), + "GPVNDCTL"); +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio, + &(otg_dev->core_if->core_global_regs->ggpio), + "GGPIO"); +DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid), + "GUID"); +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid, + &(otg_dev->core_if->core_global_regs->gsnpsid), + "GSNPSID"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed, + &(otg_dev->core_if->dev_if->dev_global_regs-> + dcfg), 0x3, 0, "Device Speed"); +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed, + &(otg_dev->core_if->dev_if->dev_global_regs-> + dsts), 0x6, 1, "Device Enumeration Speed"); + +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz, + &(otg_dev->core_if->core_global_regs->hptxfsiz), + "HPTXFSIZ"); +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0"); + +/** + * @todo Add code to initiate the HNP. + */ +/** + * Show the HNP status bit + */ +static ssize_t hnp_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + union gotgctl_data val; + val.d32 = + dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl)); + return sprintf(buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); +} + +/** + * Set the HNP Request bit + */ +static ssize_t hnp_store(struct device *_dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t in = simple_strtoul(buf, NULL, 16); + uint32_t *addr = + (uint32_t *) &(otg_dev->core_if->core_global_regs->gotgctl); + union gotgctl_data mem; + mem.d32 = dwc_read_reg32(addr); + mem.b.hnpreq = in; + dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32); + dwc_write_reg32(addr, mem.d32); + return count; +} + +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); + +/** + * @todo Add code to initiate the SRP. + */ +/** + * Show the SRP status bit + */ +static ssize_t srp_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ +#ifndef DWC_HOST_ONLY + struct dwc_otg_device *otg_dev = _dev->platform_data; + union gotgctl_data val; + val.d32 = + dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl)); + return sprintf(buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); +#else + return sprintf(buf, "Host Only Mode!\n"); +#endif +} + +/** + * Set the SRP Request bit + */ +static ssize_t srp_store(struct device *_dev, struct device_attribute *attr, + const char *buf, size_t count) +{ +#ifndef DWC_HOST_ONLY + struct dwc_otg_device *otg_dev = _dev->platform_data; + dwc_otg_pcd_initiate_srp(otg_dev->pcd); +#endif + return count; +} + +DEVICE_ATTR(srp, 0644, srp_show, srp_store); + +/** + * @todo Need to do more for power on/off? + */ +/** + * Show the Bus Power status + */ +static ssize_t buspower_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + union hprt0_data val; + val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0); + return sprintf(buf, "Bus Power = 0x%x\n", val.b.prtpwr); +} + +/** + * Set the Bus Power status + */ +static ssize_t buspower_store(struct device *_dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t on = simple_strtoul(buf, NULL, 16); + uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0; + union hprt0_data mem; + + mem.d32 = dwc_read_reg32(addr); + mem.b.prtpwr = on; + + dwc_write_reg32(addr, mem.d32); + + return count; +} + +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); + +/** + * @todo Need to do more for suspend? + */ +/** + * Show the Bus Suspend status + */ +static ssize_t bussuspend_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + union hprt0_data val; + val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0); + return sprintf(buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); +} + +/** + * Set the Bus Suspend status + */ +static ssize_t bussuspend_store(struct device *_dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t in = simple_strtoul(buf, NULL, 16); + uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0; + union hprt0_data mem; + mem.d32 = dwc_read_reg32(addr); + mem.b.prtsusp = in; + dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32); + dwc_write_reg32(addr, mem.d32); + return count; +} + +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); + +/** + * Show the status of Remote Wakeup. + */ +static ssize_t remote_wakeup_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ +#ifndef DWC_HOST_ONLY + struct dwc_otg_device *otg_dev = _dev->platform_data; + union dctl_data val; + val.d32 = + dwc_read_reg32(&otg_dev->core_if->dev_if->dev_global_regs->dctl); + return sprintf(buf, "Remote Wakeup = %d Enabled = %d\n", + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); +#else + return sprintf(buf, "Host Only Mode!\n"); +#endif +} + +/** + * Initiate a remote wakeup of the host. The Device control register + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable + * flag is set. + * + */ +static ssize_t remote_wakeup_store(struct device *_dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ +#ifndef DWC_HOST_ONLY + uint32_t val = simple_strtoul(buf, NULL, 16); + struct dwc_otg_device *otg_dev = _dev->platform_data; + if (val & 1) + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); + else + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); +#endif + return count; +} + +DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show, + remote_wakeup_store); + +/** + * Dump global registers and either host or device registers (depending on the + * current mode of the core). + */ +static ssize_t regdump_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ + struct dwc_otg_device *otg_dev = _dev->platform_data; + + dwc_otg_dump_global_registers(otg_dev->core_if); + if (dwc_otg_is_host_mode(otg_dev->core_if)) + dwc_otg_dump_host_registers(otg_dev->core_if); + else + dwc_otg_dump_dev_registers(otg_dev->core_if); + + return sprintf(buf, "Register Dump\n"); +} + +DEVICE_ATTR(regdump, S_IRUGO | S_IWUSR, regdump_show, 0); + +/** + * Dump the current hcd state. + */ +static ssize_t hcddump_show(struct device *_dev, struct device_attribute *attr, + char *buf) +{ +#ifndef DWC_DEVICE_ONLY + struct dwc_otg_device *otg_dev = _dev->platform_data; + dwc_otg_hcd_dump_state(otg_dev->hcd); +#endif + return sprintf(buf, "HCD Dump\n"); +} + +DEVICE_ATTR(hcddump, S_IRUGO | S_IWUSR, hcddump_show, 0); + +/** + * Dump the average frame remaining at SOF. This can be used to + * determine average interrupt latency. Frame remaining is also shown for + * start transfer and two additional sample points. + */ +static ssize_t hcd_frrem_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ +#ifndef DWC_DEVICE_ONLY + struct dwc_otg_device *otg_dev = _dev->platform_data; + dwc_otg_hcd_dump_frrem(otg_dev->hcd); +#endif + return sprintf(buf, "HCD Dump Frame Remaining\n"); +} + +DEVICE_ATTR(hcd_frrem, S_IRUGO | S_IWUSR, hcd_frrem_show, 0); + +/** + * Displays the time required to read the GNPTXFSIZ register many times (the + * output shows the number of times the register is read). + */ +#define RW_REG_COUNT 10000000 +#define MSEC_PER_JIFFIE (1000/HZ) +static ssize_t rd_reg_test_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ + int i; + int time; + int start_jiffies; + struct dwc_otg_device *otg_dev = _dev->platform_data; + + pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", + HZ, MSEC_PER_JIFFIE, loops_per_jiffy); + start_jiffies = jiffies; + for (i = 0; i < RW_REG_COUNT; i++) + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); + + time = jiffies - start_jiffies; + return sprintf(buf, + "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); +} + +DEVICE_ATTR(rd_reg_test, S_IRUGO | S_IWUSR, rd_reg_test_show, 0); + +/** + * Displays the time required to write the GNPTXFSIZ register many times (the + * output shows the number of times the register is written). + */ +static ssize_t wr_reg_test_show(struct device *_dev, + struct device_attribute *attr, char *buf) +{ + int i; + int time; + int start_jiffies; + struct dwc_otg_device *otg_dev = _dev->platform_data; + uint32_t reg_val; + + pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", + HZ, MSEC_PER_JIFFIE, loops_per_jiffy); + reg_val = + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); + start_jiffies = jiffies; + for (i = 0; i < RW_REG_COUNT; i++) + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, + reg_val); + + time = jiffies - start_jiffies; + return sprintf(buf, + "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); +} + +DEVICE_ATTR(wr_reg_test, S_IRUGO | S_IWUSR, wr_reg_test_show, 0); + +/* + * Create the device files + */ +void dwc_otg_attr_create(struct device *dev) +{ + int error; + error = device_create_file(dev, &dev_attr_regoffset); + error |= device_create_file(dev, &dev_attr_regvalue); + error |= device_create_file(dev, &dev_attr_mode); + error |= device_create_file(dev, &dev_attr_hnpcapable); + error |= device_create_file(dev, &dev_attr_srpcapable); + error |= device_create_file(dev, &dev_attr_hnp); + error |= device_create_file(dev, &dev_attr_srp); + error |= device_create_file(dev, &dev_attr_buspower); + error |= device_create_file(dev, &dev_attr_bussuspend); + error |= device_create_file(dev, &dev_attr_busconnected); + error |= device_create_file(dev, &dev_attr_gotgctl); + error |= device_create_file(dev, &dev_attr_gusbcfg); + error |= device_create_file(dev, &dev_attr_grxfsiz); + error |= device_create_file(dev, &dev_attr_gnptxfsiz); + error |= device_create_file(dev, &dev_attr_gpvndctl); + error |= device_create_file(dev, &dev_attr_ggpio); + error |= device_create_file(dev, &dev_attr_guid); + error |= device_create_file(dev, &dev_attr_gsnpsid); + error |= device_create_file(dev, &dev_attr_devspeed); + error |= device_create_file(dev, &dev_attr_enumspeed); + error |= device_create_file(dev, &dev_attr_hptxfsiz); + error |= device_create_file(dev, &dev_attr_hprt0); + error |= device_create_file(dev, &dev_attr_remote_wakeup); + error |= device_create_file(dev, &dev_attr_regdump); + error |= device_create_file(dev, &dev_attr_hcddump); + error |= device_create_file(dev, &dev_attr_hcd_frrem); + error |= device_create_file(dev, &dev_attr_rd_reg_test); + error |= device_create_file(dev, &dev_attr_wr_reg_test); + if (error) + pr_err("DWC_OTG: Creating some device files failed\n"); +} + +/* + * Remove the device files + */ +void dwc_otg_attr_remove(struct device *dev) +{ + device_remove_file(dev, &dev_attr_regoffset); + device_remove_file(dev, &dev_attr_regvalue); + device_remove_file(dev, &dev_attr_mode); + device_remove_file(dev, &dev_attr_hnpcapable); + device_remove_file(dev, &dev_attr_srpcapable); + device_remove_file(dev, &dev_attr_hnp); + device_remove_file(dev, &dev_attr_srp); + device_remove_file(dev, &dev_attr_buspower); + device_remove_file(dev, &dev_attr_bussuspend); + device_remove_file(dev, &dev_attr_busconnected); + device_remove_file(dev, &dev_attr_gotgctl); + device_remove_file(dev, &dev_attr_gusbcfg); + device_remove_file(dev, &dev_attr_grxfsiz); + device_remove_file(dev, &dev_attr_gnptxfsiz); + device_remove_file(dev, &dev_attr_gpvndctl); + device_remove_file(dev, &dev_attr_ggpio); + device_remove_file(dev, &dev_attr_guid); + device_remove_file(dev, &dev_attr_gsnpsid); + device_remove_file(dev, &dev_attr_devspeed); + device_remove_file(dev, &dev_attr_enumspeed); + device_remove_file(dev, &dev_attr_hptxfsiz); + device_remove_file(dev, &dev_attr_hprt0); + device_remove_file(dev, &dev_attr_remote_wakeup); + device_remove_file(dev, &dev_attr_regdump); + device_remove_file(dev, &dev_attr_hcddump); + device_remove_file(dev, &dev_attr_hcd_frrem); + device_remove_file(dev, &dev_attr_rd_reg_test); + device_remove_file(dev, &dev_attr_wr_reg_test); +} diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.h b/drivers/usb/host/dwc_otg/dwc_otg_attr.h new file mode 100644 index 0000000..925524f --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.h @@ -0,0 +1,63 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_OTG_ATTR_H__) +#define __DWC_OTG_ATTR_H__ + +/* + * This file contains the interface to the Linux device attributes. + */ +extern struct device_attribute dev_attr_regoffset; +extern struct device_attribute dev_attr_regvalue; + +extern struct device_attribute dev_attr_mode; +extern struct device_attribute dev_attr_hnpcapable; +extern struct device_attribute dev_attr_srpcapable; +extern struct device_attribute dev_attr_hnp; +extern struct device_attribute dev_attr_srp; +extern struct device_attribute dev_attr_buspower; +extern struct device_attribute dev_attr_bussuspend; +extern struct device_attribute dev_attr_busconnected; +extern struct device_attribute dev_attr_gotgctl; +extern struct device_attribute dev_attr_gusbcfg; +extern struct device_attribute dev_attr_grxfsiz; +extern struct device_attribute dev_attr_gnptxfsiz; +extern struct device_attribute dev_attr_gpvndctl; +extern struct device_attribute dev_attr_ggpio; +extern struct device_attribute dev_attr_guid; +extern struct device_attribute dev_attr_gsnpsid; +extern struct device_attribute dev_attr_devspeed; +extern struct device_attribute dev_attr_enumspeed; +extern struct device_attribute dev_attr_hptxfsiz; +extern struct device_attribute dev_attr_hprt0; + +void dwc_otg_attr_create(struct device *dev); +void dwc_otg_attr_remove(struct device *dev); + +#endif diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.c b/drivers/usb/host/dwc_otg/dwc_otg_cil.c new file mode 100644 index 0000000..86153ba --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.c @@ -0,0 +1,2887 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +/* + * + * The Core Interface Layer provides basic services for accessing and + * managing the DWC_otg hardware. These services are used by both the + * Host Controller Driver and the Peripheral Controller Driver. + * + * The CIL manages the memory map for the core so that the HCD and PCD + * don't have to do this separately. It also handles basic tasks like + * reading/writing the registers and data FIFOs in the controller. + * Some of the data access functions provide encapsulation of several + * operations required to perform a task, such as writing multiple + * registers to start a transfer. Finally, the CIL performs basic + * services that are not specific to either the host or device modes + * of operation. These services include management of the OTG Host + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A + * Diagnostic API is also provided to allow testing of the controller + * hardware. + * + * The Core Interface Layer has the following requirements: + * - Provides basic controller operations. + * - Minimal use of OS services. + * - The OS services used will be abstracted by using inline functions + * or macros. + * + */ +#include <asm/unaligned.h> +#ifdef DEBUG +#include <linux/jiffies.h> +#endif + +#include "dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#include "dwc_otg_cil.h" + +/** + * This function is called to initialize the DWC_otg CSR data + * structures. The register addresses in the device and host + * structures are initialized from the base address supplied by the + * caller. The calling function must make the OS calls to get the + * base address of the DWC_otg controller registers. The core_params + * argument holds the parameters that specify how the core should be + * configured. + * + * @reg_base_addr: Base address of DWC_otg core registers + * @core_params: Pointer to the core configuration parameters + * + */ +struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr, + struct dwc_otg_core_params *core_params) +{ + struct dwc_otg_core_if *core_if = 0; + struct dwc_otg_dev_if *dev_if = 0; + struct dwc_otg_host_if *host_if = 0; + uint8_t *reg_base = (uint8_t *) reg_base_addr; + int i = 0; + + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, + core_params); + + core_if = kmalloc(sizeof(struct dwc_otg_core_if), GFP_KERNEL); + if (core_if == 0) { + DWC_DEBUGPL(DBG_CIL, + "Allocation of struct dwc_otg_core_if failed\n"); + return 0; + } + memset(core_if, 0, sizeof(struct dwc_otg_core_if)); + + core_if->core_params = core_params; + core_if->core_global_regs = + (struct dwc_otg_core_global_regs *)reg_base; + /* + * Allocate the Device Mode structures. + */ + dev_if = kmalloc(sizeof(struct dwc_otg_dev_if), GFP_KERNEL); + if (dev_if == 0) { + DWC_DEBUGPL(DBG_CIL, "Allocation of struct dwc_otg_dev_if " + "failed\n"); + kfree(core_if); + return 0; + } + + dev_if->dev_global_regs = + (struct dwc_otg_dev_global_regs *) (reg_base + + DWC_DEV_GLOBAL_REG_OFFSET); + + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + dev_if->in_ep_regs[i] = (struct dwc_otg_dev_in_ep_regs *) + (reg_base + DWC_DEV_IN_EP_REG_OFFSET + + (i * DWC_EP_REG_OFFSET)); + + dev_if->out_ep_regs[i] = (struct dwc_otg_dev_out_ep_regs *) + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + + (i * DWC_EP_REG_OFFSET)); + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", + i, &dev_if->in_ep_regs[i]->diepctl); + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", + i, &dev_if->out_ep_regs[i]->doepctl); + } + dev_if->speed = 0; /* unknown */ + dev_if->num_eps = MAX_EPS_CHANNELS; + dev_if->num_perio_eps = 0; + + core_if->dev_if = dev_if; + /* + * Allocate the Host Mode structures. + */ + host_if = kmalloc(sizeof(struct dwc_otg_host_if), GFP_KERNEL); + if (host_if == 0) { + DWC_DEBUGPL(DBG_CIL, + "Allocation of struct dwc_otg_host_if failed\n"); + kfree(dev_if); + kfree(core_if); + return 0; + } + + host_if->host_global_regs = (struct dwc_otg_host_global_regs *) + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); + host_if->hprt0 = + (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + host_if->hc_regs[i] = (struct dwc_otg_hc_regs *) + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + + (i * DWC_OTG_CHAN_REGS_OFFSET)); + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", + i, &host_if->hc_regs[i]->hcchar); + } + host_if->num_host_channels = MAX_EPS_CHANNELS; + core_if->host_if = host_if; + + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + core_if->data_fifo[i] = + (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET + + (i * DWC_OTG_DATA_FIFO_SIZE)); + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=%p\n", + i, core_if->data_fifo[i]); + } + + core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET); + + /* + * Store the contents of the hardware configuration registers here for + * easy access later. + */ + core_if->hwcfg1.d32 = + dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); + core_if->hwcfg2.d32 = + dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); + core_if->hwcfg3.d32 = + dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); + core_if->hwcfg4.d32 = + dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); + + DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32); + DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32); + + DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode); + DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture); + DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep); + DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n", + core_if->hwcfg2.b.num_host_chan); + DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n", + core_if->hwcfg2.b.nonperio_tx_q_depth); + DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n", + core_if->hwcfg2.b.host_perio_tx_q_depth); + DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n", + core_if->hwcfg2.b.dev_token_q_depth); + + DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n", + core_if->hwcfg3.b.dfifo_depth); + DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n", + core_if->hwcfg3.b.xfer_size_cntr_width); + + /* + * Set the SRP sucess bit for FS-I2c + */ + core_if->srp_success = 0; + core_if->srp_timer_started = 0; + + return core_if; +} + +/** + * This function frees the structures allocated by dwc_otg_cil_init(). + * + * @core_if: The core interface pointer returned from + * dwc_otg_cil_init(). + * + */ +void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if) +{ + /* Disable all interrupts */ + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0); + dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0); + + kfree(core_if->dev_if); + kfree(core_if->host_if); + + kfree(core_if); +} + +/** + * This function enables the controller's Global Interrupt in the AHB Config + * register. + * + * @core_if: Programming view of DWC_otg controller. + */ +extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if) +{ + union gahbcfg_data ahbcfg = {.d32 = 0 }; + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); +} + +/** + * This function disables the controller's Global Interrupt in the AHB Config + * register. + * + * @core_if: Programming view of DWC_otg controller. + */ +extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if) +{ + union gahbcfg_data ahbcfg = {.d32 = 0 }; + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); +} + +/** + * This function initializes the commmon interrupts, used in both + * device and host modes. + * + * @core_if: Programming view of the DWC_otg controller + * + */ +static void dwc_otg_enable_common_interrupts(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = + core_if->core_global_regs; + union gintmsk_data intr_mask = {.d32 = 0 }; + /* Clear any pending OTG Interrupts */ + dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); + /* Clear any pending interrupts */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + /* + * Enable the interrupts in the GINTMSK. + */ + intr_mask.b.modemismatch = 1; + intr_mask.b.otgintr = 1; + if (!core_if->dma_enable) + intr_mask.b.rxstsqlvl = 1; + + intr_mask.b.conidstschng = 1; + intr_mask.b.wkupintr = 1; + intr_mask.b.disconnect = 1; + intr_mask.b.usbsuspend = 1; + intr_mask.b.sessreqintr = 1; + dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); +} + +/** + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY + * type. + */ +static void init_fslspclksel(struct dwc_otg_core_if *core_if) +{ + uint32_t val; + union hcfg_data hcfg; + + if (((core_if->hwcfg2.b.hs_phy_type == 2) && + (core_if->hwcfg2.b.fs_phy_type == 1) && + (core_if->core_params->ulpi_fs_ls)) || + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + /* Full speed PHY */ + val = DWC_HCFG_48_MHZ; + } else { + /* High speed PHY running at full speed or high speed */ + val = DWC_HCFG_30_60_MHZ; + } + + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); + hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); + hcfg.b.fslspclksel = val; + dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32); +} + +/** + * Initializes the DevSpd field of the DCFG register depending on the PHY type + * and the enumeration speed of the device. + */ +static void init_devspd(struct dwc_otg_core_if *core_if) +{ + uint32_t val; + union dcfg_data dcfg; + + if (((core_if->hwcfg2.b.hs_phy_type == 2) && + (core_if->hwcfg2.b.fs_phy_type == 1) && + (core_if->core_params->ulpi_fs_ls)) || + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + /* Full speed PHY */ + val = 0x3; + } else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { + /* High speed PHY running at full speed */ + val = 0x1; + } else { + /* High speed PHY running at high speed */ + val = 0x0; + } + + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); + dcfg.b.devspd = val; + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); +} + +/** + * This function initializes the DWC_otg controller registers and + * prepares the core for device mode or host mode operation. + * + * @core_if: Programming view of the DWC_otg controller + * + */ +void dwc_otg_core_init(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + int i = 0; + union gahbcfg_data ahbcfg = {.d32 = 0 }; + union gusbcfg_data usbcfg = {.d32 = 0 }; + union gi2cctl_data i2cctl = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if); + + /* Common Initialization */ + + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + + /* Program the ULPI External VBUS bit if needed */ + usbcfg.b.ulpi_ext_vbus_drv = + (core_if->core_params->phy_ulpi_ext_vbus == + DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; + + /* Set external TS Dline pulsing */ + usbcfg.b.term_sel_dl_pulse = + (core_if->core_params->ts_dline == 1) ? 1 : 0; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Reset the Controller */ + dwc_otg_core_reset(core_if); + + /* Initialize parameters from Hardware configuration registers. */ + dev_if->num_eps = core_if->hwcfg2.b.num_dev_ep; + dev_if->num_perio_eps = core_if->hwcfg4.b.num_dev_perio_in_ep; + + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", + core_if->hwcfg4.b.num_dev_perio_in_ep); + for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { + dev_if->perio_tx_fifo_size[i] = + dwc_read_reg32(&global_regs->dptxfsiz[i]) >> 16; + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", + i, dev_if->perio_tx_fifo_size[i]); + } + + core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth; + core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); + core_if->nperio_tx_fifo_size = + dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; + + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", + core_if->nperio_tx_fifo_size); + + /* This programming sequence needs to happen in FS mode before any other + * programming occurs */ + if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { + /* If FS mode with FS PHY */ + + /* core_init() is now called on every switch so only call the + * following for the first time through. */ + if (!core_if->phy_init_done) { + core_if->phy_init_done = 1; + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.physel = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Reset after a PHY select */ + dwc_otg_core_reset(core_if); + } + + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also + * do this on HNP Dev/Host mode switches (done in dev_init and + * host_init). */ + if (dwc_otg_is_host_mode(core_if)) + init_fslspclksel(core_if); + else + init_devspd(core_if); + + if (core_if->core_params->i2c_enable) { + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); + /* Program GUSBCFG.OtgUtmifsSel to I2C */ + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.otgutmifssel = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Program GI2CCTL.I2CEn */ + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); + i2cctl.b.i2cdevaddr = 1; + i2cctl.b.i2cen = 0; + dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); + i2cctl.b.i2cen = 1; + dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32); + } + + } + /* endif speed == DWC_SPEED_PARAM_FULL */ + else { + /* High speed PHY. */ + if (!core_if->phy_init_done) { + core_if->phy_init_done = 1; + /* HS PHY parameters. These parameters are preserved + * during soft reset so only program the first time. Do + * a soft reset immediately after setting phyif. */ + usbcfg.b.ulpi_utmi_sel = + (core_if->core_params->phy_type == + DWC_PHY_TYPE_PARAM_ULPI); + if (usbcfg.b.ulpi_utmi_sel == 1) { + /* ULPI interface */ + usbcfg.b.phyif = 0; + usbcfg.b.ddrsel = + core_if->core_params->phy_ulpi_ddr; + } else { + /* UTMI+ interface */ + if (core_if->core_params->phy_utmi_width == 16) + usbcfg.b.phyif = 1; + else + usbcfg.b.phyif = 0; + } + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Reset after setting the PHY parameters */ + dwc_otg_core_reset(core_if); + } + } + + if ((core_if->hwcfg2.b.hs_phy_type == 2) && + (core_if->hwcfg2.b.fs_phy_type == 1) && + (core_if->core_params->ulpi_fs_ls)) { + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.ulpi_fsls = 1; + usbcfg.b.ulpi_clk_sus_m = 1; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + } else { + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + usbcfg.b.ulpi_fsls = 0; + usbcfg.b.ulpi_clk_sus_m = 0; + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + } + + /* Program the GAHBCFG Register. */ + switch (core_if->hwcfg2.b.architecture) { + + case DWC_SLAVE_ONLY_ARCH: + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); + ahbcfg.b.nptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; + core_if->dma_enable = 0; + break; + + case DWC_EXT_DMA_ARCH: + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); + ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size; + core_if->dma_enable = (core_if->core_params->dma_enable != 0); + break; + + case DWC_INT_DMA_ARCH: + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; + core_if->dma_enable = (core_if->core_params->dma_enable != 0); + break; + + } + ahbcfg.b.dmaenable = core_if->dma_enable; + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); + + /* + * Program the GUSBCFG register. + */ + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); + + switch (core_if->hwcfg2.b.op_mode) { + case DWC_MODE_HNP_SRP_CAPABLE: + usbcfg.b.hnpcap = (core_if->core_params->otg_cap == + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); + usbcfg.b.srpcap = (core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + + case DWC_MODE_SRP_ONLY_CAPABLE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + + case DWC_MODE_NO_HNP_SRP_CAPABLE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + + case DWC_MODE_SRP_CAPABLE_DEVICE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + + case DWC_MODE_NO_SRP_CAPABLE_DEVICE: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + + case DWC_MODE_SRP_CAPABLE_HOST: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = (core_if->core_params->otg_cap != + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); + break; + + case DWC_MODE_NO_SRP_CAPABLE_HOST: + usbcfg.b.hnpcap = 0; + usbcfg.b.srpcap = 0; + break; + } + + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); + + /* Enable common interrupts */ + dwc_otg_enable_common_interrupts(core_if); + + /* Do device or host intialization based on mode during PCD + * and HCD initialization */ + if (dwc_otg_is_host_mode(core_if)) { + DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); + core_if->op_state = A_HOST; + } else { + DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); + core_if->op_state = B_PERIPHERAL; +#ifdef DWC_DEVICE_ONLY + dwc_otg_core_dev_init(core_if); +#endif + } +} + +/** + * This function enables the Device mode interrupts. + * + * @core_if: Programming view of DWC_otg controller + */ +void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if) +{ + union gintmsk_data intr_mask = {.d32 = 0 }; + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); + + /* Disable all interrupts. */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* Clear any pending interrupts */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + + /* Enable the common interrupts */ + dwc_otg_enable_common_interrupts(core_if); + + /* Enable interrupts */ + intr_mask.b.usbreset = 1; + intr_mask.b.enumdone = 1; + intr_mask.b.epmismatch = 1; + intr_mask.b.inepintr = 1; + intr_mask.b.outepintr = 1; + intr_mask.b.erlysuspend = 1; + +#ifdef USE_PERIODIC_EP + /** @todo NGS: Should this be a module parameter? */ + intr_mask.b.isooutdrop = 1; + intr_mask.b.eopframe = 1; + intr_mask.b.incomplisoin = 1; + intr_mask.b.incomplisoout = 1; +#endif + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); + + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, + dwc_read_reg32(&global_regs->gintmsk)); +} + +/** + * This function initializes the DWC_otg controller registers for + * device mode. + * + * @core_if: Programming view of DWC_otg controller + * + */ +void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + struct dwc_otg_core_params *params = core_if->core_params; + union dcfg_data dcfg = {.d32 = 0 }; + union grstctl_data resetctl = {.d32 = 0 }; + int i; + uint32_t rx_fifo_size; + union fifosize_data nptxfifosize; +#ifdef USE_PERIODIC_EP + union fifosize_data ptxfifosize; +#endif + + /* Restart the Phy Clock */ + dwc_write_reg32(core_if->pcgcctl, 0); + + /* Device configuration register */ + init_devspd(core_if); + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); + + /* Configure data FIFO sizes */ + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { + + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", + core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", + params->dev_rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", + params->dev_nperio_tx_fifo_size); + + /* Rx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + rx_fifo_size = params->dev_rx_fifo_size; + dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + + /* Non-periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; + nptxfifosize.b.startaddr = params->dev_rx_fifo_size; + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + +#ifdef USE_PERIODIC_EP + /**@todo NGS: Fix Periodic FIFO Sizing! */ + /* + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. + * Indexes of the FIFO size module parameters in the + * dev_perio_tx_fifo_size array and the FIFO size registers in + * the dptxfsiz array run from 0 to 14. + */ + /** @todo Finish debug of this */ + ptxfifosize.b.startaddr = + nptxfifosize.b.startaddr + nptxfifosize.b.depth; + for (i = 0; i < dev_if->num_perio_eps; i++) { + ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; + DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz[%d]=%08x\n", i, + dwc_read_reg32(&global_regs->dptxfsiz[i])); + dwc_write_reg32(&global_regs->dptxfsiz[i], + ptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new dptxfsiz[%d]=%08x\n", i, + dwc_read_reg32(&global_regs->dptxfsiz[i])); + ptxfifosize.b.startaddr += ptxfifosize.b.depth; + } +#endif + } + /* Flush the FIFOs */ + dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ + dwc_otg_flush_rx_fifo(core_if); + + /* Flush the Learning Queue. */ + resetctl.b.intknqflsh = 1; + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); + + /* Clear all pending Device Interrupts */ + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); + dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); + + for (i = 0; i < dev_if->num_eps; i++) { + union depctl_data depctl; + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); + if (depctl.b.epena) { + depctl.d32 = 0; + depctl.b.epdis = 1; + depctl.b.snak = 1; + } else { + depctl.d32 = 0; + } + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); + + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); + if (depctl.b.epena) { + depctl.d32 = 0; + depctl.b.epdis = 1; + depctl.b.snak = 1; + } else { + depctl.d32 = 0; + } + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); + + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); + } + + dwc_otg_enable_device_interrupts(core_if); +} + +/** + * This function enables the Host mode interrupts. + * + * @core_if: Programming view of DWC_otg controller + */ +void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union gintmsk_data intr_mask = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); + + /* Disable all interrupts. */ + dwc_write_reg32(&global_regs->gintmsk, 0); + + /* Clear any pending interrupts. */ + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); + + /* Enable the common interrupts */ + dwc_otg_enable_common_interrupts(core_if); + + /* + * Enable host mode interrupts without disturbing common + * interrupts. + */ + intr_mask.b.sofintr = 1; + intr_mask.b.portintr = 1; + intr_mask.b.hcintr = 1; + + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); +} + +/** + * This function disables the Host Mode interrupts. + * + * @core_if: Programming view of DWC_otg controller + */ +void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union gintmsk_data intr_mask = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); + + /* + * Disable host mode interrupts without disturbing common + * interrupts. + */ + intr_mask.b.sofintr = 1; + intr_mask.b.portintr = 1; + intr_mask.b.hcintr = 1; + intr_mask.b.ptxfempty = 1; + intr_mask.b.nptxfempty = 1; + + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); +} + +/** + * The FIFOs are established based on a default percentage of the + * total FIFO depth. This function converts the percentage into the + * proper setting. + * + */ +static inline uint32_t fifo_percentage(uint16_t total_fifo_size, + int32_t percentage) +{ + /* 16-byte aligned */ + return ((total_fifo_size * percentage) / 100) & (-1 << 3); +} + +/** + * This function initializes the DWC_otg controller registers for + * host mode. + * + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the + * request queues. Host channels are reset to ensure that they are ready for + * performing transfers. + * + * @core_if: Programming view of DWC_otg controller + * + */ +void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + struct dwc_otg_host_if *host_if = core_if->host_if; + struct dwc_otg_core_params *params = core_if->core_params; + union hprt0_data hprt0 = {.d32 = 0 }; + union fifosize_data nptxfifosize; + union fifosize_data ptxfifosize; + int i; + union hcchar_data hcchar; + union hcfg_data hcfg; + struct dwc_otg_hc_regs *hc_regs; + int num_channels; + union gotgctl_data gotgctl = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if); + + /* Restart the Phy Clock */ + dwc_write_reg32(core_if->pcgcctl, 0); + + /* Initialize Host Configuration Register */ + init_fslspclksel(core_if); + if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); + hcfg.b.fslssupp = 1; + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); + } + + /* Configure data FIFO sizes */ + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", + core_if->total_fifo_size); + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", + params->host_rx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", + params->host_nperio_tx_fifo_size); + DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n", + params->host_perio_tx_fifo_size); + + /* Rx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + dwc_write_reg32(&global_regs->grxfsiz, + fifo_percentage(core_if->total_fifo_size, + dwc_param_host_rx_fifo_size_percentage)); + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", + dwc_read_reg32(&global_regs->grxfsiz)); + + /* Non-periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + nptxfifosize.b.depth = + fifo_percentage(core_if->total_fifo_size, + dwc_param_host_nperio_tx_fifo_size_percentage); + nptxfifosize.b.startaddr = + dwc_read_reg32(&global_regs->grxfsiz); + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->gnptxfsiz)); + + /* Periodic Tx FIFO */ + DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->hptxfsiz)); + ptxfifosize.b.depth = + core_if->total_fifo_size - + dwc_read_reg32(&global_regs->grxfsiz) - + nptxfifosize.b.depth; + ptxfifosize.b.startaddr = + nptxfifosize.b.startaddr + nptxfifosize.b.depth; + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); + DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n", + dwc_read_reg32(&global_regs->hptxfsiz)); + } + + /* Clear Host Set HNP Enable in the OTG Control Register */ + gotgctl.b.hstsethnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + + /* Make sure the FIFOs are flushed. */ + dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ + dwc_otg_flush_rx_fifo(core_if); + + /* Flush out any leftover queued requests. */ + num_channels = core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + hc_regs = core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 0; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + } + + /* Halt all channels to put them into a known state. */ + for (i = 0; i < num_channels; i++) { + int count = 0; + hc_regs = core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); + do { + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (++count > 1000) { + DWC_ERROR + ("%s: Unable to clear halt on channel %d\n", + __func__, i); + break; + } + } while (hcchar.b.chen); + } + + /* Turn on the vbus power. */ + DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state); + if (core_if->op_state == A_HOST) { + hprt0.d32 = dwc_otg_read_hprt0(core_if); + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); + if (hprt0.b.prtpwr == 0) { + hprt0.b.prtpwr = 1; + dwc_write_reg32(host_if->hprt0, hprt0.d32); + } + } + + dwc_otg_enable_host_interrupts(core_if); +} + +/** + * Prepares a host channel for transferring packets to/from a specific + * endpoint. The HCCHARn register is set up with the characteristics specified + * in hc. Host channel interrupts that may need to be serviced while this + * transfer is in progress are enabled. + * + * @core_if: Programming view of DWC_otg controller + * @hc: Information needed to initialize the host channel + */ +void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) +{ + uint32_t intr_enable; + union hcintmsk_data hc_intr_mask; + union gintmsk_data gintmsk = {.d32 = 0 }; + union hcchar_data hcchar; + union hcsplt_data hcsplt; + + uint8_t hc_num = hc->hc_num; + struct dwc_otg_host_if *host_if = core_if->host_if; + struct dwc_otg_hc_regs *hc_regs = host_if->hc_regs[hc_num]; + + /* Clear old interrupt conditions for this host channel. */ + hc_intr_mask.d32 = 0xFFFFFFFF; + hc_intr_mask.b.reserved = 0; + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); + + /* Enable channel interrupts required for this transfer. */ + hc_intr_mask.d32 = 0; + hc_intr_mask.b.chhltd = 1; + if (core_if->dma_enable) { + hc_intr_mask.b.ahberr = 1; + if (hc->error_state && !hc->do_split && + hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { + hc_intr_mask.b.ack = 1; + if (hc->ep_is_in) { + hc_intr_mask.b.datatglerr = 1; + if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) + hc_intr_mask.b.nak = 1; + } + } + } else { + switch (hc->ep_type) { + case DWC_OTG_EP_TYPE_CONTROL: + case DWC_OTG_EP_TYPE_BULK: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.stall = 1; + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.datatglerr = 1; + if (hc->ep_is_in) { + hc_intr_mask.b.bblerr = 1; + } else { + hc_intr_mask.b.nak = 1; + hc_intr_mask.b.nyet = 1; + if (hc->do_ping) + hc_intr_mask.b.ack = 1; + } + + if (hc->do_split) { + hc_intr_mask.b.nak = 1; + if (hc->complete_split) + hc_intr_mask.b.nyet = 1; + else + hc_intr_mask.b.ack = 1; + } + + if (hc->error_state) + hc_intr_mask.b.ack = 1; + break; + case DWC_OTG_EP_TYPE_INTR: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.nak = 1; + hc_intr_mask.b.stall = 1; + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.datatglerr = 1; + hc_intr_mask.b.frmovrun = 1; + + if (hc->ep_is_in) + hc_intr_mask.b.bblerr = 1; + if (hc->error_state) + hc_intr_mask.b.ack = 1; + if (hc->do_split) { + if (hc->complete_split) + hc_intr_mask.b.nyet = 1; + else + hc_intr_mask.b.ack = 1; + } + break; + case DWC_OTG_EP_TYPE_ISOC: + hc_intr_mask.b.xfercompl = 1; + hc_intr_mask.b.frmovrun = 1; + hc_intr_mask.b.ack = 1; + + if (hc->ep_is_in) { + hc_intr_mask.b.xacterr = 1; + hc_intr_mask.b.bblerr = 1; + } + break; + } + } + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); + + /* Enable the top level host channel interrupt. */ + intr_enable = (1 << hc_num); + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); + + /* Make sure host channel interrupts are enabled. */ + gintmsk.b.hcintr = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32); + + /* + * Program the HCCHARn register with the endpoint characteristics for + * the current transfer. + */ + hcchar.d32 = 0; + hcchar.b.devaddr = hc->dev_addr; + hcchar.b.epnum = hc->ep_num; + hcchar.b.epdir = hc->ep_is_in; + hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW); + hcchar.b.eptype = hc->ep_type; + hcchar.b.mps = hc->max_packet; + + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); + + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); + + /* + * Program the HCSPLIT register for SPLITs + */ + hcsplt.d32 = 0; + if (hc->do_split) { + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", + hc->hc_num, + hc->complete_split ? "CSPLIT" : "SSPLIT"); + hcsplt.b.compsplt = hc->complete_split; + hcsplt.b.xactpos = hc->xact_pos; + hcsplt.b.hubaddr = hc->hub_addr; + hcsplt.b.prtaddr = hc->port_addr; + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", + hc->complete_split); + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos); + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr); + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr); + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in); + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len); + } + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); + +} + +/** + * Attempts to halt a host channel. This function should only be called in + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under + * normal circumstances in DMA mode, the controller halts the channel when the + * transfer is complete or a condition occurs that requires application + * intervention. + * + * In slave mode, checks for a free request queue entry, then sets the Channel + * Enable and Channel Disable bits of the Host Channel Characteristics + * register of the specified channel to intiate the halt. If there is no free + * request queue entry, sets only the Channel Disable bit of the HCCHARn + * register to flush requests for this channel. In the latter case, sets a + * flag to indicate that the host channel needs to be halted when a request + * queue slot is open. + * + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the + * HCCHARn register. The controller ensures there is space in the request + * queue before submitting the halt request. + * + * Some time may elapse before the core flushes any posted requests for this + * host channel and halts. The Channel Halted interrupt handler completes the + * deactivation of the host channel. + * + * @core_if: Controller register interface. + * @hc: Host channel to halt. + * @halt_status: Reason for halting the channel. + */ +void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc, enum dwc_otg_halt_status halt_status) +{ + union gnptxsts_data nptxsts; + union hptxsts_data hptxsts; + union hcchar_data hcchar; + struct dwc_otg_hc_regs *hc_regs; + struct dwc_otg_core_global_regs *global_regs; + struct dwc_otg_host_global_regs *host_global_regs; + + hc_regs = core_if->host_if->hc_regs[hc->hc_num]; + global_regs = core_if->core_global_regs; + host_global_regs = core_if->host_if->host_global_regs; + + WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); + + if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || + halt_status == DWC_OTG_HC_XFER_AHB_ERR) { + /* + * Disable all channel interrupts except Ch Halted. The QTD + * and QH state associated with this transfer has been cleared + * (in the case of URB_DEQUEUE), so the channel needs to be + * shut down carefully to prevent crashes. + */ + union hcintmsk_data hcintmsk; + hcintmsk.d32 = 0; + hcintmsk.b.chhltd = 1; + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); + + /* + * Make sure no other interrupts besides halt are currently + * pending. Handling another interrupt could cause a crash due + * to the QTD and QH state. + */ + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); + + /* + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR + * even if the channel was already halted for some other + * reason. + */ + hc->halt_status = halt_status; + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen == 0) { + /* + * The channel is either already halted or it hasn't + * started yet. In DMA mode, the transfer may halt if + * it finishes normally or a condition occurs that + * requires driver intervention. Don't want to halt + * the channel again. In either Slave or DMA mode, + * it's possible that the transfer has been assigned + * to a channel, but not started yet when an URB is + * dequeued. Don't want to halt a channel that hasn't + * started yet. + */ + return; + } + } + + if (hc->halt_pending) { + /* + * A halt has already been issued for this channel. This might + * happen when a transfer is aborted by a higher level in + * the stack. + */ +#ifdef DEBUG + DWC_PRINT + ("*** %s: Channel %d, hc->halt_pending already set ***\n", + __func__, hc->hc_num); + +/* dwc_otg_dump_global_registers(core_if); */ +/* dwc_otg_dump_host_registers(core_if); */ +#endif + return; + } + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 1; + + if (!core_if->dma_enable) { + /* Check for space in the request queue to issue the halt. */ + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || + hc->ep_type == DWC_OTG_EP_TYPE_BULK) { + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); + if (nptxsts.b.nptxqspcavail == 0) + hcchar.b.chen = 0; + } else { + hptxsts.d32 = + dwc_read_reg32(&host_global_regs->hptxsts); + if ((hptxsts.b.ptxqspcavail == 0) + || (core_if->queuing_high_bandwidth)) { + hcchar.b.chen = 0; + } + } + } + + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + hc->halt_status = halt_status; + + if (hcchar.b.chen) { + hc->halt_pending = 1; + hc->halt_on_queue = 0; + } else { + hc->halt_on_queue = 1; + } + + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending); + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue); + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status); + + return; +} + +/** + * Clears the transfer state for a host channel. This function is normally + * called after a transfer is done and the host channel is being released. + * + * @core_if: Programming view of DWC_otg controller. + * @hc: Identifies the host channel to clean up. + */ +void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) +{ + struct dwc_otg_hc_regs *hc_regs; + + hc->xfer_started = 0; + + /* + * Clear channel interrupt enables and any unhandled channel interrupt + * conditions. + */ + hc_regs = core_if->host_if->hc_regs[hc->hc_num]; + dwc_write_reg32(&hc_regs->hcintmsk, 0); + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); + +#ifdef DEBUG + del_timer(&core_if->hc_xfer_timer[hc->hc_num]); + { + union hcchar_data hcchar; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chdis) { + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", + __func__, hc->hc_num, hcchar.d32); + } + } +#endif +} + +/** + * Sets the channel property that indicates in which frame a periodic transfer + * should occur. This is always set to the _next_ frame. This function has no + * effect on non-periodic transfers. + * + * @core_if: Programming view of DWC_otg controller. + * @hc: Identifies the host channel to set up and its properties. + * @hcchar: Current value of the HCCHAR register for the specified host + * channel. + */ +static inline void hc_set_even_odd_frame(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc, + union hcchar_data *hcchar) +{ + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + union hfnum_data hfnum; + hfnum.d32 = + dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum); + /* 1 if _next_ frame is odd, 0 if it's even */ + hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; +#ifdef DEBUG + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split + && !hc->complete_split) { + switch (hfnum.b.frnum & 0x7) { + case 7: + core_if->hfnum_7_samples++; + core_if->hfnum_7_frrem_accum += hfnum.b.frrem; + break; + case 0: + core_if->hfnum_0_samples++; + core_if->hfnum_0_frrem_accum += hfnum.b.frrem; + break; + default: + core_if->hfnum_other_samples++; + core_if->hfnum_other_frrem_accum += + hfnum.b.frrem; + break; + } + } +#endif + } +} + +#ifdef DEBUG +static void hc_xfer_timeout(unsigned long _ptr) +{ + struct hc_xfer_info *xfer_info = (struct hc_xfer_info *) _ptr; + int hc_num = xfer_info->hc->hc_num; + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); + DWC_WARN(" start_hcchar_val 0x%08x\n", + xfer_info->core_if->start_hcchar_val[hc_num]); +} +#endif + +/** + * This function does the setup for a data transfer for a host channel and + * starts the transfer. May be called in either Slave mode or DMA mode. In + * Slave mode, the caller must ensure that there is sufficient space in the + * request queue and Tx Data FIFO. + * + * For an OUT transfer in Slave mode, it loads a data packet into the + * appropriate FIFO. If necessary, additional data packets will be loaded in + * the Host ISR. + * + * For an IN transfer in Slave mode, a data packet is requested. The data + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, + * additional data packets are requested in the Host ISR. + * + * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ + * register along with a packet count of 1 and the channel is enabled. This + * causes a single PING transaction to occur. Other fields in HCTSIZ are + * simply set to 0 since no data transfer occurs in this case. + * + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with + * all the information required to perform the subsequent data transfer. In + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the + * controller performs the entire PING protocol, then starts the data + * transfer. + * + * @core_if: Programming view of DWC_otg controller. + * @hc: Information needed to initialize the host channel. The xfer_len + * value may be reduced to accommodate the max widths of the XferSize and + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed + * to reflect the final xfer_len value. + */ +void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc) +{ + union hcchar_data hcchar; + union hctsiz_data hctsiz; + uint16_t num_packets; + uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size; + uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count; + struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; + + hctsiz.d32 = 0; + + if (hc->do_ping) { + if (!core_if->dma_enable) { + dwc_otg_hc_do_ping(core_if, hc); + hc->xfer_started = 1; + return; + } else { + hctsiz.b.dopng = 1; + } + } + + if (hc->do_split) { + num_packets = 1; + + if (hc->complete_split && !hc->ep_is_in) { + /* For CSPLIT OUT Transfer, set the size to 0 so the + * core doesn't expect any data written to the FIFO */ + hc->xfer_len = 0; + } else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) { + hc->xfer_len = hc->max_packet; + } else if (!hc->ep_is_in && (hc->xfer_len > 188)) { + hc->xfer_len = 188; + } + + hctsiz.b.xfersize = hc->xfer_len; + } else { + /* + * Ensure that the transfer length and packet count will fit + * in the widths allocated for them in the HCTSIZn register. + */ + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * Make sure the transfer size is no larger than one + * (micro)frame's worth of data. (A check was done + * when the periodic transfer was accepted to ensure + * that a (micro)frame's worth of data can be + * programmed into a channel.) + */ + uint32_t max_periodic_len = + hc->multi_count * hc->max_packet; + if (hc->xfer_len > max_periodic_len) + hc->xfer_len = max_periodic_len; + } else if (hc->xfer_len > max_hc_xfer_size) { + /* + * Make sure that xfer_len is a multiple of + * max packet size. + */ + hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1; + } + + if (hc->xfer_len > 0) { + num_packets = + (hc->xfer_len + hc->max_packet - + 1) / hc->max_packet; + if (num_packets > max_hc_pkt_count) { + num_packets = max_hc_pkt_count; + hc->xfer_len = num_packets * hc->max_packet; + } + } else { + /* Need 1 packet for transfer length of 0. */ + num_packets = 1; + } + + if (hc->ep_is_in) { + /* + * Always program an integral # of max packets + * for IN transfers. + */ + hc->xfer_len = num_packets * hc->max_packet; + } + + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * Make sure that the multi_count field matches the + * actual transfer length. + */ + hc->multi_count = num_packets; + + } + + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* Set up the initial PID for the transfer. */ + if (hc->speed == DWC_OTG_EP_SPEED_HIGH) { + if (hc->ep_is_in) { + if (hc->multi_count == 1) { + hc->data_pid_start = + DWC_OTG_HC_PID_DATA0; + } else if (hc->multi_count == 2) { + hc->data_pid_start = + DWC_OTG_HC_PID_DATA1; + } else { + hc->data_pid_start = + DWC_OTG_HC_PID_DATA2; + } + } else { + if (hc->multi_count == 1) { + hc->data_pid_start = + DWC_OTG_HC_PID_DATA0; + } else { + hc->data_pid_start = + DWC_OTG_HC_PID_MDATA; + } + } + } else { + hc->data_pid_start = DWC_OTG_HC_PID_DATA0; + } + } + + hctsiz.b.xfersize = hc->xfer_len; + } + + hc->start_pkt_count = num_packets; + hctsiz.b.pktcnt = num_packets; + hctsiz.b.pid = hc->data_pid_start; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); + + if (core_if->dma_enable) { +#ifdef CONFIG_CPU_CAVIUM_OCTEON + /* Octeon uses external DMA */ + const uint64_t USBN_DMA0_OUTB_CHN0 = + CVMX_USBNX_DMA0_OUTB_CHN0(core_if->usb_num); + wmb(); + cvmx_write_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8, + (unsigned long)hc->xfer_buff); + cvmx_read_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8); + DWC_DEBUGPL(DBG_HCDV, + "OUT: hc->hc_num = %d, hc->xfer_buff = %p\n", + hc->hc_num, hc->xfer_buff); +#else + dwc_write_reg32(&hc_regs->hcdma, + (uint32_t) (long)hc->xfer_buff); +#endif /* CONFIG_CPU_CAVIUM_OCTEON */ + } + + /* Start the split */ + if (hc->do_split) { + union hcsplt_data hcsplt; + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + hcsplt.b.spltena = 1; + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); + } + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.multicnt = hc->multi_count; + hc_set_even_odd_frame(core_if, hc, &hcchar); +#ifdef DEBUG + core_if->start_hcchar_val[hc->hc_num] = hcchar.d32; + if (hcchar.b.chdis) { + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", + __func__, hc->hc_num, hcchar.d32); + } +#endif + + /* Set host channel enable after all other setup is complete. */ + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + hc->xfer_started = 1; + hc->requests++; + + if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) { + /* Load OUT packet into the appropriate Tx FIFO. */ + dwc_otg_hc_write_packet(core_if, hc); + } +#ifdef DEBUG + /* Start a timer for this transfer. */ + core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout; + core_if->hc_xfer_info[hc->hc_num].core_if = core_if; + core_if->hc_xfer_info[hc->hc_num].hc = hc; + core_if->hc_xfer_timer[hc->hc_num].data = + (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]); + core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ * 10); + add_timer(&core_if->hc_xfer_timer[hc->hc_num]); +#endif +} + +/** + * This function continues a data transfer that was started by previous call + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is + * sufficient space in the request queue and Tx Data FIFO. This function + * should only be called in Slave mode. In DMA mode, the controller acts + * autonomously to complete transfers programmed to a host channel. + * + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO + * if there is any data remaining to be queued. For an IN transfer, another + * data packet is always requested. For the SETUP phase of a control transfer, + * this function does nothing. + * + * Returns 1 if a new request is queued, 0 if no more requests are required + * for this transfer. + */ +int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc) +{ + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); + + if (hc->do_split) { + /* SPLITs always queue just once per channel */ + return 0; + } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { + /* SETUPs are queued only once since they can't be NAKed. */ + return 0; + } else if (hc->ep_is_in) { + /* + * Always queue another request for other IN transfers. If + * back-to-back INs are issued and NAKs are received for both, + * the driver may still be processing the first NAK when the + * second NAK is received. When the interrupt handler clears + * the NAK interrupt for the first NAK, the second NAK will + * not be seen. So we can't depend on the NAK interrupt + * handler to requeue a NAKed request. Instead, IN requests + * are issued each time this function is called. When the + * transfer completes, the extra requests for the channel will + * be flushed. + */ + union hcchar_data hcchar; + struct dwc_otg_hc_regs *hc_regs = + core_if->host_if->hc_regs[hc->hc_num]; + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hc_set_even_odd_frame(core_if, hc, &hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", + hcchar.d32); + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + hc->requests++; + return 1; + } else { + /* OUT transfers. */ + if (hc->xfer_count < hc->xfer_len) { + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + union hcchar_data hcchar; + struct dwc_otg_hc_regs *hc_regs; + hc_regs = + core_if->host_if->hc_regs[hc->hc_num]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hc_set_even_odd_frame(core_if, hc, &hcchar); + } + + /* Load OUT packet into the appropriate Tx FIFO. */ + dwc_otg_hc_write_packet(core_if, hc); + hc->requests++; + return 1; + } else { + return 0; + } + } +} + +/** + * Starts a PING transfer. This function should only be called in Slave mode. + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. + */ +void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) +{ + union hcchar_data hcchar; + union hctsiz_data hctsiz; + struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; + + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); + + hctsiz.d32 = 0; + hctsiz.b.dopng = 1; + hctsiz.b.pktcnt = 1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.chen = 1; + hcchar.b.chdis = 0; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); +} + +/* + * This function writes a packet into the Tx FIFO associated with the Host + * Channel. For a channel associated with a non-periodic EP, the non-periodic + * Tx FIFO is written. For a channel associated with a periodic EP, the + * periodic Tx FIFO is written. This function should only be called in Slave + * mode. + * + * Upon return the xfer_buff and xfer_count fields in hc are incremented by + * then number of bytes written to the Tx FIFO. + */ +void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, struct dwc_hc *hc) +{ + uint32_t i; + uint32_t remaining_count; + uint32_t byte_count; + uint32_t dword_count; + + uint32_t *data_buff = (uint32_t *) (hc->xfer_buff); + uint32_t *data_fifo = core_if->data_fifo[hc->hc_num]; + + remaining_count = hc->xfer_len - hc->xfer_count; + if (remaining_count > hc->max_packet) + byte_count = hc->max_packet; + else + byte_count = remaining_count; + + dword_count = (byte_count + 3) / 4; + + if ((((unsigned long)data_buff) & 0x3) == 0) { + /* xfer_buff is DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) + dwc_write_reg32(data_fifo, *data_buff); + } else { + /* xfer_buff is not DWORD aligned. */ + for (i = 0; i < dword_count; i++, data_buff++) + dwc_write_reg32(data_fifo, get_unaligned(data_buff)); + } + + hc->xfer_count += byte_count; + hc->xfer_buff += byte_count; +} + +/** + * Gets the current USB frame number. This is the frame number from the last + * SOF packet. + */ +uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if) +{ + union dsts_data dsts; + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); + + /* read current frame/microfreme number from DSTS register */ + return dsts.b.soffn; +} + +/** + * This function reads a setup packet from the Rx FIFO into the destination + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) + * Interrupt routine when a SETUP packet has been received in Slave mode. + * + * @core_if: Programming view of DWC_otg controller. + * @dest: Destination buffer for packet data. + */ +void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, uint32_t *dest) +{ + /* Get the 8 bytes of a setup transaction data */ + + /* Pop 2 DWORDS off the receive data FIFO into memory */ + dest[0] = dwc_read_reg32(core_if->data_fifo[0]); + dest[1] = dwc_read_reg32(core_if->data_fifo[0]); +} + +/** + * This function enables EP0 OUT to receive SETUP packets and configures EP0 + * IN for transmitting packets. It is normally called when the + * "Enumeration Done" interrupt occurs. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP0 data. + */ +void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + union dsts_data dsts; + union depctl_data diepctl; + union depctl_data doepctl; + union dctl_data dctl = {.d32 = 0 }; + + /* Read the Device Status and Endpoint 0 Control registers */ + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); + + /* Set the MPS of the IN EP based on the enumeration speed */ + switch (dsts.b.enumspd) { + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: + diepctl.b.mps = DWC_DEP0CTL_MPS_64; + break; + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: + diepctl.b.mps = DWC_DEP0CTL_MPS_8; + break; + } + + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); + + /* Enable OUT EP for receive */ + doepctl.b.epena = 1; + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); + +#ifdef VERBOSE + DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n", + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); + DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n", + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); +#endif + dctl.b.cgnpinnak = 1; + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); + DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n", + dwc_read_reg32(&dev_if->dev_global_regs->dctl)); +} + +/** + * This function activates an EP. The Device EP control register for + * the EP is configured as defined in the ep structure. Note: This + * function is not used for EP0. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to activate. + */ +void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + union depctl_data depctl; + uint32_t *addr; + union daint_data daintmsk = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num, + (ep->is_in ? "IN" : "OUT")); + + /* Read DEPCTLn register */ + if (ep->is_in == 1) { + addr = &dev_if->in_ep_regs[ep->num]->diepctl; + daintmsk.ep.in = 1 << ep->num; + } else { + addr = &dev_if->out_ep_regs[ep->num]->doepctl; + daintmsk.ep.out = 1 << ep->num; + } + + /* If the EP is already active don't change the EP Control + * register. */ + depctl.d32 = dwc_read_reg32(addr); + if (!depctl.b.usbactep) { + depctl.b.mps = ep->maxpacket; + depctl.b.eptype = ep->type; + depctl.b.txfnum = ep->tx_fifo_num; + + if (ep->type != DWC_OTG_EP_TYPE_ISOC) + depctl.b.setd0pid = 1; + + depctl.b.usbactep = 1; + + dwc_write_reg32(addr, depctl.d32); + DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr)); + } + + /* Enable the Interrupt for this EP */ + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, daintmsk.d32); + DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n", + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); + return; +} + +/** + * This function deactivates an EP. This is done by clearing the USB Active + * EP bit in the Device EP control register. Note: This function is not used + * for EP0. EP0 cannot be deactivated. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to deactivate. + */ +void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + union depctl_data depctl = {.d32 = 0 }; + uint32_t *addr; + union daint_data daintmsk = {.d32 = 0 }; + + /* Read DEPCTLn register */ + if (ep->is_in == 1) { + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; + daintmsk.ep.in = 1 << ep->num; + } else { + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; + daintmsk.ep.out = 1 << ep->num; + } + + depctl.b.usbactep = 0; + dwc_write_reg32(addr, depctl.d32); + + /* Disable the Interrupt for this EP */ + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk, + daintmsk.d32, 0); + + return; +} + +/** + * This function does the setup for a data transfer for an EP and + * starts the transfer. For an IN transfer, the packets will be + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, + * the packets are unloaded from the Rx FIFO in the ISR. the ISR. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to start the transfer on. + */ +void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep) +{ + /* + * @todo Refactor this funciton to check the transfer size + * count value does not execed the number bits in the Transfer + * count register. + */ + union depctl_data depctl; + union deptsiz_data deptsiz; + union gintmsk_data intr_mask = {.d32 = 0 }; + +#ifdef CHECK_PACKET_COUNTER_WIDTH + const uint32_t MAX_XFER_SIZE = core_if->core_params->max_transfer_size; + const uint32_t MAX_PKT_COUNT = core_if->core_params->max_packet_count; + uint32_t num_packets; + uint32_t transfer_len; + struct dwc_otg_dev_out_ep_regs *out_regs = + core_if->dev_if->out_ep_regs[ep->num]; + struct dwc_otg_dev_in_ep_regs *in_regs = + core_if->dev_if->in_ep_regs[ep->num]; + union gnptxsts_data txstatus; + + int lvl = SET_DEBUG_LEVEL(DBG_PCD); + + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p\n", + ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); + + transfer_len = ep->xfer_len - ep->xfer_count; + if (transfer_len > MAX_XFER_SIZE) + transfer_len = MAX_XFER_SIZE; + + if (transfer_len == 0) { + num_packets = 1; + /* OUT EP to recieve Zero-length packet set transfer + * size to maxpacket size. */ + if (!ep->is_in) + transfer_len = ep->maxpacket; + } else { + num_packets = + (transfer_len + ep->maxpacket - 1) / ep->maxpacket; + if (num_packets > MAX_PKT_COUNT) + num_packets = MAX_PKT_COUNT; + } + DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, + num_packets); + + deptsiz.b.xfersize = transfer_len; + deptsiz.b.pktcnt = num_packets; + + /* IN endpoint */ + if (ep->is_in == 1) { + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + } else { /* OUT endpoint */ + depctl.d32 = dwc_read_reg32(&out_regs->doepctl); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + /* IN endpoint */ + if (ep->is_in == 1) { + txstatus.d32 = + dwc_read_reg32(&core_if->core_global_regs->gnptxsts); + if (txstatus.b.nptxqspcavail == 0) { + DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", + txstatus.d32); + return; + } + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + /* + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (core_if->dma_enable) { + dwc_write_reg32(&in_regs->diepdma, + (uint32_t) ep->xfer_buff); + } else { + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } + } else { /* OUT endpoint */ + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + dwc_write_reg32(&out_regs->doepctl, depctl.d32); + if (core_if->dma_enable) { + dwc_write_reg32(&out_regs->doepdma, + (uint32_t) ep->xfer_buff); + } + } + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", + dwc_read_reg32(&out_regs->doepctl), + dwc_read_reg32(&out_regs->doeptsiz)); + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", + dwc_read_reg32(&core_if->dev_if->dev_global_regs-> + daintmsk), + dwc_read_reg32(&core_if->core_global_regs->gintmsk)); + + SET_DEBUG_LEVEL(lvl); +#endif + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); + + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p\n", + ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); + + /* IN endpoint */ + if (ep->is_in == 1) { + struct dwc_otg_dev_in_ep_regs *in_regs = + core_if->dev_if->in_ep_regs[ep->num]; + union gnptxsts_data txstatus; + + txstatus.d32 = + dwc_read_reg32(&core_if->core_global_regs->gnptxsts); + if (txstatus.b.nptxqspcavail == 0) { +#ifdef DEBUG + DWC_PRINT("TX Queue Full (0x%0x)\n", txstatus.d32); +#endif + return; + } + + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); + + /* Zero Length Packet? */ + if (ep->xfer_len == 0) { + deptsiz.b.xfersize = 0; + deptsiz.b.pktcnt = 1; + } else { + + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + deptsiz.b.xfersize = ep->xfer_len; + deptsiz.b.pktcnt = + (ep->xfer_len - 1 + ep->maxpacket) / + ep->maxpacket; + } + + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + + /* Write the DMA register */ + if (core_if->dma_enable) { + dwc_write_reg32(&(in_regs->diepdma), + (uint32_t) ep->dma_addr); + } else { + /* + * Enable the Non-Periodic Tx FIFO empty interrupt, + * the data will be written into the fifo by the ISR. + */ + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + depctl.d32 = + dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); + depctl.b.nextep = ep->num; + dwc_write_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl, + depctl.d32); + + } else { + /* OUT endpoint */ + struct dwc_otg_dev_out_ep_regs *out_regs = + core_if->dev_if->out_ep_regs[ep->num]; + + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); + + /* Program the transfer size and packet count as follows: + * + * pktcnt = N + * xfersize = N * maxpacket + */ + if (ep->xfer_len == 0) { + /* Zero Length Packet */ + deptsiz.b.xfersize = ep->maxpacket; + deptsiz.b.pktcnt = 1; + } else { + deptsiz.b.pktcnt = + (ep->xfer_len + (ep->maxpacket - 1)) / + ep->maxpacket; + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; + } + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", + ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); + + if (core_if->dma_enable) { + dwc_write_reg32(&(out_regs->doepdma), + (uint32_t) ep->dma_addr); + } + + if (ep->type == DWC_OTG_EP_TYPE_ISOC) { + /* + * @todo NGS: dpid is read-only. Use setd0pid + * or setd1pid. + */ + depctl.b.dpid = ep->even_odd_frame; + } + + /* EP enable */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + + dwc_write_reg32(&out_regs->doepctl, depctl.d32); + + DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", + dwc_read_reg32(&out_regs->doepctl), + dwc_read_reg32(&out_regs->doeptsiz)); + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", + dwc_read_reg32(&core_if->dev_if->dev_global_regs-> + daintmsk), + dwc_read_reg32(&core_if->core_global_regs-> + gintmsk)); + } +} + +/** + * This function does the setup for a data transfer for EP0 and starts + * the transfer. For an IN transfer, the packets will be loaded into + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are + * unloaded from the Rx FIFO in the ISR. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP0 data. + */ +void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep) +{ + union depctl_data depctl; + union deptsiz0_data deptsiz; + union gintmsk_data intr_mask = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " + "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", + ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len, + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff, + ep->total_len); + ep->total_len = ep->xfer_len; + + /* IN endpoint */ + if (ep->is_in == 1) { + struct dwc_otg_dev_in_ep_regs *in_regs = + core_if->dev_if->in_ep_regs[0]; + union gnptxsts_data tx_status = {.d32 = 0 }; + + tx_status.d32 = + dwc_read_reg32(&core_if->core_global_regs->gnptxsts); + if (tx_status.b.nptxqspcavail == 0) { +#ifdef DEBUG + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n", + dwc_read_reg32(&in_regs->diepctl)); + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", + deptsiz.d32, + deptsiz.b.xfersize, deptsiz.b.pktcnt); + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", + tx_status.d32); +#endif + + return; + } + + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + + /* Zero Length Packet? */ + if (ep->xfer_len == 0) { + deptsiz.b.xfersize = 0; + deptsiz.b.pktcnt = 1; + } else { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + if (ep->xfer_len > ep->maxpacket) { + ep->xfer_len = ep->maxpacket; + deptsiz.b.xfersize = ep->maxpacket; + } else { + deptsiz.b.xfersize = ep->xfer_len; + } + deptsiz.b.pktcnt = 1; + + } + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV, + "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", + ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt, + deptsiz.d32); + + /* Write the DMA register */ + if (core_if->dma_enable) { + dwc_write_reg32(&(in_regs->diepdma), + (uint32_t) ep->dma_addr); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + /* + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (!core_if->dma_enable) { + /* First clear it from GINTSTS */ + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintsts, + intr_mask.d32, 0); + + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } + + } else { /* OUT endpoint */ + struct dwc_otg_dev_out_ep_regs *out_regs = + core_if->dev_if->out_ep_regs[ep->num]; + + depctl.d32 = dwc_read_reg32(&out_regs->doepctl); + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); + + /* Program the transfer size and packet count as follows: + * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) + * pktcnt = N */ + if (ep->xfer_len == 0) { + /* Zero Length Packet */ + deptsiz.b.xfersize = ep->maxpacket; + deptsiz.b.pktcnt = 1; + } else { + deptsiz.b.pktcnt = + (ep->xfer_len + (ep->maxpacket - 1)) / + ep->maxpacket; + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; + } + + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", + ep->xfer_len, + deptsiz.b.xfersize, deptsiz.b.pktcnt); + + if (core_if->dma_enable) { + dwc_write_reg32(&(out_regs->doepdma), + (uint32_t) ep->dma_addr); + } + + /* EP enable */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&(out_regs->doepctl), depctl.d32); + } +} + +/** + * This function continues control IN transfers started by + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one + * bit for the packet count. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP0 data. + */ +void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep) +{ + union depctl_data depctl; + union deptsiz0_data deptsiz; + union gintmsk_data intr_mask = {.d32 = 0 }; + + if (ep->is_in == 1) { + struct dwc_otg_dev_in_ep_regs *in_regs = + core_if->dev_if->in_ep_regs[0]; + union gnptxsts_data tx_status = {.d32 = 0 }; + + tx_status.d32 = + dwc_read_reg32(&core_if->core_global_regs->gnptxsts); + /* + * @todo Should there be check for room in the Tx + * Status Queue. If not remove the code above this comment. + */ + + depctl.d32 = dwc_read_reg32(&in_regs->diepctl); + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); + + /* + * Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + deptsiz.b.xfersize = + (ep->total_len - ep->xfer_count) > + ep->maxpacket ? ep->maxpacket : (ep->total_len - + ep->xfer_count); + deptsiz.b.pktcnt = 1; + ep->xfer_len += deptsiz.b.xfersize; + + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); + DWC_DEBUGPL(DBG_PCDV, + "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", + ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt, + deptsiz.d32); + + /* Write the DMA register */ + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { + dwc_write_reg32(&(in_regs->diepdma), + (uint32_t) ep->dma_addr); + } + + /* EP enable, IN data in FIFO */ + depctl.b.cnak = 1; + depctl.b.epena = 1; + dwc_write_reg32(&in_regs->diepctl, depctl.d32); + + /* + * Enable the Non-Periodic Tx FIFO empty interrupt, the + * data will be written into the fifo by the ISR. + */ + if (!core_if->dma_enable) { + /* First clear it from GINTSTS */ + intr_mask.b.nptxfempty = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, + intr_mask.d32); + + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, + intr_mask.d32, intr_mask.d32); + } + + } + +} + +#ifdef DEBUG +void dump_msg(const u8 *buf, unsigned int length) +{ + unsigned int start, num, i; + char line[52], *p; + + if (length >= 512) + return; + start = 0; + while (length > 0) { + num = min(length, 16u); + p = line; + for (i = 0; i < num; ++i) { + if (i == 8) + *p++ = ' '; + sprintf(p, " %02x", buf[i]); + p += 3; + } + *p = 0; + DWC_PRINT("%6x: %s\n", start, line); + buf += num; + start += num; + length -= num; + } +} +#else +static inline void dump_msg(const u8 *buf, unsigned int length) +{ +} +#endif + +/** + * This function writes a packet into the Tx FIFO associated with the + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For + * periodic EPs the periodic Tx FIFO associated with the EP is written + * with all packets for the next micro-frame. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to write packet for. + * @_dma: Indicates if DMA is being used. + */ +void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep, + int _dma) +{ + /** + * The buffer is padded to DWORD on a per packet basis in + * slave/dma mode if the MPS is not DWORD aligned. The last + * packet, if short, is also padded to a multiple of DWORD. + * + * ep->xfer_buff always starts DWORD aligned in memory and is a + * multiple of DWORD in length + * + * ep->xfer_len can be any number of bytes + * + * ep->xfer_count is a multiple of ep->maxpacket until the last + * packet + * + * FIFO access is DWORD */ + + uint32_t i; + uint32_t byte_count; + uint32_t dword_count; + uint32_t *fifo; + uint32_t *data_buff = (uint32_t *) ep->xfer_buff; + + if (ep->xfer_count >= ep->xfer_len) { + DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num); + return; + } + + /* Find the byte length of the packet either short packet or MPS */ + if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) + byte_count = ep->xfer_len - ep->xfer_count; + else + byte_count = ep->maxpacket; + + /* Find the DWORD length, padded by extra bytes as neccessary if MPS + * is not a multiple of DWORD */ + dword_count = (byte_count + 3) / 4; + +#ifdef VERBOSE + dump_msg(ep->xfer_buff, byte_count); +#endif + if (ep->type == DWC_OTG_EP_TYPE_ISOC) + /* + *@todo NGS Where are the Periodic Tx FIFO addresses + * intialized? What should this be? + */ + fifo = core_if->data_fifo[ep->tx_fifo_num]; + else + fifo = core_if->data_fifo[ep->num]; + + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", + fifo, data_buff, *data_buff, byte_count); + + if (!_dma) { + for (i = 0; i < dword_count; i++, data_buff++) + dwc_write_reg32(fifo, *data_buff); + } + + ep->xfer_count += byte_count; + ep->xfer_buff += byte_count; +} + +/** + * Set the EP STALL. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to set the stall on. + */ +void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + union depctl_data depctl; + uint32_t *depctl_addr; + + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, + (ep->is_in ? "IN" : "OUT")); + + if (ep->is_in == 1) { + depctl_addr = + &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* set the disable and stall bits */ + if (depctl.b.epena) + depctl.b.epdis = 1; + depctl.b.stall = 1; + dwc_write_reg32(depctl_addr, depctl.d32); + + } else { + depctl_addr = + &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* set the stall bit */ + depctl.b.stall = 1; + dwc_write_reg32(depctl_addr, depctl.d32); + } + DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); + return; +} + +/** + * Clear the EP STALL. + * + * @core_if: Programming view of DWC_otg controller. + * @ep: The EP to clear stall from. + */ +void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + union depctl_data depctl; + uint32_t *depctl_addr; + + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, + (ep->is_in ? "IN" : "OUT")); + + if (ep->is_in == 1) { + depctl_addr = + &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); + } else { + depctl_addr = + &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); + } + + depctl.d32 = dwc_read_reg32(depctl_addr); + + /* clear the stall bits */ + depctl.b.stall = 0; + + /* + * USB Spec 9.4.5: For endpoints using data toggle, regardless + * of whether an endpoint has the Halt feature set, a + * ClearFeature(ENDPOINT_HALT) request always results in the + * data toggle being reinitialized to DATA0. + */ + if (ep->type == DWC_OTG_EP_TYPE_INTR || + ep->type == DWC_OTG_EP_TYPE_BULK) { + depctl.b.setd0pid = 1; /* DATA0 */ + } + + dwc_write_reg32(depctl_addr, depctl.d32); + DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr)); + return; +} + +/** + * This function reads a packet from the Rx FIFO into the destination + * buffer. To read SETUP data use dwc_otg_read_setup_packet. + * + * @core_if: Programming view of DWC_otg controller. + * @dest: Destination buffer for the packet. + * @bytes: Number of bytes to copy to the destination. + */ +void dwc_otg_read_packet(struct dwc_otg_core_if *core_if, + uint8_t *dest, uint16_t bytes) +{ + int i; + int word_count = (bytes + 3) / 4; + + uint32_t *fifo = core_if->data_fifo[0]; + uint32_t *data_buff = (uint32_t *) dest; + + /** + * @todo Account for the case where dest is not dword aligned. This + * requires reading data from the FIFO into a uint32_t temp buffer, + * then moving it into the data buffer. + */ + + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, + core_if, dest, bytes); + + for (i = 0; i < word_count; i++, data_buff++) + *data_buff = dwc_read_reg32(fifo); + return; +} + +/** + * This functions reads the device registers and prints them + * + * @core_if: Programming view of DWC_otg controller. + */ +void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if) +{ + int i; + uint32_t *addr; + + DWC_PRINT("Device Global Registers\n"); + addr = &core_if->dev_if->dev_global_regs->dcfg; + DWC_PRINT("DCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->dctl; + DWC_PRINT("DCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->dsts; + DWC_PRINT("DSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->diepmsk; + DWC_PRINT("DIEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->doepmsk; + DWC_PRINT("DOEPMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->daint; + DWC_PRINT("DAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->dev_if->dev_global_regs->dtknqr1; + DWC_PRINT("DTKNQR1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + if (core_if->hwcfg2.b.dev_token_q_depth > 6) { + addr = &core_if->dev_if->dev_global_regs->dtknqr2; + DWC_PRINT("DTKNQR2 @%p : 0x%08X\n", + addr, dwc_read_reg32(addr)); + } + + addr = &core_if->dev_if->dev_global_regs->dvbusdis; + DWC_PRINT("DVBUSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + + addr = &core_if->dev_if->dev_global_regs->dvbuspulse; + DWC_PRINT("DVBUSPULSE @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + + if (core_if->hwcfg2.b.dev_token_q_depth > 14) { + addr = &core_if->dev_if->dev_global_regs->dtknqr3; + DWC_PRINT("DTKNQR3 @%p : 0x%08X\n", + addr, dwc_read_reg32(addr)); + } + + if (core_if->hwcfg2.b.dev_token_q_depth > 22) { + addr = &core_if->dev_if->dev_global_regs->dtknqr4; + DWC_PRINT("DTKNQR4 @%p : 0x%08X\n", + addr, dwc_read_reg32(addr)); + } + + for (i = 0; i < core_if->dev_if->num_eps; i++) { + DWC_PRINT("Device IN EP %d Registers\n", i); + addr = &core_if->dev_if->in_ep_regs[i]->diepctl; + DWC_PRINT("DIEPCTL @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->in_ep_regs[i]->diepint; + DWC_PRINT("DIEPINT @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz; + DWC_PRINT("DIETSIZ @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->in_ep_regs[i]->diepdma; + DWC_PRINT("DIEPDMA @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + + DWC_PRINT("Device OUT EP %d Registers\n", i); + addr = &core_if->dev_if->out_ep_regs[i]->doepctl; + DWC_PRINT("DOEPCTL @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->out_ep_regs[i]->doepfn; + DWC_PRINT("DOEPFN @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->out_ep_regs[i]->doepint; + DWC_PRINT("DOEPINT @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz; + DWC_PRINT("DOETSIZ @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->dev_if->out_ep_regs[i]->doepdma; + DWC_PRINT("DOEPDMA @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + } + return; +} + +/** + * This function reads the host registers and prints them + * + * @core_if: Programming view of DWC_otg controller. + */ +void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if) +{ + int i; + uint32_t *addr; + + DWC_PRINT("Host Global Registers\n"); + addr = &core_if->host_if->host_global_regs->hcfg; + DWC_PRINT("HCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->host_if->host_global_regs->hfir; + DWC_PRINT("HFIR @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->host_if->host_global_regs->hfnum; + DWC_PRINT("HFNUM @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->host_if->host_global_regs->hptxsts; + DWC_PRINT("HPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->host_if->host_global_regs->haint; + DWC_PRINT("HAINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->host_if->host_global_regs->haintmsk; + DWC_PRINT("HAINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = core_if->host_if->hprt0; + DWC_PRINT("HPRT0 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + + for (i = 0; i < core_if->core_params->host_channels; i++) { + DWC_PRINT("Host Channel %d Specific Registers\n", i); + addr = &core_if->host_if->hc_regs[i]->hcchar; + DWC_PRINT("HCCHAR @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->host_if->hc_regs[i]->hcsplt; + DWC_PRINT("HCSPLT @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->host_if->hc_regs[i]->hcint; + DWC_PRINT("HCINT @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->host_if->hc_regs[i]->hcintmsk; + DWC_PRINT("HCINTMSK @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->host_if->hc_regs[i]->hctsiz; + DWC_PRINT("HCTSIZ @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + addr = &core_if->host_if->hc_regs[i]->hcdma; + DWC_PRINT("HCDMA @%p : 0x%08X\n", addr, + dwc_read_reg32(addr)); + + } + return; +} + +/** + * This function reads the core global registers and prints them + * + * @core_if: Programming view of DWC_otg controller. + */ +void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if) +{ + int i; + uint32_t *addr; + + DWC_PRINT("Core Global Registers\n"); + addr = &core_if->core_global_regs->gotgctl; + DWC_PRINT("GOTGCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gotgint; + DWC_PRINT("GOTGINT @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gahbcfg; + DWC_PRINT("GAHBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gusbcfg; + DWC_PRINT("GUSBCFG @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->grstctl; + DWC_PRINT("GRSTCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gintsts; + DWC_PRINT("GINTSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gintmsk; + DWC_PRINT("GINTMSK @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->grxstsr; + DWC_PRINT("GRXSTSR @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->grxfsiz; + DWC_PRINT("GRXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gnptxfsiz; + DWC_PRINT("GNPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gnptxsts; + DWC_PRINT("GNPTXSTS @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gi2cctl; + DWC_PRINT("GI2CCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gpvndctl; + DWC_PRINT("GPVNDCTL @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->ggpio; + DWC_PRINT("GGPIO @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->guid; + DWC_PRINT("GUID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->gsnpsid; + DWC_PRINT("GSNPSID @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->ghwcfg1; + DWC_PRINT("GHWCFG1 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->ghwcfg2; + DWC_PRINT("GHWCFG2 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->ghwcfg3; + DWC_PRINT("GHWCFG3 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->ghwcfg4; + DWC_PRINT("GHWCFG4 @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + addr = &core_if->core_global_regs->hptxfsiz; + DWC_PRINT("HPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr)); + + for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { + addr = &core_if->core_global_regs->dptxfsiz[i]; + DWC_PRINT("DPTXFSIZ[%d] @%p : 0x%08X\n", i, addr, + dwc_read_reg32(addr)); + } + +} + +/** + * Flush a Tx FIFO. + * + * @core_if: Programming view of DWC_otg controller. + * @_num: Tx FIFO to flush. + */ +extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, const int _num) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union grstctl_data greset = {.d32 = 0 }; + int count = 0; + + DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num); + + greset.b.txfflsh = 1; + greset.b.txfnum = _num; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", + __func__, greset.d32, + dwc_read_reg32(&global_regs->gnptxsts)); + break; + } + + } while (greset.b.txfflsh == 1); + /* Wait for 3 PHY Clocks */ + udelay(1); +} + +/** + * Flush Rx FIFO. + * + * @core_if: Programming view of DWC_otg controller. + */ +extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union grstctl_data greset = {.d32 = 0 }; + int count = 0; + + DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__); + /* + * + */ + greset.b.rxfflsh = 1; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, + greset.d32); + break; + } + } while (greset.b.rxfflsh == 1); + /* Wait for 3 PHY Clocks */ + udelay(1); +} + +/** + * Do core a soft reset of the core. Be careful with this because it + * resets all the internal state machines of the core. + */ +void dwc_otg_core_reset(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union grstctl_data greset = {.d32 = 0 }; + int count = 0; + + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); + /* Wait for AHB master IDLE state. */ + do { + udelay(10); + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 100000) { + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, + greset.d32); + return; + } + } while (greset.b.ahbidle == 0); + + /* Core Soft Reset */ + count = 0; + greset.b.csftrst = 1; + dwc_write_reg32(&global_regs->grstctl, greset.d32); + do { + greset.d32 = dwc_read_reg32(&global_regs->grstctl); + if (++count > 10000) { + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", + __func__, greset.d32); + break; + } + } while (greset.b.csftrst == 1); + /* Wait for 3 PHY Clocks */ + mdelay(100); +} + +/** + * Register HCD callbacks. The callbacks are used to start and stop + * the HCD for interrupt processing. + * + * @core_if: Programming view of DWC_otg controller. + * @_cb: the HCD callback structure. + * @_p: pointer to be passed to callback function (usb_hcd*). + */ +extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if, + struct dwc_otg_cil_callbacks *_cb, + void *_p) +{ + core_if->hcd_cb = _cb; + _cb->p = _p; +} + +/** + * Register PCD callbacks. The callbacks are used to start and stop + * the PCD for interrupt processing. + * + * @core_if: Programming view of DWC_otg controller. + * @_cb: the PCD callback structure. + * @_p: pointer to be passed to callback function (pcd*). + */ +extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if, + struct dwc_otg_cil_callbacks *_cb, + void *_p) +{ + core_if->pcd_cb = _cb; + _cb->p = _p; +} diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.h b/drivers/usb/host/dwc_otg/dwc_otg_cil.h new file mode 100644 index 0000000..36ef561 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.h @@ -0,0 +1,866 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_CIL_H__) +#define __DWC_CIL_H__ + +#include "dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#ifdef DEBUG +#include "linux/timer.h" +#endif + +/* + * This file contains the interface to the Core Interface Layer. + */ + +/** + * The <code>dwc_ep</code> structure represents the state of a single + * endpoint when acting in device mode. It contains the data items + * needed for an endpoint to be activated and transfer packets. + */ +struct dwc_ep { + /** EP number used for register address lookup */ + uint8_t num; + /** EP direction 0 = OUT */ + unsigned is_in:1; + /** EP active. */ + unsigned active:1; + + /* + * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use + * non-periodic Tx FIFO + */ + unsigned tx_fifo_num:4; + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ + unsigned type:2; +#define DWC_OTG_EP_TYPE_CONTROL 0 +#define DWC_OTG_EP_TYPE_ISOC 1 +#define DWC_OTG_EP_TYPE_BULK 2 +#define DWC_OTG_EP_TYPE_INTR 3 + + /** DATA start PID for INTR and BULK EP */ + unsigned data_pid_start:1; + /** Frame (even/odd) for ISOC EP */ + unsigned even_odd_frame:1; + /** Max Packet bytes */ + unsigned maxpacket:11; + + /** @name Transfer state */ + /** @{ */ + + /** + * Pointer to the beginning of the transfer buffer -- do not modify + * during transfer. + */ + + uint32_t dma_addr; + + uint8_t *start_xfer_buff; + /** pointer to the transfer buffer */ + uint8_t *xfer_buff; + /** Number of bytes to transfer */ + unsigned xfer_len:19; + /** Number of bytes transferred. */ + unsigned xfer_count:19; + /** Sent ZLP */ + unsigned sent_zlp:1; + /** Total len for control transfer */ + unsigned total_len:19; + + /** @} */ +}; + +/* + * Reasons for halting a host channel. + */ +enum dwc_otg_halt_status { + DWC_OTG_HC_XFER_NO_HALT_STATUS, + DWC_OTG_HC_XFER_COMPLETE, + DWC_OTG_HC_XFER_URB_COMPLETE, + DWC_OTG_HC_XFER_ACK, + DWC_OTG_HC_XFER_NAK, + DWC_OTG_HC_XFER_NYET, + DWC_OTG_HC_XFER_STALL, + DWC_OTG_HC_XFER_XACT_ERR, + DWC_OTG_HC_XFER_FRAME_OVERRUN, + DWC_OTG_HC_XFER_BABBLE_ERR, + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, + DWC_OTG_HC_XFER_AHB_ERR, + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, + DWC_OTG_HC_XFER_URB_DEQUEUE +}; + +/** + * Host channel descriptor. This structure represents the state of a single + * host channel when acting in host mode. It contains the data items needed to + * transfer packets to an endpoint via a host channel. + */ +struct dwc_hc { + /** Host channel number used for register address lookup */ + uint8_t hc_num; + + /** Device to access */ + unsigned dev_addr:7; + + /** EP to access */ + unsigned ep_num:4; + + /** EP direction. 0: OUT, 1: IN */ + unsigned ep_is_in:1; + + /** + * EP speed. + * One of the following values: + * - DWC_OTG_EP_SPEED_LOW + * - DWC_OTG_EP_SPEED_FULL + * - DWC_OTG_EP_SPEED_HIGH + */ + unsigned speed:2; +#define DWC_OTG_EP_SPEED_LOW 0 +#define DWC_OTG_EP_SPEED_FULL 1 +#define DWC_OTG_EP_SPEED_HIGH 2 + + /** + * Endpoint type. + * One of the following values: + * - DWC_OTG_EP_TYPE_CONTROL: 0 + * - DWC_OTG_EP_TYPE_ISOC: 1 + * - DWC_OTG_EP_TYPE_BULK: 2 + * - DWC_OTG_EP_TYPE_INTR: 3 + */ + unsigned ep_type:2; + + /** Max packet size in bytes */ + unsigned max_packet:11; + + /** + * PID for initial transaction. + * 0: DATA0,<br> + * 1: DATA2,<br> + * 2: DATA1,<br> + * 3: MDATA (non-Control EP), + * SETUP (Control EP) + */ + unsigned data_pid_start:2; +#define DWC_OTG_HC_PID_DATA0 0 +#define DWC_OTG_HC_PID_DATA2 1 +#define DWC_OTG_HC_PID_DATA1 2 +#define DWC_OTG_HC_PID_MDATA 3 +#define DWC_OTG_HC_PID_SETUP 3 + + /** Number of periodic transactions per (micro)frame */ + unsigned multi_count:2; + + /** @name Transfer State */ + /** @{ */ + + /** Pointer to the current transfer buffer position. */ + uint8_t *xfer_buff; + /** Total number of bytes to transfer. */ + uint32_t xfer_len; + /** Number of bytes transferred so far. */ + uint32_t xfer_count; + /** Packet count at start of transfer.*/ + uint16_t start_pkt_count; + + /** + * Flag to indicate whether the transfer has been started. Set to 1 if + * it has been started, 0 otherwise. + */ + uint8_t xfer_started; + + /** + * Set to 1 to indicate that a PING request should be issued on this + * channel. If 0, process normally. + */ + uint8_t do_ping; + + /** + * Set to 1 to indicate that the error count for this transaction is + * non-zero. Set to 0 if the error count is 0. + */ + uint8_t error_state; + + /** + * Set to 1 to indicate that this channel should be halted the next + * time a request is queued for the channel. This is necessary in + * slave mode if no request queue space is available when an attempt + * is made to halt the channel. + */ + uint8_t halt_on_queue; + + /** + * Set to 1 if the host channel has been halted, but the core is not + * finished flushing queued requests. Otherwise 0. + */ + uint8_t halt_pending; + + /** + * Reason for halting the host channel. + */ + enum dwc_otg_halt_status halt_status; + + /* + * Split settings for the host channel + */ + uint8_t do_split; /**< Enable split for the channel */ + uint8_t complete_split; /**< Enable complete split */ + uint8_t hub_addr; /**< Address of high speed hub */ + + uint8_t port_addr; /**< Port of the low/full speed device */ + /** Split transaction position + * One of the following values: + * - DWC_HCSPLIT_XACTPOS_MID + * - DWC_HCSPLIT_XACTPOS_BEGIN + * - DWC_HCSPLIT_XACTPOS_END + * - DWC_HCSPLIT_XACTPOS_ALL */ + uint8_t xact_pos; + + /** Set when the host channel does a short read. */ + uint8_t short_read; + + /** + * Number of requests issued for this channel since it was assigned to + * the current transfer (not counting PINGs). + */ + uint8_t requests; + + /** + * Queue Head for the transfer being processed by this channel. + */ + struct dwc_otg_qh *qh; + + /** @} */ + + /** Entry in list of host channels. */ + struct list_head hc_list_entry; +}; + +/** + * The following parameters may be specified when starting the module. These + * parameters define how the DWC_otg controller should be configured. + * Parameter values are passed to the CIL initialization function + * dwc_otg_cil_init. + */ +struct dwc_otg_core_params { + int32_t opt; +#define dwc_param_opt_default 1 + + /* + * Specifies the OTG capabilities. The driver will automatically + * detect the value for this parameter if none is specified. + * 0 - HNP and SRP capable (default) + * 1 - SRP Only capable + * 2 - No HNP/SRP capable + */ + int32_t otg_cap; +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE + + /* + * Specifies whether to use slave or DMA mode for accessing the data + * FIFOs. The driver will automatically detect the value for this + * parameter if none is specified. + * 0 - Slave + * 1 - DMA (default, if available) + */ + int32_t dma_enable; +#define dwc_param_dma_enable_default 1 + + /* + * The DMA Burst size (applicable only for External DMA + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) + */ + int32_t dma_burst_size; /* Translate this to GAHBCFG values */ +#define dwc_param_dma_burst_size_default 32 + + /* + * Specifies the maximum speed of operation in host and device mode. + * The actual speed depends on the speed of the attached device and + * the value of phy_type. The actual speed depends on the speed of the + * attached device. + * 0 - High Speed (default) + * 1 - Full Speed + */ + int32_t speed; +#define dwc_param_speed_default 0 +#define DWC_SPEED_PARAM_HIGH 0 +#define DWC_SPEED_PARAM_FULL 1 + + /** Specifies whether low power mode is supported when attached + * to a Full Speed or Low Speed device in host mode. + * 0 - Don't support low power mode (default) + * 1 - Support low power mode + */ + int32_t host_support_fs_ls_low_power; +#define dwc_param_host_support_fs_ls_low_power_default 0 + + /** Specifies the PHY clock rate in low power mode when connected to a + * Low Speed device in host mode. This parameter is applicable only if + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS + * then defaults to 6 MHZ otherwise 48 MHZ. + * + * 0 - 48 MHz + * 1 - 6 MHz + */ + int32_t host_ls_low_power_phy_clk; +#define dwc_param_host_ls_low_power_phy_clk_default 0 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 + + /** + * 0 - Use cC FIFO size parameters + * 1 - Allow dynamic FIFO sizing (default) + */ + int32_t enable_dynamic_fifo; +#define dwc_param_enable_dynamic_fifo_default 1 + + /** Total number of 4-byte words in the data FIFO memory. This + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic + * Tx FIFOs. + * 32 to 32768 (default 8192) + * Note: The total FIFO memory depth in the FPGA configuration is 8192. + */ + int32_t data_fifo_size; +#define dwc_param_data_fifo_size_default 8192 + + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1064) + */ + int32_t dev_rx_fifo_size; +#define dwc_param_dev_rx_fifo_size_default 1064 + + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode + * when dynamic FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t dev_nperio_tx_fifo_size; +#define dwc_param_dev_nperio_tx_fifo_size_default 1024 + + /** Number of 4-byte words in each of the periodic Tx FIFOs in device + * mode when dynamic FIFO sizing is enabled. + * 4 to 768 (default 256) + */ + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; +#define dwc_param_dev_perio_tx_fifo_size_default 256 + + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t host_rx_fifo_size; +#define dwc_param_host_rx_fifo_size_default 1024 +#define dwc_param_host_rx_fifo_size_percentage 30 + + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode + * when Dynamic FIFO sizing is enabled in the core. + * 16 to 32768 (default 1024) + */ + int32_t host_nperio_tx_fifo_size; +#define dwc_param_host_nperio_tx_fifo_size_default 1024 +#define dwc_param_host_nperio_tx_fifo_size_percentage 40 + + /* + * Number of 4-byte words in the host periodic Tx FIFO when dynamic + * FIFO sizing is enabled. + * 16 to 32768 (default 1024) + */ + int32_t host_perio_tx_fifo_size; +#define dwc_param_host_perio_tx_fifo_size_default 1024 +#define dwc_param_host_perio_tx_fifo_size_percentage 30 + + /* + * The maximum transfer size supported in bytes. + * 2047 to 65,535 (default 65,535) + */ + int32_t max_transfer_size; +#define dwc_param_max_transfer_size_default 65535 + + /* + * The maximum number of packets in a transfer. + * 15 to 511 (default 511) + */ + int32_t max_packet_count; +#define dwc_param_max_packet_count_default 511 + + /* + * The number of host channel registers to use. + * 1 to 16 (default 12) + * Note: The FPGA configuration supports a maximum of 12 host channels. + */ + int32_t host_channels; +#define dwc_param_host_channels_default 12 + + /* + * The number of endpoints in addition to EP0 available for device + * mode operations. + * 1 to 15 (default 6 IN and OUT) + * Note: The FPGA configuration supports a maximum of 6 IN and OUT + * endpoints in addition to EP0. + */ + int32_t dev_endpoints; +#define dwc_param_dev_endpoints_default 6 + + /* + * Specifies the type of PHY interface to use. By default, the driver + * will automatically detect the phy_type. + * + * 0 - Full Speed PHY + * 1 - UTMI+ (default) + * 2 - ULPI + */ + int32_t phy_type; +#define DWC_PHY_TYPE_PARAM_FS 0 +#define DWC_PHY_TYPE_PARAM_UTMI 1 +#define DWC_PHY_TYPE_PARAM_ULPI 2 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI + + /* + * Specifies the UTMI+ Data Width. This parameter is + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI + * PHY_TYPE, this parameter indicates the data width between + * the MAC and the ULPI Wrapper.) Also, this parameter is + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set + * to "8 and 16 bits", meaning that the core has been + * configured to work at either data path width. + * + * 8 or 16 bits (default 16) + */ + int32_t phy_utmi_width; +#define dwc_param_phy_utmi_width_default 16 + + /* + * Specifies whether the ULPI operates at double or single + * data rate. This parameter is only applicable if PHY_TYPE is + * ULPI. + * + * 0 - single data rate ULPI interface with 8 bit wide data + * bus (default) + * 1 - double data rate ULPI interface with 4 bit wide data + * bus + */ + int32_t phy_ulpi_ddr; +#define dwc_param_phy_ulpi_ddr_default 0 + + /* + * Specifies whether to use the internal or external supply to + * drive the vbus with a ULPI phy. + */ + int32_t phy_ulpi_ext_vbus; +#define DWC_PHY_ULPI_INTERNAL_VBUS 0 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS + + /* + * Specifies whether to use the I2Cinterface for full speed PHY. This + * parameter is only applicable if PHY_TYPE is FS. + * 0 - No (default) + * 1 - Yes + */ + int32_t i2c_enable; +#define dwc_param_i2c_enable_default 0 + + int32_t ulpi_fs_ls; +#define dwc_param_ulpi_fs_ls_default 0 + + int32_t ts_dline; +#define dwc_param_ts_dline_default 0 + +}; + +/** + * The FIFOs are established based on a default percentage of the total + * FIFO depth. This check insures that the defaults are reasonable. + */ +#if (((dwc_param_host_rx_fifo_size_percentage) \ + +(dwc_param_host_nperio_tx_fifo_size_percentage) \ + +(dwc_param_host_perio_tx_fifo_size_percentage)) > 100) +#error Invalid FIFO allocation +#endif + +#ifdef DEBUG +struct dwc_otg_core_if; +struct hc_xfer_info { + struct dwc_otg_core_if *core_if; + struct dwc_hc *hc; +}; +#endif + +/* + * The <code>dwc_otg_core_if</code> structure contains information + * needed to manage the DWC_otg controller acting in either host or + * device mode. It represents the programming view of the controller + * as a whole. + */ +struct dwc_otg_core_if { + /** USB block index number for Octeon's that support multiple */ + int usb_num; + + /** Parameters that define how the core should be configured.*/ + struct dwc_otg_core_params *core_params; + + /** Core Global registers starting at offset 000h. */ + struct dwc_otg_core_global_regs *core_global_regs; + + /** Device-specific information */ + struct dwc_otg_dev_if *dev_if; + /** Host-specific information */ + struct dwc_otg_host_if *host_if; + + /* + * Set to 1 if the core PHY interface bits in USBCFG have been + * initialized. + */ + uint8_t phy_init_done; + + /* + * SRP Success flag, set by srp success interrupt in FS I2C mode + */ + uint8_t srp_success; + uint8_t srp_timer_started; + + /* Common configuration information */ + /** Power and Clock Gating Control Register */ + uint32_t *pcgcctl; +#define DWC_OTG_PCGCCTL_OFFSET 0xE00 + + /** Push/pop addresses for endpoints or host channels.*/ + uint32_t *data_fifo[MAX_EPS_CHANNELS]; +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000 + + /** Total RAM for FIFOs (Bytes) */ + uint16_t total_fifo_size; + /** Size of Rx FIFO (Bytes) */ + uint16_t rx_fifo_size; + /** Size of Non-periodic Tx FIFO (Bytes) */ + uint16_t nperio_tx_fifo_size; + + /** 1 if DMA is enabled, 0 otherwise. */ + uint8_t dma_enable; + + /** Set to 1 if multiple packets of a high-bandwidth transfer is in + * process of being queued */ + uint8_t queuing_high_bandwidth; + + /** Hardware Configuration -- stored here for convenience.*/ + union hwcfg1_data hwcfg1; + union hwcfg2_data hwcfg2; + union hwcfg3_data hwcfg3; + union hwcfg4_data hwcfg4; + + /* + * The operational State, during transations + * (a_host>>a_peripherial and b_device=>b_host) this may not + * match the core but allows the software to determine + * transitions. + */ + uint8_t op_state; + + /* + * Set to 1 if the HCD needs to be restarted on a session request + * interrupt. This is required if no connector ID status change has + * occurred since the HCD was last disconnected. + */ + uint8_t restart_hcd_on_session_req; + + /** HCD callbacks */ + /** A-Device is a_host */ +#define A_HOST (1) + /** A-Device is a_suspend */ +#define A_SUSPEND (2) + /** A-Device is a_peripherial */ +#define A_PERIPHERAL (3) + /** B-Device is operating as a Peripheral. */ +#define B_PERIPHERAL (4) + /** B-Device is operating as a Host. */ +#define B_HOST (5) + + /** HCD callbacks */ + struct dwc_otg_cil_callbacks *hcd_cb; + /** PCD callbacks */ + struct dwc_otg_cil_callbacks *pcd_cb; + +#ifdef DEBUG + uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; + + struct hc_xfer_info hc_xfer_info[MAX_EPS_CHANNELS]; + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; + + uint32_t hfnum_7_samples; + uint64_t hfnum_7_frrem_accum; + uint32_t hfnum_0_samples; + uint64_t hfnum_0_frrem_accum; + uint32_t hfnum_other_samples; + uint64_t hfnum_other_frrem_accum; +#endif + +}; + +/* + * The following functions support initialization of the CIL driver component + * and the DWC_otg controller. + */ +extern struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr, + struct dwc_otg_core_params * + _core_params); +extern void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if); +extern void dwc_otg_core_init(struct dwc_otg_core_if *core_if); +extern void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if); +extern void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if); +extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if); +extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if); + +/* Device CIL Functions + * The following functions support managing the DWC_otg controller in device + * mode. + */ + +extern void dwc_otg_wakeup(struct dwc_otg_core_if *core_if); +extern void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, + uint32_t *dest); +extern uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if); +extern void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep, int _dma); +extern void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, + struct dwc_ep *ep); +extern void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if); +extern void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if); + +/* Host CIL Functions + * The following functions support managing the DWC_otg controller in host + * mode. + */ + +extern void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc); +extern void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc, + enum dwc_otg_halt_status halt_status); +extern void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc); +extern void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc); +extern int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc); +extern void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc); +extern void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc); +extern void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if); +extern void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if); + +/** + * This function Reads HPRT0 in preparation to modify. It keeps the + * WC bits 0 so that if they are read as 1, they won't clear when you + * write it back + */ +static inline uint32_t dwc_otg_read_hprt0(struct dwc_otg_core_if *core_if) +{ + union hprt0_data hprt0; + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); + hprt0.b.prtena = 0; + hprt0.b.prtconndet = 0; + hprt0.b.prtenchng = 0; + hprt0.b.prtovrcurrchng = 0; + return hprt0.d32; +} + +extern void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if); + +/* Common CIL Functions + * The following functions support managing the DWC_otg controller in either + * device or host mode. + */ + + +extern void dwc_otg_read_packet(struct dwc_otg_core_if *core_if, + uint8_t *dest, uint16_t bytes); + +extern void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if); + +extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, + const int _num); +extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if); +extern void dwc_otg_core_reset(struct dwc_otg_core_if *core_if); + +/** + * This function returns the Core Interrupt register. + */ +static inline uint32_t dwc_otg_read_core_intr(struct dwc_otg_core_if *core_if) +{ + return dwc_read_reg32(&core_if->core_global_regs->gintsts) & + dwc_read_reg32(&core_if->core_global_regs->gintmsk); +} + +/** + * This function returns the OTG Interrupt register. + */ +static inline uint32_t dwc_otg_read_otg_intr(struct dwc_otg_core_if *core_if) +{ + return dwc_read_reg32(&core_if->core_global_regs->gotgint); +} + +/** + * This function reads the Device All Endpoints Interrupt register and + * returns the IN endpoint interrupt bits. + */ +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(struct dwc_otg_core_if * + core_if) +{ + uint32_t v; + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); + return v & 0xffff; + +} + +/** + * This function reads the Device All Endpoints Interrupt register and + * returns the OUT endpoint interrupt bits. + */ +static inline uint32_t +dwc_otg_read_dev_all_out_ep_intr(struct dwc_otg_core_if *core_if) +{ + uint32_t v; + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); + return (v & 0xffff0000) >> 16; +} + +/** + * This function returns the Device IN EP Interrupt register + */ +static inline uint32_t +dwc_otg_read_dev_in_ep_intr(struct dwc_otg_core_if *core_if, struct dwc_ep *ep) +{ + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + uint32_t v; + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & + dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); + return v; +} + +/** + * This function returns the Device OUT EP Interrupt register + */ +static inline uint32_t dwc_otg_read_dev_out_ep_intr(struct dwc_otg_core_if * + core_if, struct dwc_ep *ep) +{ + struct dwc_otg_dev_if *dev_if = core_if->dev_if; + uint32_t v; + v = dwc_read_reg32(&dev_if->out_ep_regs[ep->num]->doepint) & + dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); + return v; +} + +/** + * This function returns the Host All Channel Interrupt register + */ +static inline uint32_t +dwc_otg_read_host_all_channels_intr(struct dwc_otg_core_if *core_if) +{ + return dwc_read_reg32(&core_if->host_if->host_global_regs->haint); +} + +static inline uint32_t +dwc_otg_read_host_channel_intr(struct dwc_otg_core_if *core_if, + struct dwc_hc *hc) +{ + return dwc_read_reg32(&core_if->host_if->hc_regs[hc->hc_num]->hcint); +} + +/** + * This function returns the mode of the operation, host or device. + * + * Returns 0 - Device Mode, 1 - Host Mode + */ +static inline uint32_t dwc_otg_mode(struct dwc_otg_core_if *core_if) +{ + return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1; +} + +static inline uint8_t dwc_otg_is_device_mode(struct dwc_otg_core_if *core_if) +{ + return dwc_otg_mode(core_if) != DWC_HOST_MODE; +} + +static inline uint8_t dwc_otg_is_host_mode(struct dwc_otg_core_if *core_if) +{ + return dwc_otg_mode(core_if) == DWC_HOST_MODE; +} + +extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if); + +/* + * DWC_otg CIL callback structure. This structure allows the HCD and + * PCD to register functions used for starting and stopping the PCD + * and HCD for role change on for a DRD. + */ +struct dwc_otg_cil_callbacks { + /* Start function for role change */ + int (*start) (void *p); + /* Stop Function for role change */ + int (*stop) (void *p); + /* Disconnect Function for role change */ + int (*disconnect) (void *p); + /* Resume/Remote wakeup Function */ + int (*resume_wakeup) (void *p); + /* Suspend function */ + int (*suspend) (void *p); + /* Session Start (SRP) */ + int (*session_start) (void *p); + /* Pointer passed to start() and stop() */ + void *p; +}; + +extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if, + struct dwc_otg_cil_callbacks *cb, + void *p); +extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if, + struct dwc_otg_cil_callbacks *cb, + void *p); +#endif diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c new file mode 100644 index 0000000..38c46df --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c @@ -0,0 +1,689 @@ +/* ========================================================================== + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +/** + * + * The Core Interface Layer provides basic services for accessing and + * managing the DWC_otg hardware. These services are used by both the + * Host Controller Driver and the Peripheral Controller Driver. + * + * This file contains the Common Interrupt handlers. + */ +#include "dwc_otg_plat.h" +#include "dwc_otg_regs.h" +#include "dwc_otg_cil.h" + +#ifdef DEBUG +inline const char *op_state_str(struct dwc_otg_core_if *core_if) +{ + return (core_if->op_state == A_HOST ? "a_host" : + (core_if->op_state == A_SUSPEND ? "a_suspend" : + (core_if->op_state == A_PERIPHERAL ? "a_peripheral" : + (core_if->op_state == B_PERIPHERAL ? "b_peripheral" : + (core_if->op_state == B_HOST ? "b_host" : "unknown"))))); +} +#endif + +/** This function will log a debug message + * + * @core_if: Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_mode_mismatch_intr(struct dwc_otg_core_if *core_if) +{ + union gintsts_data gintsts; + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", + dwc_otg_mode(core_if) ? "Host" : "Device"); + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.modemismatch = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** Start the HCD. Helper function for using the HCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void hcd_start(struct dwc_otg_core_if *core_if) +{ + if (core_if->hcd_cb && core_if->hcd_cb->start) + core_if->hcd_cb->start(core_if->hcd_cb->p); +} + +/** Stop the HCD. Helper function for using the HCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void hcd_stop(struct dwc_otg_core_if *core_if) +{ + if (core_if->hcd_cb && core_if->hcd_cb->stop) + core_if->hcd_cb->stop(core_if->hcd_cb->p); +} + +/** Disconnect the HCD. Helper function for using the HCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void hcd_disconnect(struct dwc_otg_core_if *core_if) +{ + if (core_if->hcd_cb && core_if->hcd_cb->disconnect) + core_if->hcd_cb->disconnect(core_if->hcd_cb->p); +} + +/** Inform the HCD the a New Session has begun. Helper function for + * using the HCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void hcd_session_start(struct dwc_otg_core_if *core_if) +{ + if (core_if->hcd_cb && core_if->hcd_cb->session_start) + core_if->hcd_cb->session_start(core_if->hcd_cb->p); +} + +/** Start the PCD. Helper function for using the PCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void pcd_start(struct dwc_otg_core_if *core_if) +{ + if (core_if->pcd_cb && core_if->pcd_cb->start) + core_if->pcd_cb->start(core_if->pcd_cb->p); +} + +/** Stop the PCD. Helper function for using the PCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void pcd_stop(struct dwc_otg_core_if *core_if) +{ + if (core_if->pcd_cb && core_if->pcd_cb->stop) + core_if->pcd_cb->stop(core_if->pcd_cb->p); +} + +/** Suspend the PCD. Helper function for using the PCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void pcd_suspend(struct dwc_otg_core_if *core_if) +{ + if (core_if->pcd_cb && core_if->pcd_cb->suspend) + core_if->pcd_cb->suspend(core_if->pcd_cb->p); +} + +/** Resume the PCD. Helper function for using the PCD callbacks. + * + * @core_if: Programming view of DWC_otg controller. + */ +static inline void pcd_resume(struct dwc_otg_core_if *core_if) +{ + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); +} + +/** + * This function handles the OTG Interrupts. It reads the OTG + * Interrupt Register (GOTGINT) to determine what interrupt has + * occurred. + * + * @core_if: Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_otg_intr(struct dwc_otg_core_if *core_if) +{ + struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs; + union gotgint_data gotgint; + union gotgctl_data gotgctl; + union gintmsk_data gintmsk; + + gotgint.d32 = dwc_read_reg32(&global_regs->gotgint); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, + op_state_str(core_if)); + + if (gotgint.b.sesenddet) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Session End Detected++ (%s)\n", + op_state_str(core_if)); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + + if (core_if->op_state == B_HOST) { + pcd_start(core_if); + core_if->op_state = B_PERIPHERAL; + } else { + /* If not B_HOST and Device HNP still set. HNP + * Did not succeed!*/ + if (gotgctl.b.devhnpen) { + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); + DWC_ERROR("Device Not Connected/Responding!\n"); + } + + /* If Session End Detected the B-Cable has + * been disconnected. */ + /* Reset PCD and Gadget driver to a + * clean state. */ + pcd_stop(core_if); + } + gotgctl.d32 = 0; + gotgctl.b.devhnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + } + if (gotgint.b.sesreqsucstschng) { + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Session Reqeust Success Status Change++\n"); + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + if (gotgctl.b.sesreqscs) { + if ((core_if->core_params->phy_type == + DWC_PHY_TYPE_PARAM_FS) + && (core_if->core_params->i2c_enable)) { + core_if->srp_success = 1; + } else { + pcd_resume(core_if); + /* Clear Session Request */ + gotgctl.d32 = 0; + gotgctl.b.sesreq = 1; + dwc_modify_reg32(&global_regs->gotgctl, + gotgctl.d32, 0); + } + } + } + if (gotgint.b.hstnegsucstschng) { + /* Print statements during the HNP interrupt handling + * can cause it to fail.*/ + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); + if (gotgctl.b.hstnegscs) { + if (dwc_otg_is_host_mode(core_if)) { + core_if->op_state = B_HOST; + /* + * Need to disable SOF interrupt immediately. + * When switching from device to host, the PCD + * interrupt handler won't handle the + * interrupt if host mode is already set. The + * HCD interrupt handler won't get called if + * the HCD state is HALT. This means that the + * interrupt does not get handled and Linux + * complains loudly. + */ + gintmsk.d32 = 0; + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&global_regs->gintmsk, + gintmsk.d32, 0); + pcd_stop(core_if); + /* + * Initialize the Core for Host mode. + */ + hcd_start(core_if); + core_if->op_state = B_HOST; + } + } else { + gotgctl.d32 = 0; + gotgctl.b.hnpreq = 1; + gotgctl.b.devhnpen = 1; + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); + DWC_DEBUGPL(DBG_ANY, "HNP Failed\n"); + DWC_ERROR("Device Not Connected/Responding\n"); + } + } + if (gotgint.b.hstnegdet) { + /* The disconnect interrupt is set at the same time as + * Host Negotiation Detected. During the mode + * switch all interrupts are cleared so the disconnect + * interrupt handler will not get executed. + */ + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "Host Negotiation Detected++ (%s)\n", + (dwc_otg_is_host_mode(core_if) ? "Host" : + "Device")); + if (dwc_otg_is_device_mode(core_if)) { + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", + core_if->op_state); + hcd_disconnect(core_if); + pcd_start(core_if); + core_if->op_state = A_PERIPHERAL; + } else { + /* + * Need to disable SOF interrupt immediately. When + * switching from device to host, the PCD interrupt + * handler won't handle the interrupt if host mode is + * already set. The HCD interrupt handler won't get + * called if the HCD state is HALT. This means that + * the interrupt does not get handled and Linux + * complains loudly. + */ + gintmsk.d32 = 0; + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0); + pcd_stop(core_if); + hcd_start(core_if); + core_if->op_state = A_HOST; + } + } + if (gotgint.b.adevtoutchng) + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " + "A-Device Timeout Change++\n"); + if (gotgint.b.debdone) + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n"); + + /* Clear GOTGINT */ + dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32); + + return 1; +} + +/** + * This function handles the Connector ID Status Change Interrupt. It + * reads the OTG Interrupt Register (GOTCTL) to determine whether this + * is a Device to Host Mode transition or a Host Mode to Device + * Transition. + * + * This only occurs when the cable is connected/removed from the PHY + * connector. + * + * @core_if: Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_conn_id_status_change_intr(struct dwc_otg_core_if *core_if) +{ + uint32_t count = 0; + + union gintsts_data gintsts = {.d32 = 0 }; + union gintmsk_data gintmsk = {.d32 = 0 }; + union gotgctl_data gotgctl = {.d32 = 0 }; + + /* + * Need to disable SOF interrupt immediately. If switching from device + * to host, the PCD interrupt handler won't handle the interrupt if + * host mode is already set. The HCD interrupt handler won't get + * called if the HCD state is HALT. This means that the interrupt does + * not get handled and Linux complains loudly. + */ + gintmsk.b.sofintr = 1; + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0); + + DWC_DEBUGPL(DBG_CIL, + " ++Connector ID Status Change Interrupt++ (%s)\n", + (dwc_otg_is_host_mode(core_if) ? "Host" : "Device")); + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); + + /* B-Device connector (Device Mode) */ + if (gotgctl.b.conidsts) { + /* Wait for switch to device mode. */ + while (!dwc_otg_is_device_mode(core_if)) { + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", + (dwc_otg_is_host_mode(core_if) ? "Host" : + "Peripheral")); + mdelay(100); + if (++count > 10000) + *(uint32_t *) NULL = 0; + } + core_if->op_state = B_PERIPHERAL; + dwc_otg_core_init(core_if); + dwc_otg_enable_global_interrupts(core_if); + pcd_start(core_if); + } else { + /* A-Device connector (Host Mode) */ + while (!dwc_otg_is_host_mode(core_if)) { + DWC_PRINT("Waiting for Host Mode, Mode=%s\n", + (dwc_otg_is_host_mode(core_if) ? "Host" : + "Peripheral")); + mdelay(100); + if (++count > 10000) + *(uint32_t *) NULL = 0; + } + core_if->op_state = A_HOST; + /* + * Initialize the Core for Host mode. + */ + dwc_otg_core_init(core_if); + dwc_otg_enable_global_interrupts(core_if); + hcd_start(core_if); + } + + /* Set flag and clear interrupt */ + gintsts.b.conidstschng = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + + return 1; +} + +/** + * This interrupt indicates that a device is initiating the Session + * Request Protocol to request the host to turn on bus power so a new + * session can begin. The handler responds by turning on bus power. If + * the DWC_otg controller is in low power mode, the handler brings the + * controller out of low power mode before turning on bus power. + * + * @core_if: Programming view of DWC_otg controller. + */ +int32_t dwc_otg_handle_session_req_intr(struct dwc_otg_core_if *core_if) +{ + union gintsts_data gintsts; +#ifndef DWC_HOST_ONLY + union hprt0_data hprt0; + + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); + + if (dwc_otg_is_device_mode(core_if)) { + DWC_PRINT("SRP: Device mode\n"); + } else { + DWC_PRINT("SRP: Host mode\n"); + + /* Turn on the port power bit. */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtpwr = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + + /* Start the Connection timer. So a message can be displayed + * if connect does not occur within 10 seconds. */ + hcd_session_start(core_if); + } +#endif + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.sessreqintr = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + + return 1; +} + +/** + * This interrupt indicates that the DWC_otg controller has detected a + * resume or remote wakeup sequence. If the DWC_otg controller is in + * low power mode, the handler must brings the controller out of low + * power mode. The controller automatically begins resume + * signaling. The handler schedules a time to stop resume signaling. + */ +int32_t dwc_otg_handle_wakeup_detected_intr(struct dwc_otg_core_if *core_if) +{ + union gintsts_data gintsts; + + DWC_DEBUGPL(DBG_ANY, + "++Resume and Remote Wakeup Detected Interrupt++\n"); + + if (dwc_otg_is_device_mode(core_if)) { + union dctl_data dctl = {.d32 = 0 }; + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", + dwc_read_reg32(&core_if->dev_if->dev_global_regs-> + dsts)); +#ifdef PARTIAL_POWER_DOWN + if (core_if->hwcfg4.b.power_optimiz) { + union pcgcctl_data power = {.d32 = 0 }; + + power.d32 = dwc_read_reg32(core_if->pcgcctl); + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); + + power.b.stoppclk = 0; + dwc_write_reg32(core_if->pcgcctl, power.d32); + + power.b.pwrclmp = 0; + dwc_write_reg32(core_if->pcgcctl, power.d32); + + power.b.rstpdwnmodule = 0; + dwc_write_reg32(core_if->pcgcctl, power.d32); + } +#endif + /* Clear the Remote Wakeup Signalling */ + dctl.b.rmtwkupsig = 1; + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, + dctl.d32, 0); + + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); + } else { + /* + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms + * so that OPT tests pass with all PHYs). + */ + union hprt0_data hprt0 = {.d32 = 0 }; + union pcgcctl_data pcgcctl = {.d32 = 0 }; + /* Restart the Phy Clock */ + pcgcctl.b.stoppclk = 1; + dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0); + udelay(10); + + /* Now wait for 70 ms. */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32); + mdelay(70); + hprt0.b.prtres = 0; /* Resume */ + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n", + dwc_read_reg32(core_if->host_if->hprt0)); + } + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.wkupintr = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + + return 1; +} + +/** + * This interrupt indicates that a device has been disconnected from + * the root port. + */ +int32_t dwc_otg_handle_disconnect_intr(struct dwc_otg_core_if *core_if) +{ + union gintsts_data gintsts; + + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", + (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"), + op_state_str(core_if)); + +/** @todo Consolidate this if statement. */ +#ifndef DWC_HOST_ONLY + if (core_if->op_state == B_HOST) { + /* If in device mode Disconnect and stop the HCD, then + * start the PCD. */ + hcd_disconnect(core_if); + pcd_start(core_if); + core_if->op_state = B_PERIPHERAL; + } else if (dwc_otg_is_device_mode(core_if)) { + union gotgctl_data gotgctl = {.d32 = 0 }; + gotgctl.d32 = + dwc_read_reg32(&core_if->core_global_regs->gotgctl); + if (gotgctl.b.hstsethnpen == 1) { + /* Do nothing, if HNP in process the OTG + * interrupt "Host Negotiation Detected" + * interrupt will do the mode switch. + */ + } else if (gotgctl.b.devhnpen == 0) { + /* If in device mode Disconnect and stop the HCD, then + * start the PCD. */ + hcd_disconnect(core_if); + pcd_start(core_if); + core_if->op_state = B_PERIPHERAL; + } else { + DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n"); + } + } else { + if (core_if->op_state == A_HOST) { + /* A-Cable still connected but device disconnected. */ + hcd_disconnect(core_if); + } + } +#endif + + gintsts.d32 = 0; + gintsts.b.disconnect = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + return 1; +} + +/** + * This interrupt indicates that SUSPEND state has been detected on + * the USB. + * + * For HNP the USB Suspend interrupt signals the change from + * "a_peripheral" to "a_host". + * + * When power management is enabled the core will be put in low power + * mode. + */ +int32_t dwc_otg_handle_usb_suspend_intr(struct dwc_otg_core_if *core_if) +{ + union dsts_data dsts; + union gintsts_data gintsts; + + DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n"); + + if (dwc_otg_is_device_mode(core_if)) { + /* Check the Device status register to determine if the Suspend + * state is active. */ + dsts.d32 = + dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " + "HWCFG4.power Optimize=%d\n", + dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz); + +#ifdef PARTIAL_POWER_DOWN +/** @todo Add a module parameter for power management. */ + + if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) { + union pcgcctl_data_t power = {.d32 = 0 }; + DWC_DEBUGPL(DBG_CIL, "suspend\n"); + + power.b.pwrclmp = 1; + dwc_write_reg32(core_if->pcgcctl, power.d32); + + power.b.rstpdwnmodule = 1; + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); + + power.b.stoppclk = 1; + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); + + } else { + DWC_DEBUGPL(DBG_ANY, "disconnect?\n"); + } +#endif + /* PCD callback for suspend. */ + pcd_suspend(core_if); + } else { + if (core_if->op_state == A_PERIPHERAL) { + DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n"); + /* Clear the a_peripheral flag, back to a_host. */ + pcd_stop(core_if); + hcd_start(core_if); + core_if->op_state = A_HOST; + } + } + + /* Clear interrupt */ + gintsts.d32 = 0; + gintsts.b.usbsuspend = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); + + return 1; +} + +/** + * This function returns the Core Interrupt register. + */ +static inline uint32_t dwc_otg_read_common_intr(struct dwc_otg_core_if *core_if) +{ + union gintsts_data gintsts; + union gintmsk_data gintmsk; + union gintmsk_data gintmsk_common = {.d32 = 0 }; + gintmsk_common.b.wkupintr = 1; + gintmsk_common.b.sessreqintr = 1; + gintmsk_common.b.conidstschng = 1; + gintmsk_common.b.otgintr = 1; + gintmsk_common.b.modemismatch = 1; + gintmsk_common.b.disconnect = 1; + gintmsk_common.b.usbsuspend = 1; + /* + * @todo: The port interrupt occurs while in device + * mode. Added code to CIL to clear the interrupt for now! + */ + gintmsk_common.b.portintr = 1; + + gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts); + gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk); +#ifdef DEBUG + /* if any common interrupts set */ + if (gintsts.d32 & gintmsk_common.d32) { + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", + gintsts.d32, gintmsk.d32); + } +#endif + + return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32; + +} + +/** + * Common interrupt handler. + * + * The common interrupts are those that occur in both Host and Device mode. + * This handler handles the following interrupts: + * - Mode Mismatch Interrupt + * - Disconnect Interrupt + * - OTG Interrupt + * - Connector ID Status Change Interrupt + * - Session Request Interrupt. + * - Resume / Remote Wakeup Detected Interrupt. + * + */ +extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if) +{ + int retval = 0; + union gintsts_data gintsts; + + gintsts.d32 = dwc_otg_read_common_intr(core_if); + + if (gintsts.b.modemismatch) + retval |= dwc_otg_handle_mode_mismatch_intr(core_if); + if (gintsts.b.otgintr) + retval |= dwc_otg_handle_otg_intr(core_if); + if (gintsts.b.conidstschng) + retval |= dwc_otg_handle_conn_id_status_change_intr(core_if); + if (gintsts.b.disconnect) + retval |= dwc_otg_handle_disconnect_intr(core_if); + if (gintsts.b.sessreqintr) + retval |= dwc_otg_handle_session_req_intr(core_if); + if (gintsts.b.wkupintr) + retval |= dwc_otg_handle_wakeup_detected_intr(core_if); + if (gintsts.b.usbsuspend) + retval |= dwc_otg_handle_usb_suspend_intr(core_if); + if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) { + /* The port interrupt occurs while in device mode with HPRT0 + * Port Enable/Disable. + */ + gintsts.d32 = 0; + gintsts.b.portintr = 1; + dwc_write_reg32(&core_if->core_global_regs->gintsts, + gintsts.d32); + retval |= 1; + + } + return retval; +} diff --git a/drivers/usb/host/dwc_otg/dwc_otg_driver.h b/drivers/usb/host/dwc_otg/dwc_otg_driver.h new file mode 100644 index 0000000..1cc116d --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_driver.h @@ -0,0 +1,63 @@ +/* ========================================================================== + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef __DWC_OTG_DRIVER_H__ +#define __DWC_OTG_DRIVER_H__ + +#include "dwc_otg_cil.h" + +/* Type declarations */ +struct dwc_otg_pcd; +struct dwc_otg_hcd; + +/** + * This structure is a wrapper that encapsulates the driver components used to + * manage a single DWC_otg controller. + */ +struct dwc_otg_device { + /** Base address returned from ioremap() */ + void *base; + + /** Pointer to the core interface structure. */ + struct dwc_otg_core_if *core_if; + + /** Register offset for Diagnostic API.*/ + uint32_t reg_offset; + + /** Pointer to the PCD structure. */ + struct dwc_otg_pcd *pcd; + + /** Pointer to the HCD structure. */ + struct dwc_otg_hcd *hcd; + + /** Flag to indicate whether the common IRQ handler is installed. */ + uint8_t common_irq_installed; + +}; + +#endif diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c new file mode 100644 index 0000000..a4392f5 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c @@ -0,0 +1,2878 @@ +/* ========================================================================== + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef DWC_DEVICE_ONLY + +/** + * + * This file contains the implementation of the HCD. In Linux, the HCD + * implements the hc_driver API. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/string.h> +#include <linux/dma-mapping.h> +#include <linux/workqueue.h> +#include <linux/platform_device.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" + +static const char dwc_otg_hcd_name[] = "dwc_otg_hcd"; + +static const struct hc_driver dwc_otg_hc_driver = { + + .description = dwc_otg_hcd_name, + .product_desc = "DWC OTG Controller", + .hcd_priv_size = sizeof(struct dwc_otg_hcd), + + .irq = dwc_otg_hcd_irq, + + .flags = HCD_MEMORY | HCD_USB2, + + .start = dwc_otg_hcd_start, + .stop = dwc_otg_hcd_stop, + + .urb_enqueue = dwc_otg_hcd_urb_enqueue, + .urb_dequeue = dwc_otg_hcd_urb_dequeue, + .endpoint_disable = dwc_otg_hcd_endpoint_disable, + + .get_frame_number = dwc_otg_hcd_get_frame_number, + + .hub_status_data = dwc_otg_hcd_hub_status_data, + .hub_control = dwc_otg_hcd_hub_control, +}; + +/** + * Work queue function for starting the HCD when A-Cable is connected. + * The dwc_otg_hcd_start() must be called in a process context. + */ +static void hcd_start_func(struct work_struct *work) +{ + void *_vp = + (void *)(atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); + struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp; + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); + if (usb_hcd) + dwc_otg_hcd_start(usb_hcd); +} + +/** + * HCD Callback function for starting the HCD when A-Cable is + * connected. + * + * @_p: void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_start_cb(void *_p) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; + union hprt0_data hprt0; + + if (core_if->op_state == B_HOST) { + /* + * Reset the port. During a HNP mode switch the reset + * needs to occur within 1ms and have a duration of at + * least 50ms. + */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + ((struct usb_hcd *)_p)->self.is_b_host = 1; + } else { + ((struct usb_hcd *)_p)->self.is_b_host = 0; + } + + /* Need to start the HCD in a non-interrupt context. */ + INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); + atomic_long_set(&dwc_otg_hcd->start_work.data, (long)_p); + schedule_work(&dwc_otg_hcd->start_work); + + return 1; +} + +/** + * HCD Callback function for stopping the HCD. + * + * @_p: void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_stop_cb(void *_p) +{ + struct usb_hcd *usb_hcd = (struct usb_hcd *)_p; + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); + dwc_otg_hcd_stop(usb_hcd); + return 1; +} + +static void del_xfer_timers(struct dwc_otg_hcd *hcd) +{ +#ifdef DEBUG + int i; + int num_channels = hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) + del_timer(&hcd->core_if->hc_xfer_timer[i]); +#endif +} + +static void del_timers(struct dwc_otg_hcd *hcd) +{ + del_xfer_timers(hcd); + del_timer(&hcd->conn_timer); +} + +/** + * Processes all the URBs in a single list of QHs. Completes them with + * -ETIMEDOUT and frees the QTD. + */ +static void kill_urbs_in_qh_list(struct dwc_otg_hcd *hcd, + struct list_head *_qh_list) +{ + struct dwc_otg_qh *qh; + struct dwc_otg_qtd *qtd; + struct dwc_otg_qtd *qtd_next; + + list_for_each_entry(qh, _qh_list, qh_list_entry) { + list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list, + qtd_list_entry) { + if (qtd->urb != NULL) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, + -ETIMEDOUT); + qtd->urb = NULL; + } + dwc_otg_hcd_qtd_remove_and_free(qtd); + } + } +} + +/** + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic + * and periodic schedules. The QTD associated with each URB is removed from + * the schedule and freed. This function may be called when a disconnect is + * detected or when the HCD is being stopped. + */ +static void kill_all_urbs(struct dwc_otg_hcd *hcd) +{ + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive); + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active); + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive); + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready); + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned); + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued); +} + +/** + * HCD Callback function for disconnect of the HCD. + * + * @_p: void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_disconnect_cb(void *_p) +{ + union gintsts_data intr; + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + + /* + * Set status flags for the hub driver. + */ + dwc_otg_hcd->flags.b.port_connect_status_change = 1; + dwc_otg_hcd->flags.b.port_connect_status = 0; + + /* + * Shutdown any transfers in process by clearing the Tx FIFO Empty + * interrupt mask and status bits and disabling subsequent host + * channel interrupts. + */ + intr.d32 = 0; + intr.b.nptxfempty = 1; + intr.b.ptxfempty = 1; + intr.b.hcintr = 1; + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, + intr.d32, 0); + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, + intr.d32, 0); + + del_timers(dwc_otg_hcd); + + /* + * Turn off the vbus power only if the core has transitioned to device + * mode. If still in host mode, need to keep power on to detect a + * reconnection. + */ + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { + union hprt0_data hprt0 = {.d32 = 0 }; + DWC_PRINT("Disconnect: PortPower off\n"); + hprt0.b.prtpwr = 0; + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, + hprt0.d32); + } + + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); + } + + /* Respond with an error status to all URBs in the schedule. */ + kill_all_urbs(dwc_otg_hcd); + + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { + /* Clean up any host channels that were in use. */ + int num_channels; + int i; + struct dwc_hc *channel; + struct dwc_otg_hc_regs *hc_regs; + union hcchar_data hcchar; + + num_channels = dwc_otg_hcd->core_if->core_params->host_channels; + + if (!dwc_otg_hcd->core_if->dma_enable) { + /* Flush out any channel requests in slave mode. */ + for (i = 0; i < num_channels; i++) { + channel = dwc_otg_hcd->hc_ptr_array[i]; + if (list_empty(&channel->hc_list_entry)) { + hc_regs = + dwc_otg_hcd->core_if->host_if-> + hc_regs[i]; + hcchar.d32 = + dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + hcchar.b.chen = 0; + hcchar.b.chdis = 1; + hcchar.b.epdir = 0; + dwc_write_reg32(&hc_regs-> + hcchar, + hcchar.d32); + } + } + } + } + + for (i = 0; i < num_channels; i++) { + channel = dwc_otg_hcd->hc_ptr_array[i]; + if (list_empty(&channel->hc_list_entry)) { + hc_regs = + dwc_otg_hcd->core_if->host_if->hc_regs[i]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + /* Halt the channel. */ + hcchar.b.chdis = 1; + dwc_write_reg32(&hc_regs->hcchar, + hcchar.d32); + } + + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, + channel); + list_add_tail(&channel->hc_list_entry, + &dwc_otg_hcd->free_hc_list); + } + } + } + + /* A disconnect will end the session so the B-Device is no + * longer a B-host. */ + ((struct usb_hcd *)_p)->self.is_b_host = 0; + return 1; +} + +/** + * Connection timeout function. An OTG host is required to display a + * message if the device does not connect within 10 seconds. + */ +void dwc_otg_hcd_connect_timeout(unsigned long _ptr) +{ + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr); + DWC_PRINT("Connect Timeout\n"); + DWC_ERROR("Device Not Connected/Responding\n"); +} + +/** + * Start the connection timer. An OTG host is required to display a + * message if the device does not connect within 10 seconds. The + * timer is deleted if a port connect interrupt occurs before the + * timer expires. + */ +static void dwc_otg_hcd_start_connect_timer(struct dwc_otg_hcd *hcd) +{ + init_timer(&hcd->conn_timer); + hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; + hcd->conn_timer.data = (unsigned long)0; + hcd->conn_timer.expires = jiffies + (HZ * 10); + add_timer(&hcd->conn_timer); +} + +/** + * HCD Callback function for disconnect of the HCD. + * + * @_p: void pointer to the <code>struct usb_hcd</code> + */ +static int32_t dwc_otg_hcd_session_start_cb(void *_p) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); + dwc_otg_hcd_start_connect_timer(dwc_otg_hcd); + return 1; +} + +/** + * HCD Callback structure for handling mode switching. + */ +static struct dwc_otg_cil_callbacks hcd_cil_callbacks = { + .start = dwc_otg_hcd_start_cb, + .stop = dwc_otg_hcd_stop_cb, + .disconnect = dwc_otg_hcd_disconnect_cb, + .session_start = dwc_otg_hcd_session_start_cb, + .p = 0, +}; + +/** + * Reset tasklet function + */ +static void reset_tasklet_func(unsigned long data) +{ + struct dwc_otg_hcd *dwc_otg_hcd = (struct dwc_otg_hcd *)data; + struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; + union hprt0_data hprt0; + + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); + + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + mdelay(60); + + hprt0.b.prtrst = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + dwc_otg_hcd->flags.b.port_reset_change = 1; + + return; +} + +static struct tasklet_struct reset_tasklet = { + .next = NULL, + .state = 0, + .count = ATOMIC_INIT(0), + .func = reset_tasklet_func, + .data = 0, +}; + +static enum hrtimer_restart delayed_enable(struct hrtimer *t) +{ + struct dwc_otg_hcd *hcd = container_of(t, struct dwc_otg_hcd, + poll_rate_limit); + struct dwc_otg_core_global_regs *global_regs = + hcd->core_if->core_global_regs; + union gintmsk_data intr_mask = {.d32 = 0 }; + intr_mask.b.nptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); + + return HRTIMER_NORESTART; +} + +/** + * Initializes the HCD. This function allocates memory for and initializes the + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the + * USB bus with the core and calls the hc_driver->start() function. It returns + * a negative error on failure. + */ +int __devinit dwc_otg_hcd_init(struct device *dev) +{ + struct usb_hcd *hcd = NULL; + struct dwc_otg_hcd *dwc_otg_hcd = NULL; + struct dwc_otg_device *otg_dev = dev->platform_data; + + int num_channels; + int i; + struct dwc_hc *channel; + + int retval = 0; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); + + /* Set device flags indicating whether the HCD supports DMA. */ + if (otg_dev->core_if->dma_enable) { + DWC_PRINT("Using DMA mode\n"); + dev->coherent_dma_mask = ~0; + dev->dma_mask = &dev->coherent_dma_mask; + } else { + DWC_PRINT("Using Slave mode\n"); + dev->coherent_dma_mask = 0; + dev->dma_mask = NULL; + } + + /* + * Allocate memory for the base HCD plus the DWC OTG HCD. + * Initialize the base HCD. + */ + hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev)); + if (hcd == NULL) { + retval = -ENOMEM; + goto error1; + } + hcd->regs = otg_dev->base; + hcd->self.otg_port = 1; + + /* Integrate TT in root hub, by default this is disbled. */ + hcd->has_tt = 1; + + /* Initialize the DWC OTG HCD. */ + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + + spin_lock_init(&dwc_otg_hcd->global_lock); + + dwc_otg_hcd->core_if = otg_dev->core_if; + otg_dev->hcd = dwc_otg_hcd; + + /* Register the HCD CIL Callbacks */ + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, + &hcd_cil_callbacks, hcd); + + /* Initialize the non-periodic schedule. */ + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); + + /* Initialize the periodic schedule. */ + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); + + /* + * Create a host channel descriptor for each host channel implemented + * in the controller. Initialize the channel descriptor array. + */ + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); + num_channels = dwc_otg_hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + channel = kmalloc(sizeof(struct dwc_hc), GFP_KERNEL); + if (channel == NULL) { + retval = -ENOMEM; + DWC_ERROR("%s: host channel allocation failed\n", + __func__); + goto error2; + } + memset(channel, 0, sizeof(struct dwc_hc)); + channel->hc_num = i; + dwc_otg_hcd->hc_ptr_array[i] = channel; +#ifdef DEBUG + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); +#endif + + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, + channel); + } + + /* Initialize the Connection timeout timer. */ + init_timer(&dwc_otg_hcd->conn_timer); + + /* Initialize reset tasklet. */ + reset_tasklet.data = (unsigned long)dwc_otg_hcd; + dwc_otg_hcd->reset_tasklet = &reset_tasklet; + + hrtimer_init(&dwc_otg_hcd->poll_rate_limit, CLOCK_MONOTONIC, + HRTIMER_MODE_REL); + dwc_otg_hcd->poll_rate_limit.function = delayed_enable; + + /* + * Finish generic HCD initialization and start the HCD. This function + * allocates the DMA buffer pool, registers the USB bus, requests the + * IRQ line, and calls dwc_otg_hcd_start method. + */ + retval = + usb_add_hcd(hcd, platform_get_irq(to_platform_device(dev), 0), + IRQF_SHARED); + if (retval < 0) + goto error2; + + /* + * Allocate space for storing data on status transactions. Normally no + * data is sent, but this space acts as a bit bucket. This must be + * done after usb_add_hcd since that function allocates the DMA buffer + * pool. + */ + if (otg_dev->core_if->dma_enable) { + dwc_otg_hcd->status_buf = + dma_alloc_coherent(dev, + DWC_OTG_HCD_STATUS_BUF_SIZE, + &dwc_otg_hcd->status_buf_dma, + GFP_KERNEL | GFP_DMA); + } else { + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, + GFP_KERNEL); + } + if (dwc_otg_hcd->status_buf == NULL) { + retval = -ENOMEM; + DWC_ERROR("%s: status_buf allocation failed\n", __func__); + goto error3; + } + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n", + hcd->self.busnum); + + return 0; + + /* Error conditions */ +error3: + usb_remove_hcd(hcd); +error2: + dwc_otg_hcd_free(hcd); + usb_put_hcd(hcd); +error1: + return retval; +} + +/** + * Removes the HCD. + * Frees memory and resources associated with the HCD and deregisters the bus. + */ +void dwc_otg_hcd_remove(struct device *dev) +{ + struct dwc_otg_device *otg_dev = dev->platform_data; + struct dwc_otg_hcd *dwc_otg_hcd = otg_dev->hcd; + struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); + + /* Turn off all interrupts */ + dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, + 0); + + usb_remove_hcd(hcd); + dwc_otg_hcd_free(hcd); + usb_put_hcd(hcd); + + return; +} + +/* ========================================================================= + * Linux HC Driver Functions + * ========================================================================= */ + +/** + * Initializes dynamic portions of the DWC_otg HCD state. + */ +static void hcd_reinit(struct dwc_otg_hcd *hcd) +{ + struct list_head *item; + int num_channels; + int i; + struct dwc_hc *channel; + + hcd->flags.d32 = 0; + + hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active; + hcd->non_periodic_channels = 0; + hcd->periodic_channels = 0; + + /* + * Put all channels in the free channel list and clean up channel + * states. + */ + item = hcd->free_hc_list.next; + while (item != &hcd->free_hc_list) { + list_del(item); + item = hcd->free_hc_list.next; + } + num_channels = hcd->core_if->core_params->host_channels; + for (i = 0; i < num_channels; i++) { + channel = hcd->hc_ptr_array[i]; + list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list); + dwc_otg_hc_cleanup(hcd->core_if, channel); + } + + /* Initialize the DWC core for host mode operation. */ + dwc_otg_core_host_init(hcd->core_if); +} + +/** Initializes the DWC_otg controller and its root hub and prepares it for host + * mode operation. Activates the root port. Returns 0 on success and a negative + * error code on failure. */ +int dwc_otg_hcd_start(struct usb_hcd *hcd) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; + unsigned long flags; + + struct usb_bus *bus; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); + + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + bus = hcd_to_bus(hcd); + + /* Initialize the bus state. If the core is in Device Mode + * HALT the USB bus and return. */ + if (dwc_otg_is_device_mode(core_if)) { + hcd->state = HC_STATE_HALT; + goto out; + } + hcd->state = HC_STATE_RUNNING; + + hcd_reinit(dwc_otg_hcd); +out: + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + return 0; +} + +static void qh_list_free(struct dwc_otg_hcd *hcd, struct list_head *_qh_list) +{ + struct list_head *item; + struct dwc_otg_qh *qh; + + if (_qh_list->next == NULL) { + /* The list hasn't been initialized yet. */ + return; + } + + /* Ensure there are no QTDs or URBs left. */ + kill_urbs_in_qh_list(hcd, _qh_list); + + for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) { + qh = list_entry(item, struct dwc_otg_qh, qh_list_entry); + dwc_otg_hcd_qh_remove_and_free(hcd, qh); + } +} + +/** + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are + * stopped. + */ +void dwc_otg_hcd_stop(struct usb_hcd *hcd) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + union hprt0_data hprt0 = {.d32 = 0 }; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); + + /* Turn off all host-specific interrupts. */ + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); + + /* + * The root hub should be disconnected before this function is called. + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) + * and the QH lists (via ..._hcd_endpoint_disable). + */ + + /* Turn off the vbus power */ + DWC_PRINT("PortPower off\n"); + hprt0.b.prtpwr = 0; + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); + + return; +} + +/** Returns the current frame number. */ +int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + union hfnum_data hfnum; + + hfnum.d32 = + dwc_read_reg32(&dwc_otg_hcd->core_if->host_if->host_global_regs-> + hfnum); + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", + hfnum.b.frnum); +#endif + return hfnum.b.frnum; +} + +/** + * Frees secondary storage associated with the dwc_otg_hcd structure contained + * in the struct usb_hcd field. + */ +void dwc_otg_hcd_free(struct usb_hcd *hcd) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + int i; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); + + del_timers(dwc_otg_hcd); + + /* Free memory for QH/QTD lists */ + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); + + /* Free memory for the host channels. */ + for (i = 0; i < MAX_EPS_CHANNELS; i++) { + struct dwc_hc *hc = dwc_otg_hcd->hc_ptr_array[i]; + if (hc != NULL) { + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", + i, hc); + kfree(hc); + } + } + + if (dwc_otg_hcd->core_if->dma_enable) { + if (dwc_otg_hcd->status_buf_dma) { + dma_free_coherent(hcd->self.controller, + DWC_OTG_HCD_STATUS_BUF_SIZE, + dwc_otg_hcd->status_buf, + dwc_otg_hcd->status_buf_dma); + } + } else if (dwc_otg_hcd->status_buf != NULL) { + kfree(dwc_otg_hcd->status_buf); + } + + return; +} + +#ifdef DEBUG +static void dump_urb_info(struct urb *urb, char *_fn_name) +{ + DWC_PRINT("%s, urb %p\n", _fn_name, urb); + DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe)); + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), + (usb_pipein(urb->pipe) ? "IN" : "OUT")); + DWC_PRINT(" Endpoint type: %s\n", + ({ + char *pipetype; + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + pipetype = "CONTROL"; + break; + case PIPE_BULK: + pipetype = "BULK"; + break; + case PIPE_INTERRUPT: + pipetype = "INTERRUPT"; + break; + case PIPE_ISOCHRONOUS: + pipetype = "ISOCHRONOUS"; + break; + default: + pipetype = "UNKNOWN"; + break; + } + pipetype; + })) ; + DWC_PRINT(" Speed: %s\n", + ({ + char *speed; + switch (urb->dev->speed) { + case USB_SPEED_HIGH: + speed = "HIGH"; + break; + case USB_SPEED_FULL: + speed = "FULL"; + break; + case USB_SPEED_LOW: + speed = "LOW"; + break; + default: + speed = "UNKNOWN"; + break; + } + speed; + })); + DWC_PRINT(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, + usb_pipeout(urb->pipe))); + DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length); + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", + urb->transfer_buffer, (void *)urb->transfer_dma); + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", + urb->setup_packet, (void *)urb->setup_dma); + DWC_PRINT(" Interval: %d\n", urb->interval); + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { + int i; + for (i = 0; i < urb->number_of_packets; i++) { + DWC_PRINT(" ISO Desc %d:\n", i); + DWC_PRINT(" offset: %d, length %d\n", + urb->iso_frame_desc[i].offset, + urb->iso_frame_desc[i].length); + } + } +} + +static void dump_channel_info(struct dwc_otg_hcd *hcd, struct dwc_otg_qh * qh) +{ + if (qh->channel != NULL) { + struct dwc_hc *hc = qh->channel; + struct list_head *item; + struct dwc_otg_qh *qh_item; + int num_channels = hcd->core_if->core_params->host_channels; + int i; + + struct dwc_otg_hc_regs *hc_regs; + union hcchar_data hcchar; + union hcsplt_data hcsplt; + union hctsiz_data hctsiz; + uint32_t hcdma; + + hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num]; + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + hcdma = dwc_read_reg32(&hc_regs->hcdma); + + DWC_PRINT(" Assigned to channel %p:\n", hc); + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, + hcsplt.d32); + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, + hcdma); + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", + hc->dev_addr, hc->ep_num, hc->ep_is_in); + DWC_PRINT(" ep_type: %d\n", hc->ep_type); + DWC_PRINT(" max_packet: %d\n", hc->max_packet); + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); + DWC_PRINT(" halt_status: %d\n", hc->halt_status); + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); + DWC_PRINT(" qh: %p\n", hc->qh); + DWC_PRINT(" NP inactive sched:\n"); + list_for_each(item, &hcd->non_periodic_sched_inactive) { + qh_item = list_entry(item, struct dwc_otg_qh, + qh_list_entry); + DWC_PRINT(" %p\n", qh_item); + } + DWC_PRINT(" NP active sched:\n"); + list_for_each(item, &hcd->non_periodic_sched_active) { + qh_item = list_entry(item, struct dwc_otg_qh, + qh_list_entry); + DWC_PRINT(" %p\n", qh_item); + } + DWC_PRINT(" Channels: \n"); + for (i = 0; i < num_channels; i++) { + struct dwc_hc *hc = hcd->hc_ptr_array[i]; + DWC_PRINT(" %2d: %p\n", i, hc); + } + } +} +#endif + +/* Starts processing a USB transfer request specified by a USB Request Block + * (URB). mem_flags indicates the type of memory allocation to use while + * processing this URB. */ +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, + struct urb *urb, unsigned _mem_flags) +{ + unsigned long flags; + int retval = 0; + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + struct dwc_otg_qtd *qtd; + + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + /* + * Make sure the start of frame interrupt is enabled now that + * we know we should have queued data. The SOF interrupt + * handler automatically disables itself when idle to reduce + * the number of interrupts. See dwc_otg_hcd_handle_sof_intr() + * for the disable + */ + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0, + DWC_SOF_INTR_MASK); + +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) + dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue"); +#endif + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* No longer connected. */ + retval = -ENODEV; + goto out; + } + + qtd = dwc_otg_hcd_qtd_create(urb); + if (qtd == NULL) { + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); + retval = -ENOMEM; + goto out; + } + + retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd); + if (retval < 0) { + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " + "Error status %d\n", retval); + dwc_otg_hcd_qtd_free(qtd); + } +out: + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + return retval; +} + +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate + * success. */ +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) +{ + unsigned long flags; + struct dwc_otg_hcd *dwc_otg_hcd; + struct dwc_otg_qtd *urb_qtd; + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); + + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + urb_qtd = urb->hcpriv; + +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue"); + if (urb_qtd == urb_qtd->qh->qtd_in_process) + dump_channel_info(dwc_otg_hcd, urb_qtd->qh); + } +#endif + + if (urb_qtd == urb_qtd->qh->qtd_in_process) { + /* The QTD is in process (it has been assigned to a channel). */ + + if (dwc_otg_hcd->flags.b.port_connect_status) { + /* + * If still connected (i.e. in host mode), halt the + * channel so it can be used for other transfers. If + * no longer connected, the host registers can't be + * written to halt the channel since the core is in + * device mode. + */ + dwc_otg_hc_halt(dwc_otg_hcd->core_if, + urb_qtd->qh->channel, + DWC_OTG_HC_XFER_URB_DEQUEUE); + } + } + + /* + * Free the QTD and clean up the associated QH. Leave the QH in the + * schedule if it has any remaining QTDs. + */ + dwc_otg_hcd_qtd_remove_and_free(urb_qtd); + if (urb_qtd == urb_qtd->qh->qtd_in_process) { + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, urb_qtd->qh, 0); + urb_qtd->qh->channel = NULL; + urb_qtd->qh->qtd_in_process = NULL; + } else if (list_empty(&urb_qtd->qh->qtd_list)) { + dwc_otg_hcd_qh_remove(dwc_otg_hcd, urb_qtd->qh); + } + + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + urb->hcpriv = NULL; + + /* Higher layer software sets URB status. */ + usb_hcd_giveback_urb(hcd, urb, status); + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + DWC_PRINT("Called usb_hcd_giveback_urb()\n"); + DWC_PRINT(" urb->status = %d\n", urb->status); + } + + return 0; +} + +/* Frees resources in the DWC_otg controller related to a given endpoint. Also + * clears state in the HCD related to the endpoint. Any URBs for the endpoint + * must already be dequeued. */ +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, + struct usb_host_endpoint *_ep) +{ + unsigned long flags; + struct dwc_otg_qh *qh; + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " + "endpoint=%d\n", _ep->desc.bEndpointAddress, + dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress)); + + qh = _ep->hcpriv; + if (qh != NULL) { +#if 1 + /* + * FIXME: Kludge to not crash on Octeon in SMP + * mode. Normally dwc_otg_hcd_qh_remove_and_free() is + * called even if the list isn't empty. This causes a + * crash on SMP, so we don't call it now. It works + * better, but probably does evil things I don't know + * about. + */ + /* Check that the QTD list is really empty */ + if (!list_empty(&qh->qtd_list)) { + pr_err("DWC OTG HCD EP DISABLE:" + " QTD List for this endpoint is not empty\n"); + } else +#endif + { + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); + _ep->hcpriv = NULL; + } + } + + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + return; +} + +/* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid + * interrupt. + * + * This function is called by the USB core when an interrupt occurs */ +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd) +{ + irqreturn_t result; + unsigned long flags; + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + result = IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); + + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + return result; +} + +/** Creates Status Change bitmap for the root hub and root port. The bitmap is + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 + * is the status change indicator for the single root port. Returns 1 if either + * change indicator is 1, otherwise returns 0. */ +int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *_buf) +{ + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + + _buf[0] = 0; + _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || + dwc_otg_hcd->flags.b.port_reset_change || + dwc_otg_hcd->flags.b.port_enable_change || + dwc_otg_hcd->flags.b.port_suspend_change || + dwc_otg_hcd->flags.b.port_over_current_change) << 1; + +#ifdef DEBUG + if (_buf[0]) { + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" + " Root port status changed\n"); + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", + dwc_otg_hcd->flags.b.port_connect_status_change); + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", + dwc_otg_hcd->flags.b.port_reset_change); + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", + dwc_otg_hcd->flags.b.port_enable_change); + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", + dwc_otg_hcd->flags.b.port_suspend_change); + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", + dwc_otg_hcd->flags.b.port_over_current_change); + } +#endif + return (_buf[0] != 0); +} + +#ifdef DWC_HS_ELECT_TST +/* + * Quick and dirty hack to implement the HS Electrical Test + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. + * + * This code was copied from our userspace app "hset". It sends a + * Get Device Descriptor control sequence in two parts, first the + * Setup packet by itself, followed some time later by the In and + * Ack packets. Rather than trying to figure out how to add this + * functionality to the normal driver code, we just hijack the + * hardware, using these two function to drive the hardware + * directly. + */ + +struct dwc_otg_core_global_regs *global_regs; +struct dwc_otg_host_global_regs *hc_global_regs; +struct dwc_otg_hc_regs *hc_regs; +uint32_t *data_fifo; + +static void do_setup(void) +{ + union gintsts_data gintsts; + union hctsiz_data hctsiz; + union hcchar_data hcchar; + union haint_data haint; + union hcint_data hcint; + + /* Enable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); + + /* Enable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* + * Send Setup packet (Get Device Descriptor) + */ + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + hcchar.b.chdis = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 8; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 0; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + /* Fill FIFO with Setup data for Get Device Descriptor */ + data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); + dwc_write_reg32(data_fifo++, 0x01000680); + dwc_write_reg32(data_fifo++, 0x00080000); + + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + + /* Disable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); + + /* Disable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); +} + +static void do_in_ack(void) +{ + union gintsts_data gintsts; + union hctsiz_data hctsiz; + union hcchar_data hcchar; + union haint_data haint; + union hcint_data hcint; + union host_grxsts_data grxsts; + + /* Enable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); + + /* Enable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* + * Receive Control In packet + */ + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + hcchar.b.chdis = 1; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 8; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 1; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Wait for receive status queue interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.rxstsqlvl == 0); + + /* Read RXSTS */ + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); + + /* Clear RXSTSQLVL in GINTSTS */ + gintsts.d32 = 0; + gintsts.b.rxstsqlvl = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer */ + if (grxsts.b.bcnt > 0) { + int i; + int word_count = (grxsts.b.bcnt + 3) / 4; + + data_fifo = (uint32_t *) ((char *)global_regs + 0x1000); + + for (i = 0; i < word_count; i++) + (void)dwc_read_reg32(data_fifo++); + } + break; + + default: + break; + } + + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Wait for receive status queue interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.rxstsqlvl == 0); + + + /* Read RXSTS */ + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); + + /* Clear RXSTSQLVL in GINTSTS */ + gintsts.d32 = 0; + gintsts.b.rxstsqlvl = 1; + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: + break; + + default: + break; + } + + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + mdelay(1); + + /* + * Send handshake packet + */ + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Make sure channel is disabled */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chen) { + hcchar.b.chdis = 1; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + mdelay(1000); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + } + + /* Set HCTSIZ */ + hctsiz.d32 = 0; + hctsiz.b.xfersize = 0; + hctsiz.b.pktcnt = 1; + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); + + /* Set HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; + hcchar.b.epdir = 0; + hcchar.b.epnum = 0; + hcchar.b.mps = 8; + hcchar.b.chen = 1; + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); + + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + + /* Wait for host channel interrupt */ + do { + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); + } while (gintsts.b.hcintr == 0); + + + /* Disable HCINTs */ + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); + + /* Disable HAINTs */ + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); + + /* Read HAINT */ + haint.d32 = dwc_read_reg32(&hc_global_regs->haint); + + /* Read HCINT */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + + /* Read HCCHAR */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + + /* Clear HCINT */ + dwc_write_reg32(&hc_regs->hcint, hcint.d32); + + /* Clear HAINT */ + dwc_write_reg32(&hc_global_regs->haint, haint.d32); + + /* Clear GINTSTS */ + dwc_write_reg32(&global_regs->gintsts, gintsts.d32); + + /* Read GINTSTS */ + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); +} +#endif /* DWC_HS_ELECT_TST */ + +/* Handles hub class-specific requests.*/ +int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, + u16 _typeReq, + u16 _wValue, u16 _wIndex, char *_buf, u16 _wLength) +{ + int retval = 0; + unsigned long flags; + + struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); + struct dwc_otg_core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if; + struct usb_hub_descriptor *desc; + union hprt0_data hprt0 = {.d32 = 0 }; + + uint32_t port_status; +#ifdef DWC_HS_ELECT_TST + uint32_t t; + union gintmsk_data gintmsk; +#endif + spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags); + + switch (_typeReq) { + case ClearHubFeature: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearHubFeature 0x%x\n", _wValue); + switch (_wValue) { + case C_HUB_LOCAL_POWER: + case C_HUB_OVER_CURRENT: + /* Nothing required here */ + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - " + "ClearHubFeature request %xh unknown\n", + _wValue); + } + break; + case ClearPortFeature: + if (!_wIndex || _wIndex > 1) + goto error; + + switch (_wValue) { + case USB_PORT_FEAT_ENABLE: + DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtena = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_SUSPEND: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtres = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + /* Clear Resume bit */ + mdelay(100); + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_POWER: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_POWER\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtpwr = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_INDICATOR: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); + /* Port inidicator not supported */ + break; + case USB_PORT_FEAT_C_CONNECTION: + /* Clears drivers internal connect status change + * flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); + dwc_otg_hcd->flags.b.port_connect_status_change = 0; + break; + case USB_PORT_FEAT_C_RESET: + /* Clears the driver's internal Port Reset Change + * flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); + dwc_otg_hcd->flags.b.port_reset_change = 0; + break; + case USB_PORT_FEAT_C_ENABLE: + /* Clears the driver's internal Port + * Enable/Disable Change flag */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); + dwc_otg_hcd->flags.b.port_enable_change = 0; + break; + case USB_PORT_FEAT_C_SUSPEND: + /* Clears the driver's internal Port Suspend + * Change flag, which is set when resume signaling on + * the host port is complete */ + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); + dwc_otg_hcd->flags.b.port_suspend_change = 0; + break; + case USB_PORT_FEAT_C_OVER_CURRENT: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); + dwc_otg_hcd->flags.b.port_over_current_change = 0; + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - " + "ClearPortFeature request %xh " + "unknown or unsupported\n", _wValue); + } + break; + case GetHubDescriptor: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetHubDescriptor\n"); + desc = (struct usb_hub_descriptor *)_buf; + desc->bDescLength = 9; + desc->bDescriptorType = 0x29; + desc->bNbrPorts = 1; + desc->wHubCharacteristics = 0x08; + desc->bPwrOn2PwrGood = 1; + desc->bHubContrCurrent = 0; + desc->bitmap[0] = 0; + desc->bitmap[1] = 0xff; + break; + case GetHubStatus: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetHubStatus\n"); + memset(_buf, 0, 4); + break; + case GetPortStatus: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "GetPortStatus\n"); + + if (!_wIndex || _wIndex > 1) + goto error; + + port_status = 0; + + if (dwc_otg_hcd->flags.b.port_connect_status_change) + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); + + if (dwc_otg_hcd->flags.b.port_enable_change) + port_status |= (1 << USB_PORT_FEAT_C_ENABLE); + + if (dwc_otg_hcd->flags.b.port_suspend_change) + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); + + if (dwc_otg_hcd->flags.b.port_reset_change) + port_status |= (1 << USB_PORT_FEAT_C_RESET); + + if (dwc_otg_hcd->flags.b.port_over_current_change) { + DWC_ERROR("Device Not Supported\n"); + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); + } + + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* + * The port is disconnected, which means the core is + * either in device mode or it soon will be. Just + * return 0's for the remainder of the port status + * since the port register can't be read if the core + * is in device mode. + */ + *((__le32 *) _buf) = cpu_to_le32(port_status); + break; + } + + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); + + if (hprt0.b.prtconnsts) + port_status |= (1 << USB_PORT_FEAT_CONNECTION); + + if (hprt0.b.prtena) + port_status |= (1 << USB_PORT_FEAT_ENABLE); + + if (hprt0.b.prtsusp) + port_status |= (1 << USB_PORT_FEAT_SUSPEND); + + if (hprt0.b.prtovrcurract) + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); + + if (hprt0.b.prtrst) + port_status |= (1 << USB_PORT_FEAT_RESET); + + if (hprt0.b.prtpwr) + port_status |= (1 << USB_PORT_FEAT_POWER); + + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) + port_status |= (1 << USB_PORT_FEAT_HIGHSPEED); + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) + port_status |= (1 << USB_PORT_FEAT_LOWSPEED); + + if (hprt0.b.prttstctl) + port_status |= (1 << USB_PORT_FEAT_TEST); + + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ + + *((__le32 *) _buf) = cpu_to_le32(port_status); + + break; + case SetHubFeature: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetHubFeature\n"); + /* No HUB features supported */ + break; + case SetPortFeature: + if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1)) + goto error; + + if (!dwc_otg_hcd->flags.b.port_connect_status) { + /* + * The port is disconnected, which means the core is + * either in device mode or it soon will be. Just + * return without doing anything since the port + * register can't be written if the core is in device + * mode. + */ + break; + } + + switch (_wValue) { + case USB_PORT_FEAT_SUSPEND: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); + if (hcd->self.otg_port == _wIndex && + hcd->self.b_hnp_enable) { + union gotgctl_data gotgctl = {.d32 = 0 }; + gotgctl.b.hstsethnpen = 1; + dwc_modify_reg32(&core_if->core_global_regs-> + gotgctl, 0, gotgctl.d32); + core_if->op_state = A_SUSPEND; + } + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + /* Suspend the Phy Clock */ + { + union pcgcctl_data pcgcctl = {.d32 = 0 }; + pcgcctl.b.stoppclk = 1; + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); + } + + /* + * For HNP the bus must be suspended for at + * least 200ms. + */ + if (hcd->self.b_hnp_enable) + mdelay(200); + break; + case USB_PORT_FEAT_POWER: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_POWER\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtpwr = 1; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + case USB_PORT_FEAT_RESET: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_RESET\n"); + hprt0.d32 = dwc_otg_read_hprt0(core_if); + /* When B-Host the Port reset bit is set in + * the Start HCD Callback function, so that + * the reset is started within 1ms of the HNP + * success interrupt. */ + if (!hcd->self.is_b_host) { + hprt0.b.prtrst = 1; + dwc_write_reg32(core_if->host_if->hprt0, + hprt0.d32); + } + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ + mdelay(60); + hprt0.b.prtrst = 0; + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); + break; + +#ifdef DWC_HS_ELECT_TST + case USB_PORT_FEAT_TEST: + t = (_wIndex >> 8); /* MSB wIndex USB */ + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); + warn("USB_PORT_FEAT_TEST %d\n", t); + if (t < 6) { + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prttstctl = t; + dwc_write_reg32(core_if->host_if->hprt0, + hprt0.d32); + } else { + /* Setup global vars with reg + * addresses (quick and dirty hack, + * should be cleaned up) + */ + global_regs = core_if->core_global_regs; + hc_global_regs = + core_if->host_if->host_global_regs; + hc_regs = + (struct dwc_otg_hc_regs *) ((char *) + global_regs + + 0x500); + data_fifo = + (uint32_t *) ((char *)global_regs + + 0x1000); + + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ + /* Save current interrupt mask */ + gintmsk.d32 = + dwc_read_reg32(&global_regs->gintmsk); + + /* Disable all interrupts + * while we muck with the + * hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, + 0); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Drive suspend on the root port */ + hprt0.d32 = + dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 1; + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0, + hprt0.d32); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Drive resume on the root port */ + hprt0.d32 = dwc_otg_read_hprt0(core_if); + hprt0.b.prtsusp = 0; + hprt0.b.prtres = 1; + dwc_write_reg32(core_if->host_if->hprt0, + hprt0.d32); + mdelay(100); + + /* Clear the resume bit */ + hprt0.b.prtres = 0; + dwc_write_reg32(core_if->host_if->hprt0, + hprt0.d32); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk, + gintmsk.d32); + } else if (t == 7) { + /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ + /* Save current interrupt mask */ + gintmsk.d32 = + dwc_read_reg32(&global_regs->gintmsk); + + /* + * Disable all interrupts + * while we muck with the + * hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, + 0); + + /* 15 second delay per the test spec */ + mdelay(15000); + + /* Send the Setup packet */ + do_setup(); + + /* + * 15 second delay so nothing + * else happens for awhile. + */ + mdelay(15000); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk, + gintmsk.d32); + } else if (t == 8) { + /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ + /* Save current interrupt mask */ + gintmsk.d32 = + dwc_read_reg32(&global_regs->gintmsk); + + /* + * Disable all interrupts + * while we muck with the + * hardware directly + */ + dwc_write_reg32(&global_regs->gintmsk, + 0); + + /* Send the Setup packet */ + do_setup(); + + /* 15 second delay so nothing else happens for awhile */ + mdelay(15000); + + /* Send the In and Ack packets */ + do_in_ack(); + + /* 15 second delay so nothing else happens for awhile */ + mdelay(15000); + + /* Restore interrupts */ + dwc_write_reg32(&global_regs->gintmsk, + gintmsk.d32); + } + } + break; +#endif /* DWC_HS_ELECT_TST */ + + case USB_PORT_FEAT_INDICATOR: + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); + /* Not supported */ + break; + default: + retval = -EINVAL; + DWC_ERROR("DWC OTG HCD - " + "SetPortFeature request %xh " + "unknown or unsupported\n", _wValue); + break; + } + break; + default: +error: + retval = -EINVAL; + DWC_WARN("DWC OTG HCD - Unknown hub control request type or " + "invalid typeReq: %xh wIndex: %xh wValue: %xh\n", + _typeReq, _wIndex, _wValue); + break; + } + + spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags); + + return retval; +} + +/** + * Assigns transactions from a QTD to a free host channel and initializes the + * host channel to perform the transactions. The host channel is removed from + * the free list. + * + * @hcd: The HCD state structure. + * @_qh: Transactions from the first QTD for this QH are selected and + * assigned to a free host channel. + */ +static void assign_and_init_hc(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *_qh) +{ + struct dwc_hc *hc; + struct dwc_otg_qtd *qtd; + struct urb *urb; + + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, _qh); + + hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry); + + /* Remove the host channel from the free list. */ + list_del_init(&hc->hc_list_entry); + + qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, + qtd_list_entry); + urb = qtd->urb; + _qh->channel = hc; + _qh->qtd_in_process = qtd; + + /* + * Use usb_pipedevice to determine device address. This address is + * 0 before the SET_ADDRESS command and the correct address afterward. + */ + hc->dev_addr = usb_pipedevice(urb->pipe); + hc->ep_num = usb_pipeendpoint(urb->pipe); + + if (urb->dev->speed == USB_SPEED_LOW) + hc->speed = DWC_OTG_EP_SPEED_LOW; + else if (urb->dev->speed == USB_SPEED_FULL) + hc->speed = DWC_OTG_EP_SPEED_FULL; + else + hc->speed = DWC_OTG_EP_SPEED_HIGH; + + hc->max_packet = dwc_max_packet(_qh->maxp); + + hc->xfer_started = 0; + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; + hc->error_state = (qtd->error_count > 0); + hc->halt_on_queue = 0; + hc->halt_pending = 0; + hc->requests = 0; + + /* + * The following values may be modified in the transfer type section + * below. The xfer_len value may be reduced when the transfer is + * started to accommodate the max widths of the XferSize and PktCnt + * fields in the HCTSIZn register. + */ + hc->do_ping = _qh->ping_state; + hc->ep_is_in = (usb_pipein(urb->pipe) != 0); + hc->data_pid_start = _qh->data_toggle; + hc->multi_count = 1; + + if (hcd->core_if->dma_enable) { +#ifdef CONFIG_CPU_CAVIUM_OCTEON + const uint64_t USBN_DMA0_INB_CHN0 = + CVMX_USBNX_DMA0_INB_CHN0(hcd->core_if->usb_num); +#endif /* CONFIG_CPU_CAVIUM_OCTEON */ + hc->xfer_buff = + (uint8_t *) (unsigned long)urb->transfer_dma + + urb->actual_length; +#ifdef CONFIG_CPU_CAVIUM_OCTEON + /* Octeon uses external DMA */ + wmb(); + cvmx_write_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8, + (unsigned long)hc->xfer_buff); + cvmx_read_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8); + DWC_DEBUGPL(DBG_HCDV, + "IN: hc->hc_num = %d, hc->xfer_buff = %p\n", + hc->hc_num, hc->xfer_buff); +#endif /* CONFIG_CPU_CAVIUM_OCTEON */ + } else { + hc->xfer_buff = + (uint8_t *) urb->transfer_buffer + urb->actual_length; + } + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; + hc->xfer_count = 0; + + /* + * Set the split attributes + */ + hc->do_split = 0; + if (_qh->do_split) { + hc->do_split = 1; + hc->xact_pos = qtd->isoc_split_pos; + hc->complete_split = qtd->complete_split; + hc->hub_addr = urb->dev->tt->hub->devnum; + hc->port_addr = urb->dev->ttport; + } + + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; + switch (qtd->control_phase) { + case DWC_OTG_CONTROL_SETUP: + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); + hc->do_ping = 0; + hc->ep_is_in = 0; + hc->data_pid_start = DWC_OTG_HC_PID_SETUP; + if (hcd->core_if->dma_enable) { + hc->xfer_buff = + (uint8_t *) (unsigned long)urb->setup_dma; + } else { + hc->xfer_buff = (uint8_t *) urb->setup_packet; + } + hc->xfer_len = 8; + break; + case DWC_OTG_CONTROL_DATA: + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); + hc->data_pid_start = qtd->data_toggle; + break; + case DWC_OTG_CONTROL_STATUS: + /* + * Direction is opposite of data direction or IN if no + * data. + */ + DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); + if (urb->transfer_buffer_length == 0) { + hc->ep_is_in = 1; + } else { + hc->ep_is_in = + (usb_pipein(urb->pipe) != USB_DIR_IN); + } + if (hc->ep_is_in) + hc->do_ping = 0; + hc->data_pid_start = DWC_OTG_HC_PID_DATA1; + hc->xfer_len = 0; + if (hcd->core_if->dma_enable) { + hc->xfer_buff = + (uint8_t *) (unsigned long)hcd-> + status_buf_dma; + } else { + hc->xfer_buff = (uint8_t *) hcd->status_buf; + } + break; + } + break; + case PIPE_BULK: + hc->ep_type = DWC_OTG_EP_TYPE_BULK; + break; + case PIPE_INTERRUPT: + hc->ep_type = DWC_OTG_EP_TYPE_INTR; + break; + case PIPE_ISOCHRONOUS: + { + struct usb_iso_packet_descriptor *frame_desc; + frame_desc = + &urb->iso_frame_desc[qtd->isoc_frame_index]; + hc->ep_type = DWC_OTG_EP_TYPE_ISOC; + if (hcd->core_if->dma_enable) { + hc->xfer_buff = + (uint8_t *) (unsigned long)urb-> + transfer_dma; + } else { + hc->xfer_buff = + (uint8_t *) urb->transfer_buffer; + } + hc->xfer_buff += + frame_desc->offset + qtd->isoc_split_offset; + hc->xfer_len = + frame_desc->length - qtd->isoc_split_offset; + + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { + if (hc->xfer_len <= 188) { + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; + } else { + hc->xact_pos = + DWC_HCSPLIT_XACTPOS_BEGIN; + } + } + } + break; + } + + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * This value may be modified when the transfer is started to + * reflect the actual transfer length. + */ + hc->multi_count = dwc_hb_mult(_qh->maxp); + } + + dwc_otg_hc_init(hcd->core_if, hc); + hc->qh = _qh; +} + +/** + * This function selects transactions from the HCD transfer schedule and + * assigns them to available host channels. It is called from HCD interrupt + * handler functions. + * + * @hcd: The HCD state structure. + * + * Returns The types of new transactions that were assigned to host channels. + */ +enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct dwc_otg_hcd + *hcd) +{ + struct list_head *qh_ptr; + struct dwc_otg_qh *qh; + int num_channels; + enum dwc_otg_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE; + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); +#endif + + /* Process entries in the periodic ready list. */ + qh_ptr = hcd->periodic_sched_ready.next; + while (qh_ptr != &hcd->periodic_sched_ready && + !list_empty(&hcd->free_hc_list)) { + + qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); + assign_and_init_hc(hcd, qh); + + /* + * Move the QH from the periodic ready schedule to the + * periodic assigned schedule. + */ + qh_ptr = qh_ptr->next; + list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned); + + ret_val = DWC_OTG_TRANSACTION_PERIODIC; + } + + /* + * Process entries in the inactive portion of the non-periodic + * schedule. Some free host channels may not be used if they are + * reserved for periodic transfers. + */ + qh_ptr = hcd->non_periodic_sched_inactive.next; + num_channels = hcd->core_if->core_params->host_channels; + while (qh_ptr != &hcd->non_periodic_sched_inactive && + (hcd->non_periodic_channels < + num_channels - hcd->periodic_channels) && + !list_empty(&hcd->free_hc_list)) { + + qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); + assign_and_init_hc(hcd, qh); + + /* + * Move the QH from the non-periodic inactive schedule to the + * non-periodic active schedule. + */ + qh_ptr = qh_ptr->next; + list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active); + + if (ret_val == DWC_OTG_TRANSACTION_NONE) + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; + else + ret_val = DWC_OTG_TRANSACTION_ALL; + + hcd->non_periodic_channels++; + } + + return ret_val; +} + +/** + * Attempts to queue a single transaction request for a host channel + * associated with either a periodic or non-periodic transfer. This function + * assumes that there is space available in the appropriate request queue. For + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space + * is available in the appropriate Tx FIFO. + * + * @hcd: The HCD state structure. + * @_hc: Host channel descriptor associated with either a periodic or + * non-periodic transfer. + * @_fifo_dwords_avail: Number of DWORDs available in the periodic Tx + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic + * transfers. + * + * Returns 1 if a request is queued and more requests may be needed to + * complete the transfer, 0 if no more requests are required for this + * transfer, -1 if there is insufficient space in the Tx FIFO. + */ +static int queue_transaction(struct dwc_otg_hcd *hcd, + struct dwc_hc *_hc, uint16_t _fifo_dwords_avail) +{ + int retval; + + if (hcd->core_if->dma_enable) { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(hcd->core_if, _hc); + _hc->qh->ping_state = 0; + } + retval = 0; + } else if (_hc->halt_pending) { + /* Don't queue a request if the channel has been halted. */ + retval = 0; + } else if (_hc->halt_on_queue) { + dwc_otg_hc_halt(hcd->core_if, _hc, _hc->halt_status); + retval = 0; + } else if (_hc->do_ping) { + if (!_hc->xfer_started) + dwc_otg_hc_start_transfer(hcd->core_if, _hc); + retval = 0; + } else if (!_hc->ep_is_in || + _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { + if ((_fifo_dwords_avail * 4) >= _hc->max_packet) { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(hcd->core_if, _hc); + retval = 1; + } else { + retval = + dwc_otg_hc_continue_transfer(hcd->core_if, + _hc); + } + } else { + retval = -1; + } + } else { + if (!_hc->xfer_started) { + dwc_otg_hc_start_transfer(hcd->core_if, _hc); + retval = 1; + } else { + retval = + dwc_otg_hc_continue_transfer(hcd->core_if, _hc); + } + } + + return retval; +} + +/** + * Processes active non-periodic channels and queues transactions for these + * channels to the DWC_otg controller. After queueing transactions, the NP Tx + * FIFO Empty interrupt is enabled if there are more transactions to queue as + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx + * FIFO Empty interrupt is disabled. + */ +static void process_non_periodic_channels(struct dwc_otg_hcd *hcd) +{ + union gnptxsts_data tx_status; + struct list_head *orig_qh_ptr; + struct dwc_otg_qh *qh; + int status; + int no_queue_space = 0; + int no_fifo_space = 0; + int more_to_do = 0; + + struct dwc_otg_core_global_regs *global_regs = + hcd->core_if->core_global_regs; + + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_HCDV, + " NP Tx Req Queue Space Avail (before queue): %d\n", + tx_status.b.nptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", + tx_status.b.nptxfspcavail); +#endif + /* + * Keep track of the starting point. Skip over the start-of-list + * entry. + */ + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; + + orig_qh_ptr = hcd->non_periodic_qh_ptr; + + /* + * Process once through the active list or until no more space is + * available in the request queue or the Tx FIFO. + */ + do { + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + if (!hcd->core_if->dma_enable + && tx_status.b.nptxqspcavail == 0) { + no_queue_space = 1; + break; + } + + qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_otg_qh, + qh_list_entry); + status = + queue_transaction(hcd, qh->channel, + tx_status.b.nptxfspcavail); + + if (status > 0) { + more_to_do = 1; + } else if (status < 0) { + no_fifo_space = 1; + break; + } + + /* Advance to next QH, skipping start-of-list entry. */ + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; + if (hcd->non_periodic_qh_ptr == + &hcd->non_periodic_sched_active) { + hcd->non_periodic_qh_ptr = + hcd->non_periodic_qh_ptr->next; + } + + } while (hcd->non_periodic_qh_ptr != orig_qh_ptr); + + if (!hcd->core_if->dma_enable) { + union gintmsk_data intr_mask = {.d32 = 0 }; + intr_mask.b.nptxfempty = 1; + +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); + DWC_DEBUGPL(DBG_HCDV, + " NP Tx Req Queue Space Avail (after queue): %d\n", + tx_status.b.nptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, + " NP Tx FIFO Space Avail (after queue): %d\n", + tx_status.b.nptxfspcavail); +#endif + if (no_queue_space || no_fifo_space) { + /* + * May need to queue more transactions as the request + * queue or Tx FIFO empties. Enable the non-periodic + * Tx FIFO empty interrupt. (Always use the half-empty + * level to ensure that new requests are loaded as + * soon as possible.) + */ + dwc_modify_reg32(&global_regs->gintmsk, 0, + intr_mask.d32); + } else { + /* + * Disable the Tx FIFO empty interrupt since there are + * no more transactions that need to be queued right + * now. This function is called from interrupt + * handlers to queue more transactions as transfer + * states change. + */ + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, + 0); + if (more_to_do) { + /* When not using DMA, many USB + * devices cause excessive loads on + * the serial bus simply because they + * continuously poll the device for + * status. Here we use the timer to + * rate limit how fast we can get the + * the NP TX fifo empty interrupt. We + * leave the interrupt disable until + * the timer fires and reenables it */ + + /* We'll rate limit the interrupt at + * 20000 per second. Making this + * faster improves USB performance but + * uses more CPU */ + hrtimer_start_range_ns(&hcd->poll_rate_limit, + ktime_set(0, 50000), + 5000, HRTIMER_MODE_REL); + } + } + } +} + +/** + * Processes periodic channels for the next frame and queues transactions for + * these channels to the DWC_otg controller. After queueing transactions, the + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions + * to queue as Periodic Tx FIFO or request queue space becomes available. + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. + */ +static void process_periodic_channels(struct dwc_otg_hcd *hcd) +{ + union hptxsts_data tx_status; + struct list_head *qh_ptr; + struct dwc_otg_qh *qh; + int status; + int no_queue_space = 0; + int no_fifo_space = 0; + + struct dwc_otg_host_global_regs *host_regs; + host_regs = hcd->core_if->host_if->host_global_regs; + + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + DWC_DEBUGPL(DBG_HCDV, + " P Tx Req Queue Space Avail (before queue): %d\n", + tx_status.b.ptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", + tx_status.b.ptxfspcavail); +#endif + + qh_ptr = hcd->periodic_sched_assigned.next; + while (qh_ptr != &hcd->periodic_sched_assigned) { + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + if (tx_status.b.ptxqspcavail == 0) { + no_queue_space = 1; + break; + } + + qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry); + + /* + * Set a flag if we're queuing high-bandwidth in slave mode. + * The flag prevents any halts to get into the request queue in + * the middle of multiple high-bandwidth packets getting queued. + */ + if ((!hcd->core_if->dma_enable) && + (qh->channel->multi_count > 1)) { + hcd->core_if->queuing_high_bandwidth = 1; + } + + status = + queue_transaction(hcd, qh->channel, + tx_status.b.ptxfspcavail); + if (status < 0) { + no_fifo_space = 1; + break; + } + + /* + * In Slave mode, stay on the current transfer until there is + * nothing more to do or the high-bandwidth request count is + * reached. In DMA mode, only need to queue one request. The + * controller automatically handles multiple packets for + * high-bandwidth transfers. + */ + if (hcd->core_if->dma_enable || + (status == 0 || + qh->channel->requests == qh->channel->multi_count)) { + qh_ptr = qh_ptr->next; + /* + * Move the QH from the periodic assigned schedule to + * the periodic queued schedule. + */ + list_move(&qh->qh_list_entry, + &hcd->periodic_sched_queued); + + /* done queuing high bandwidth */ + hcd->core_if->queuing_high_bandwidth = 0; + } + } + + if (!hcd->core_if->dma_enable) { + struct dwc_otg_core_global_regs *global_regs; + union gintmsk_data intr_mask = {.d32 = 0 }; + + global_regs = hcd->core_if->core_global_regs; + intr_mask.b.ptxfempty = 1; +#ifdef DEBUG + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); + DWC_DEBUGPL(DBG_HCDV, + " P Tx Req Queue Space Avail (after queue): %d\n", + tx_status.b.ptxqspcavail); + DWC_DEBUGPL(DBG_HCDV, + " P Tx FIFO Space Avail (after queue): %d\n", + tx_status.b.ptxfspcavail); +#endif + if (!(list_empty(&hcd->periodic_sched_assigned)) || + no_queue_space || no_fifo_space) { + /* + * May need to queue more transactions as the request + * queue or Tx FIFO empties. Enable the periodic Tx + * FIFO empty interrupt. (Always use the half-empty + * level to ensure that new requests are loaded as + * soon as possible.) + */ + dwc_modify_reg32(&global_regs->gintmsk, 0, + intr_mask.d32); + } else { + /* + * Disable the Tx FIFO empty interrupt since there are + * no more transactions that need to be queued right + * now. This function is called from interrupt + * handlers to queue more transactions as transfer + * states change. + */ + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, + 0); + } + } +} + +/** + * This function processes the currently active host channels and queues + * transactions for these channels to the DWC_otg controller. It is called + * from HCD interrupt handler functions. + * + * @hcd: The HCD state structure. + * @_tr_type: The type(s) of transactions to queue (non-periodic, + * periodic, or both). + */ +void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd, + enum dwc_otg_transaction_type _tr_type) +{ +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); +#endif + /* Process host channels associated with periodic transfers. */ + if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC || + _tr_type == DWC_OTG_TRANSACTION_ALL) && + !list_empty(&hcd->periodic_sched_assigned)) { + + process_periodic_channels(hcd); + } + + /* Process host channels associated with non-periodic transfers. */ + if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || + _tr_type == DWC_OTG_TRANSACTION_ALL)) { + if (!list_empty(&hcd->non_periodic_sched_active)) { + process_non_periodic_channels(hcd); + } else { + /* + * Ensure NP Tx FIFO empty interrupt is disabled when + * there are no non-periodic transfers to process. + */ + union gintmsk_data gintmsk = {.d32 = 0 }; + gintmsk.b.nptxfempty = 1; + dwc_modify_reg32(&hcd->core_if->core_global_regs-> + gintmsk, gintmsk.d32, 0); + } + } +} + +/** + * Sets the final status of an URB and returns it to the device driver. Any + * required cleanup of the URB is performed. + */ +void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb, + int status) +{ +#ifdef DEBUG + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", + __func__, urb, usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe), + usb_pipein(urb->pipe) ? "IN" : "OUT", status); + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { + int i; + for (i = 0; i < urb->number_of_packets; i++) { + DWC_PRINT(" ISO Desc %d status: %d\n", + i, urb->iso_frame_desc[i].status); + } + } + } +#endif + + urb->status = status; + urb->hcpriv = NULL; + + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status); +} + +/* + * Returns the Queue Head for an URB. + */ +struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb) +{ + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); + return ep->hcpriv; +} + +#ifdef DEBUG +void dwc_print_setup_data(uint8_t *setup) +{ + int i; + if (CHK_DEBUG_LEVEL(DBG_HCD)) { + DWC_PRINT("Setup Data = MSB "); + for (i = 7; i >= 0; i--) + DWC_PRINT("%02x ", setup[i]); + DWC_PRINT("\n"); + DWC_PRINT(" bmRequestType Tranfer = %s\n", + (setup[0] & 0x80) ? "Device-to-Host" : + "Host-to-Device"); + DWC_PRINT(" bmRequestType Type = "); + switch ((setup[0] & 0x60) >> 5) { + case 0: + DWC_PRINT("Standard\n"); + break; + case 1: + DWC_PRINT("Class\n"); + break; + case 2: + DWC_PRINT("Vendor\n"); + break; + case 3: + DWC_PRINT("Reserved\n"); + break; + } + DWC_PRINT(" bmRequestType Recipient = "); + switch (setup[0] & 0x1f) { + case 0: + DWC_PRINT("Device\n"); + break; + case 1: + DWC_PRINT("Interface\n"); + break; + case 2: + DWC_PRINT("Endpoint\n"); + break; + case 3: + DWC_PRINT("Other\n"); + break; + default: + DWC_PRINT("Reserved\n"); + break; + } + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *) &setup[2])); + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *) &setup[4])); + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *) &setup[6])); + } +} +#endif + +void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd) +{ +#ifdef DEBUG + DWC_PRINT("Frame remaining at SOF:\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->frrem_samples, hcd->frrem_accum, + (hcd->frrem_samples > 0) ? + hcd->frrem_accum / hcd->frrem_samples : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->core_if->hfnum_7_samples, + hcd->core_if->hfnum_7_frrem_accum, + (hcd->core_if->hfnum_7_samples > + 0) ? hcd->core_if->hfnum_7_frrem_accum / + hcd->core_if->hfnum_7_samples : 0); + DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->core_if->hfnum_0_samples, + hcd->core_if->hfnum_0_frrem_accum, + (hcd->core_if->hfnum_0_samples > + 0) ? hcd->core_if->hfnum_0_frrem_accum / + hcd->core_if->hfnum_0_samples : 0); + DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->core_if->hfnum_other_samples, + hcd->core_if->hfnum_other_frrem_accum, + (hcd->core_if->hfnum_other_samples > + 0) ? hcd->core_if->hfnum_other_frrem_accum / + hcd->core_if->hfnum_other_samples : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a, + (hcd->hfnum_7_samples_a > 0) ? + hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0); + DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a, + (hcd->hfnum_0_samples_a > 0) ? + hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0); + DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a, + (hcd->hfnum_other_samples_a > 0) ? + hcd->hfnum_other_frrem_accum_a / + hcd->hfnum_other_samples_a : 0); + + DWC_PRINT("\n"); + DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b, + (hcd->hfnum_7_samples_b > 0) ? + hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0); + DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b, + (hcd->hfnum_0_samples_b > 0) ? + hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0); + DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); + DWC_PRINT(" samples %u, accum %lu, avg %lu\n", + hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b, + (hcd->hfnum_other_samples_b > 0) ? + hcd->hfnum_other_frrem_accum_b / + hcd->hfnum_other_samples_b : 0); +#endif +} + +void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd) +{ +#ifdef DEBUG + int num_channels; + int i; + union gnptxsts_data np_tx_status; + union hptxsts_data p_tx_status; + + num_channels = hcd->core_if->core_params->host_channels; + DWC_PRINT("\n"); + DWC_PRINT + ("************************************************************\n"); + DWC_PRINT("HCD State:\n"); + DWC_PRINT(" Num channels: %d\n", num_channels); + for (i = 0; i < num_channels; i++) { + struct dwc_hc *hc = hcd->hc_ptr_array[i]; + DWC_PRINT(" Channel %d:\n", i); + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", + hc->dev_addr, hc->ep_num, hc->ep_is_in); + DWC_PRINT(" speed: %d\n", hc->speed); + DWC_PRINT(" ep_type: %d\n", hc->ep_type); + DWC_PRINT(" max_packet: %d\n", hc->max_packet); + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); + DWC_PRINT(" multi_count: %d\n", hc->multi_count); + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); + DWC_PRINT(" halt_status: %d\n", hc->halt_status); + DWC_PRINT(" do_split: %d\n", hc->do_split); + DWC_PRINT(" complete_split: %d\n", hc->complete_split); + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); + DWC_PRINT(" port_addr: %d\n", hc->port_addr); + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); + DWC_PRINT(" requests: %d\n", hc->requests); + DWC_PRINT(" qh: %p\n", hc->qh); + if (hc->xfer_started) { + union hfnum_data hfnum; + union hcchar_data hcchar; + union hctsiz_data hctsiz; + union hcint_data hcint; + union hcintmsk_data hcintmsk; + hfnum.d32 = + dwc_read_reg32(&hcd->core_if->host_if-> + host_global_regs->hfnum); + hcchar.d32 = + dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> + hcchar); + hctsiz.d32 = + dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> + hctsiz); + hcint.d32 = + dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> + hcint); + hcintmsk.d32 = + dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]-> + hcintmsk); + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); + } + if (hc->xfer_started && (hc->qh != NULL) + && (hc->qh->qtd_in_process != NULL)) { + struct dwc_otg_qtd *qtd; + struct urb *urb; + qtd = hc->qh->qtd_in_process; + urb = qtd->urb; + DWC_PRINT(" URB Info:\n"); + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); + if (urb != NULL) { + DWC_PRINT(" Dev: %d, EP: %d %s\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe), + usb_pipein(urb->pipe) ? "IN" : "OUT"); + DWC_PRINT(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, + usb_pipeout(urb-> + pipe))); + DWC_PRINT(" transfer_buffer: %p\n", + urb->transfer_buffer); + DWC_PRINT(" transfer_dma: %p\n", + (void *)urb->transfer_dma); + DWC_PRINT(" transfer_buffer_length: %d\n", + urb->transfer_buffer_length); + DWC_PRINT(" actual_length: %d\n", + urb->actual_length); + } + } + } + DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels); + DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels); + DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs); + np_tx_status.d32 = + dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts); + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", + np_tx_status.b.nptxqspcavail); + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", + np_tx_status.b.nptxfspcavail); + p_tx_status.d32 = + dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts); + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", + p_tx_status.b.ptxqspcavail); + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); + dwc_otg_hcd_dump_frrem(hcd); + dwc_otg_dump_global_registers(hcd->core_if); + dwc_otg_dump_host_registers(hcd->core_if); + DWC_PRINT + ("************************************************************\n"); + DWC_PRINT("\n"); +#endif +} +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.h b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h new file mode 100644 index 0000000..6dcf1f5 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h @@ -0,0 +1,661 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef DWC_DEVICE_ONLY +#if !defined(__DWC_HCD_H__) +#define __DWC_HCD_H__ + +#include <linux/list.h> +#include <linux/usb.h> +#include <linux/hrtimer.h> + +#include <../drivers/usb/core/hcd.h> + +struct dwc_otg_device; + +#include "dwc_otg_cil.h" + +/** + * + * This file contains the structures, constants, and interfaces for + * the Host Contoller Driver (HCD). + * + * The Host Controller Driver (HCD) is responsible for translating requests + * from the USB Driver into the appropriate actions on the DWC_otg controller. + * It isolates the USBD from the specifics of the controller by providing an + * API to the USBD. + */ + +/** + * Phases for control transfers. + */ +enum dwc_otg_control_phase { + DWC_OTG_CONTROL_SETUP, + DWC_OTG_CONTROL_DATA, + DWC_OTG_CONTROL_STATUS +}; + +/** Transaction types. */ +enum dwc_otg_transaction_type { + DWC_OTG_TRANSACTION_NONE, + DWC_OTG_TRANSACTION_PERIODIC, + DWC_OTG_TRANSACTION_NON_PERIODIC, + DWC_OTG_TRANSACTION_ALL +}; + +struct dwc_otg_qh; + +/* + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, + * interrupt, or isochronous transfer. A single QTD is created for each URB + * (of one of these types) submitted to the HCD. The transfer associated with + * a QTD may require one or multiple transactions. + * + * A QTD is linked to a Queue Head, which is entered in either the + * non-periodic or periodic schedule for execution. When a QTD is chosen for + * execution, some or all of its transactions may be executed. After + * execution, the state of the QTD is updated. The QTD may be retired if all + * its transactions are complete or if an error occurred. Otherwise, it + * remains in the schedule so more transactions can be executed later. + */ +struct dwc_otg_qtd { + /* + * Determines the PID of the next data packet for the data phase of + * control transfers. Ignored for other transfer types.<br> + * One of the following values: + * - DWC_OTG_HC_PID_DATA0 + * - DWC_OTG_HC_PID_DATA1 + */ + uint8_t data_toggle; + + /** Current phase for control transfers (Setup, Data, or Status). */ + enum dwc_otg_control_phase control_phase; + + /** Keep track of the current split type + * for FS/LS endpoints on a HS Hub */ + uint8_t complete_split; + + /** How many bytes transferred during SSPLIT OUT */ + uint32_t ssplit_out_xfer_count; + + /** + * Holds the number of bus errors that have occurred for a transaction + * within this transfer. + */ + uint8_t error_count; + + /** + * Index of the next frame descriptor for an isochronous transfer. A + * frame descriptor describes the buffer position and length of the + * data to be transferred in the next scheduled (micro)frame of an + * isochronous transfer. It also holds status for that transaction. + * The frame index starts at 0. + */ + int isoc_frame_index; + + /** Position of the ISOC split on full/low speed */ + uint8_t isoc_split_pos; + + /** Position of the ISOC split in the buffer for the current frame */ + uint16_t isoc_split_offset; + + /** URB for this transfer */ + struct urb *urb; + + /* The queue head for this transfer. */ + struct dwc_otg_qh *qh; + + /** This list of QTDs */ + struct list_head qtd_list_entry; + +}; + +/** + * A Queue Head (QH) holds the static characteristics of an endpoint and + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may + * be entered in either the non-periodic or periodic schedule. + */ +struct dwc_otg_qh { + /** + * Endpoint type. + * One of the following values: + * - USB_ENDPOINT_XFER_CONTROL + * - USB_ENDPOINT_XFER_ISOC + * - USB_ENDPOINT_XFER_BULK + * - USB_ENDPOINT_XFER_INT + */ + uint8_t ep_type; + uint8_t ep_is_in; + + /** wMaxPacketSize Field of Endpoint Descriptor. */ + uint16_t maxp; + + /** + * Determines the PID of the next data packet for non-control + * transfers. Ignored for control transfers.<br> + * One of the following values: + * - DWC_OTG_HC_PID_DATA0 + * - DWC_OTG_HC_PID_DATA1 + */ + uint8_t data_toggle; + + /** Ping state if 1. */ + uint8_t ping_state; + + /** + * List of QTDs for this QH. + */ + struct list_head qtd_list; + + /** Host channel currently processing transfers for this QH. */ + struct dwc_hc *channel; + + /** QTD currently assigned to a host channel for this QH. */ + struct dwc_otg_qtd *qtd_in_process; + + /** Full/low speed endpoint on high-speed hub requires split. */ + uint8_t do_split; + + /** @name Periodic schedule information */ + /** @{ */ + + /** Bandwidth in microseconds per (micro)frame. */ + uint8_t usecs; + + /** Interval between transfers in (micro)frames. */ + uint16_t interval; + + /** + * (micro)frame to initialize a periodic transfer. The transfer + * executes in the following (micro)frame. + */ + uint16_t sched_frame; + + /** (micro)frame at which last start split was initialized. */ + uint16_t start_split_frame; + + /** @} */ + + /** Entry for QH in either the periodic or non-periodic schedule. */ + struct list_head qh_list_entry; +}; + +/** + * This structure holds the state of the HCD, including the non-periodic and + * periodic schedules. + */ +struct dwc_otg_hcd { + + /** DWC OTG Core Interface Layer */ + struct dwc_otg_core_if *core_if; + + /** Internal DWC HCD Flags */ + union dwc_otg_hcd_internal_flags { + uint32_t d32; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:26; + unsigned port_over_current_change:1; + unsigned port_suspend_change:1; + unsigned port_enable_change:1; + unsigned port_reset_change:1; + unsigned port_connect_status:1; + unsigned port_connect_status_change:1; +#else + unsigned port_connect_status_change:1; + unsigned port_connect_status:1; + unsigned port_reset_change:1; + unsigned port_enable_change:1; + unsigned port_suspend_change:1; + unsigned port_over_current_change:1; + unsigned reserved:26; +#endif + } b; + } flags; + + /** + * Inactive items in the non-periodic schedule. This is a list of + * Queue Heads. Transfers associated with these Queue Heads are not + * currently assigned to a host channel. + */ + struct list_head non_periodic_sched_inactive; + + /** + * Active items in the non-periodic schedule. This is a list of + * Queue Heads. Transfers associated with these Queue Heads are + * currently assigned to a host channel. + */ + struct list_head non_periodic_sched_active; + + /** + * Pointer to the next Queue Head to process in the active + * non-periodic schedule. + */ + struct list_head *non_periodic_qh_ptr; + + /** + * Inactive items in the periodic schedule. This is a list of QHs for + * periodic transfers that are _not_ scheduled for the next frame. + * Each QH in the list has an interval counter that determines when it + * needs to be scheduled for execution. This scheduling mechanism + * allows only a simple calculation for periodic bandwidth used (i.e. + * must assume that all periodic transfers may need to execute in the + * same frame). However, it greatly simplifies scheduling and should + * be sufficient for the vast majority of OTG hosts, which need to + * connect to a small number of peripherals at one time. + * + * Items move from this list to periodic_sched_ready when the QH + * interval counter is 0 at SOF. + */ + struct list_head periodic_sched_inactive; + + /** + * List of periodic QHs that are ready for execution in the next + * frame, but have not yet been assigned to host channels. + * + * Items move from this list to periodic_sched_assigned as host + * channels become available during the current frame. + */ + struct list_head periodic_sched_ready; + + /** + * List of periodic QHs to be executed in the next frame that are + * assigned to host channels. + * + * Items move from this list to periodic_sched_queued as the + * transactions for the QH are queued to the DWC_otg controller. + */ + struct list_head periodic_sched_assigned; + + /** + * List of periodic QHs that have been queued for execution. + * + * Items move from this list to either periodic_sched_inactive or + * periodic_sched_ready when the channel associated with the transfer + * is released. If the interval for the QH is 1, the item moves to + * periodic_sched_ready because it must be rescheduled for the next + * frame. Otherwise, the item moves to periodic_sched_inactive. + */ + struct list_head periodic_sched_queued; + + /** + * Total bandwidth claimed so far for periodic transfers. This value + * is in microseconds per (micro)frame. The assumption is that all + * periodic transfers may occur in the same (micro)frame. + */ + uint16_t periodic_usecs; + + /** + * Frame number read from the core at SOF. The value ranges from 0 to + * DWC_HFNUM_MAX_FRNUM. + */ + uint16_t frame_number; + + /** + * Free host channels in the controller. This is a list of + * struct dwc_hc items. + */ + struct list_head free_hc_list; + + /** + * Number of host channels assigned to periodic transfers. Currently + * assuming that there is a dedicated host channel for each periodic + * transaction and at least one host channel available for + * non-periodic transactions. + */ + int periodic_channels; + + /** + * Number of host channels assigned to non-periodic transfers. + */ + int non_periodic_channels; + + /** + * Array of pointers to the host channel descriptors. Allows accessing + * a host channel descriptor given the host channel number. This is + * useful in interrupt handlers. + */ + struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS]; + + /** + * Buffer to use for any data received during the status phase of a + * control transfer. Normally no data is transferred during the status + * phase. This buffer is used as a bit bucket. + */ + uint8_t *status_buf; + + /** + * DMA address for status_buf. + */ + dma_addr_t status_buf_dma; +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 + + /** + * Structure to allow starting the HCD in a non-interrupt context + * during an OTG role change. + */ + struct work_struct start_work; + + /** + * Connection timer. An OTG host must display a message if the device + * does not connect. Started when the VBus power is turned on via + * sysfs attribute "buspower". + */ + struct timer_list conn_timer; + + /* Tasket to do a reset */ + struct tasklet_struct *reset_tasklet; + + struct hrtimer poll_rate_limit; + + spinlock_t global_lock; + +#ifdef DEBUG + uint32_t frrem_samples; + uint64_t frrem_accum; + + uint32_t hfnum_7_samples_a; + uint64_t hfnum_7_frrem_accum_a; + uint32_t hfnum_0_samples_a; + uint64_t hfnum_0_frrem_accum_a; + uint32_t hfnum_other_samples_a; + uint64_t hfnum_other_frrem_accum_a; + + uint32_t hfnum_7_samples_b; + uint64_t hfnum_7_frrem_accum_b; + uint32_t hfnum_0_samples_b; + uint64_t hfnum_0_frrem_accum_b; + uint32_t hfnum_other_samples_b; + uint64_t hfnum_other_frrem_accum_b; +#endif + +}; + +/** Gets the dwc_otg_hcd from a struct usb_hcd */ +static inline struct dwc_otg_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) +{ + return (struct dwc_otg_hcd *)(hcd->hcd_priv); +} + +/** Gets the struct usb_hcd that contains a struct dwc_otg_hcd. */ +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_otg_hcd + *dwc_otg_hcd) +{ + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); +} + +/** @name HCD Create/Destroy Functions */ +/** @{ */ +extern int __init dwc_otg_hcd_init(struct device *_dev); +extern void dwc_otg_hcd_remove(struct device *_dev); +/** @} */ + +/** @name Linux HC Driver API Functions */ + +extern int dwc_otg_hcd_start(struct usb_hcd *hcd); +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); +extern void dwc_otg_hcd_free(struct usb_hcd *hcd); +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, + struct urb *urb, unsigned mem_flags); +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, + struct urb *urb, int status); +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, + struct usb_host_endpoint *ep); +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf); +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, + u16 typeReq, + u16 wValue, + u16 wIndex, char *buf, u16 wLength); + + +/** @name Transaction Execution Functions */ +extern enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct + dwc_otg_hcd + *hcd); +extern void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd, + enum dwc_otg_transaction_type tr_type); +extern void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb, + int status); + +/** @name Interrupt Handler Functions */ +extern int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_disconnect_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd, + uint32_t num); +extern int32_t dwc_otg_hcd_handle_session_req_intr(struct dwc_otg_hcd + *dwc_otg_hcd); +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(struct dwc_otg_hcd + *dwc_otg_hcd); + +/** @name Schedule Queue Functions */ + +/* Implemented in dwc_otg_hcd_queue.c */ +extern struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd, + struct urb *urb); +extern void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, + struct urb *urb); +extern void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh); +extern int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh); +extern void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh); +extern void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, + struct dwc_otg_qh *qh, int sched_csplit); + +/** Remove and free a QH */ +static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_otg_hcd *hcd, + struct dwc_otg_qh *qh) +{ + dwc_otg_hcd_qh_remove(hcd, qh); + dwc_otg_hcd_qh_free(qh); +} + +/** Allocates memory for a QH structure. + * Returns Returns the memory allocate or NULL on error. */ +static inline struct dwc_otg_qh *dwc_otg_hcd_qh_alloc(void) +{ + return kmalloc(sizeof(struct dwc_otg_qh), GFP_ATOMIC); +} + +extern struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb); +extern void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb); +extern int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd, + struct dwc_otg_hcd *dwc_otg_hcd); + +/** Allocates memory for a QTD structure. + * Returns Returns the memory allocate or NULL on error. */ +static inline struct dwc_otg_qtd *dwc_otg_hcd_qtd_alloc(void) +{ + return kmalloc(sizeof(struct dwc_otg_qtd), GFP_ATOMIC); +} + +/** + * Frees the memory for a QTD structure. QTD should already be removed from + * list. + * @qtd: QTD to free. + */ +static inline void dwc_otg_hcd_qtd_free(struct dwc_otg_qtd *qtd) +{ + kfree(qtd); +} + +/** + * Removes a QTD from list. + * @qtd: QTD to remove from list. + */ +static inline void dwc_otg_hcd_qtd_remove(struct dwc_otg_qtd *qtd) +{ + list_del(&qtd->qtd_list_entry); +} + +/** Remove and free a QTD */ +static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_otg_qtd *qtd) +{ + dwc_otg_hcd_qtd_remove(qtd); + dwc_otg_hcd_qtd_free(qtd); +} + +/** @name Internal Functions */ +struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb); +void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd); +void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd); + +/** Gets the usb_host_endpoint associated with an URB. */ +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb) +{ + struct usb_device *dev = urb->dev; + int ep_num = usb_pipeendpoint(urb->pipe); + + if (usb_pipein(urb->pipe)) + return dev->ep_in[ep_num]; + else + return dev->ep_out[ep_num]; +} + +/* + * Gets the endpoint number from a bEndpointAddress argument. The endpoint is + * qualified with its direction (possible 32 endpoints per device). + */ +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ + ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) + +/** Gets the QH that contains the list_head */ +#define dwc_list_to_qh(_list_head_ptr_) \ + (container_of(_list_head_ptr_, struct dwc_otg_qh, qh_list_entry)) + +/** Gets the QTD that contains the list_head */ +#define dwc_list_to_qtd(_list_head_ptr_) \ + (container_of(_list_head_ptr_, struct dwc_otg_qtd, qtd_list_entry)) + +/** Check if QH is non-periodic */ +#define dwc_qh_is_non_per(_qh_ptr_) \ + ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) + +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) + +/** Packet size for any kind of endpoint descriptor */ +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) + +/** + * Returns true if frame1 is less than or equal to frame2. The comparison is + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the + * frame number when the max frame number is reached. + */ +static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2) +{ + return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <= + (DWC_HFNUM_MAX_FRNUM >> 1); +} + +/** + * Returns true if frame1 is greater than frame2. The comparison is done + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame + * number when the max frame number is reached. + */ +static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2) +{ + return (frame1 != frame2) && + (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) < + (DWC_HFNUM_MAX_FRNUM >> 1)); +} + +/** + * Increments frame by the amount specified by inc. The addition is done + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. + */ +static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc) +{ + return (frame + inc) & DWC_HFNUM_MAX_FRNUM; +} + +static inline uint16_t dwc_full_frame_num(uint16_t frame) +{ + return (frame & DWC_HFNUM_MAX_FRNUM) >> 3; +} + +static inline uint16_t dwc_micro_frame_num(uint16_t frame) +{ + return frame & 0x7; +} + +#ifdef DEBUG +/** + * Macro to sample the remaining PHY clocks left in the current frame. This + * may be used during debugging to determine the average time it takes to + * execute sections of code. There are two possible sample points, "a" and + * "b", so the letter argument must be one of these values. + * + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For + * example, "cat /sys/devices/lm0/hcd_frrem". + */ +#define dwc_sample_frrem(_hcd, _qh, _letter) \ +{ \ + union hfnum_data hfnum; \ + struct dwc_otg_qtd *qtd; \ + qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); \ + if (usb_pipeint(qtd->urb->pipe) && qh->start_split_frame != 0 && !qtd->complete_split) { \ + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ + switch (hfnum.b.frnum & 0x7) { \ + case 7: \ + _hcd->hfnum_7_samples_##_letter++; \ + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ + break; \ + case 0: \ + _hcd->hfnum_0_samples_##_letter++; \ + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ + break; \ + default: \ + _hcd->hfnum_other_samples_##_letter++; \ + _hcd->hfnum_other_frrem_accum_##_letter += \ + hfnum.b.frrem; \ + break; \ + } \ + } \ +} +#else +#define dwc_sample_frrem(hcd, qh, letter) +#endif +#endif +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c new file mode 100644 index 0000000..2c4266f --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c @@ -0,0 +1,1890 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef DWC_DEVICE_ONLY + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" + +/* + * This file contains the implementation of the HCD Interrupt handlers. + */ + +/* This function handles interrupts for the HCD. */ +int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd) +{ + int retval = 0; + + struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if; + union gintsts_data gintsts; +#ifdef DEBUG + struct dwc_otg_core_global_regs *global_regs = + core_if->core_global_regs; +#endif + + /* Check if HOST Mode */ + if (dwc_otg_is_host_mode(core_if)) { + gintsts.d32 = dwc_otg_read_core_intr(core_if); + if (!gintsts.d32) + return 0; +#ifdef DEBUG + /* Don't print debug message in the interrupt handler on SOF */ +# ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +# endif + DWC_DEBUGPL(DBG_HCD, "\n"); +#endif + +#ifdef DEBUG +# ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +# endif + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected " + "gintsts&gintmsk=0x%08x\n", + gintsts.d32); +#endif + + if (gintsts.b.sofintr) + retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd); + + if (gintsts.b.rxstsqlvl) + retval |= + dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd); + + if (gintsts.b.nptxfempty) + retval |= + dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd); + + if (gintsts.b.i2cintr) + ;/** @todo Implement i2cintr handler. */ + + if (gintsts.b.portintr) + retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd); + + if (gintsts.b.hcintr) + retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd); + + if (gintsts.b.ptxfempty) { + retval |= + dwc_otg_hcd_handle_perio_tx_fifo_empty_intr + (dwc_otg_hcd); + } +#ifdef DEBUG +# ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +# endif + { + DWC_DEBUGPL(DBG_HCD, + "DWC OTG HCD Finished Servicing Interrupts\n"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", + dwc_read_reg32(&global_regs->gintsts)); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", + dwc_read_reg32(&global_regs->gintmsk)); + } +#endif + +#ifdef DEBUG +# ifndef DEBUG_SOF + if (gintsts.d32 != DWC_SOF_INTR_MASK) +# endif + DWC_DEBUGPL(DBG_HCD, "\n"); +#endif + + } + + return retval; +} + +#ifdef DWC_TRACK_MISSED_SOFS +#warning Compiling code to track missed SOFs +#define FRAME_NUM_ARRAY_SIZE 1000 +/** + * This function is for debug only. + */ +static inline void track_missed_sofs(uint16_t _curr_frame_number) +{ + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; + static int frame_num_idx; + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; + static int dumped_frame_num_array; + + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { + if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != + _curr_frame_number)) { + frame_num_array[frame_num_idx] = _curr_frame_number; + last_frame_num_array[frame_num_idx++] = last_frame_num; + } + } else if (!dumped_frame_num_array) { + int i; + printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); + printk(KERN_EMERG USB_DWC "----- ----------\n"); + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", + frame_num_array[i], last_frame_num_array[i]); + } + dumped_frame_num_array = 1; + } + last_frame_num = _curr_frame_number; +} +#endif + +/** + * Handles the start-of-frame interrupt in host mode. Non-periodic + * transactions may be queued to the DWC_otg controller for the current + * (micro)frame. Periodic transactions may be queued to the controller for the + * next (micro)frame. + */ +int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *hcd) +{ + union hfnum_data hfnum; + struct list_head *qh_entry; + struct dwc_otg_qh *qh; + enum dwc_otg_transaction_type tr_type; + union gintsts_data gintsts = {.d32 = 0 }; + + hfnum.d32 = + dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); + +#ifdef DEBUG_SOF + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); +#endif + + hcd->frame_number = hfnum.b.frnum; + +#ifdef DEBUG + hcd->frrem_accum += hfnum.b.frrem; + hcd->frrem_samples++; +#endif + +#ifdef DWC_TRACK_MISSED_SOFS + track_missed_sofs(hcd->frame_number); +#endif + + /* Determine whether any periodic QHs should be executed. */ + qh_entry = hcd->periodic_sched_inactive.next; + while (qh_entry != &hcd->periodic_sched_inactive) { + qh = list_entry(qh_entry, struct dwc_otg_qh, qh_list_entry); + qh_entry = qh_entry->next; + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) { + /* + * Move QH to the ready list to be executed next + * (micro)frame. + */ + list_move(&qh->qh_list_entry, + &hcd->periodic_sched_ready); + } + } + + tr_type = dwc_otg_hcd_select_transactions(hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) { + dwc_otg_hcd_queue_transactions(hcd, tr_type); + } else if (list_empty(&hcd->periodic_sched_inactive) && + list_empty(&hcd->periodic_sched_ready) && + list_empty(&hcd->periodic_sched_assigned) && + list_empty(&hcd->periodic_sched_queued)) { + /* + * We don't have USB data to send. Unfortunately the + * Synopsis block continues to generate interrupts at + * about 8k/sec. In order not waste time on these + * useless interrupts, we're going to disable the SOF + * interrupt. It will be re-enabled when a new packet + * is enqueued in dwc_otg_hcd_urb_enqueue() + */ + dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk, + DWC_SOF_INTR_MASK, 0); + } + + /* Clear interrupt */ + gintsts.b.sofintr = 1; + dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32); + + return 1; +} + +/* Handles the Rx Status Queue Level Interrupt, which indicates that + * there is at least one packet in the Rx FIFO. The packets are moved + * from the FIFO to memory if the DWC_otg controller is operating in + * Slave mode. */ +int32_t +dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd *dwc_otg_hcd) +{ + union host_grxsts_data grxsts; + struct dwc_hc *hc = NULL; + + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); + + grxsts.d32 = + dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp); + + hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; + + /* Packet Status */ + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, + hc->data_pid_start); + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); + + switch (grxsts.b.pktsts) { + case DWC_GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer. */ + if (grxsts.b.bcnt > 0) { + dwc_otg_read_packet(dwc_otg_hcd->core_if, + hc->xfer_buff, grxsts.b.bcnt); + + /* Update the HC fields for the next packet received. */ + hc->xfer_count += grxsts.b.bcnt; + hc->xfer_buff += grxsts.b.bcnt; + } + + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: + case DWC_GRXSTS_PKTSTS_CH_HALTED: + /* Handled in interrupt, just ignore data */ + break; + default: + DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", + grxsts.b.pktsts); + break; + } + + return 1; +} + +/* This interrupt occurs when the non-periodic Tx FIFO is + * half-empty. More data packets may be written to the FIFO for OUT + * transfers. More requests may be written to the non-periodic request + * queue for IN transfers. This interrupt is enabled only in Slave + * mode. */ +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd * + dwc_otg_hcd) +{ + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); + dwc_otg_hcd_queue_transactions(dwc_otg_hcd, + DWC_OTG_TRANSACTION_NON_PERIODIC); + return 1; +} + +/* This interrupt occurs when the periodic Tx FIFO is half-empty. More + * data packets may be written to the FIFO for OUT transfers. More + * requests may be written to the periodic request queue for IN + * transfers. This interrupt is enabled only in Slave mode. */ +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd * + dwc_otg_hcd) +{ + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); + dwc_otg_hcd_queue_transactions(dwc_otg_hcd, + DWC_OTG_TRANSACTION_PERIODIC); + return 1; +} + +/* There are multiple conditions that can cause a port interrupt. This + * function determines which interrupt conditions have occurred and + * handles them appropriately. */ +int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd) +{ + int retval = 0; + union hprt0_data hprt0; + union hprt0_data hprt0_modify; + + hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); + hprt0_modify.d32 = + dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); + + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in + * GINTSTS */ + + hprt0_modify.b.prtena = 0; + hprt0_modify.b.prtconndet = 0; + hprt0_modify.b.prtenchng = 0; + hprt0_modify.b.prtovrcurrchng = 0; + + /* Port Connect Detected + * Set flag and clear if detected */ + if (hprt0.b.prtconndet) { + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " + "Port Connect Detected--\n", hprt0.d32); + dwc_otg_hcd->flags.b.port_connect_status_change = 1; + dwc_otg_hcd->flags.b.port_connect_status = 1; + hprt0_modify.b.prtconndet = 1; + + /* B-Device has connected, Delete the connection timer. */ + del_timer(&dwc_otg_hcd->conn_timer); + + /* The Hub driver asserts a reset when it sees port connect + * status change flag */ + retval |= 1; + } + + /* Port Enable Changed + * Clear if detected - Set internal flag if disabled */ + if (hprt0.b.prtenchng) { + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " + "Port Enable Changed--\n", hprt0.d32); + hprt0_modify.b.prtenchng = 1; + if (hprt0.b.prtena == 1) { + int do_reset = 0; + struct dwc_otg_core_params *params = + dwc_otg_hcd->core_if->core_params; + struct dwc_otg_core_global_regs *global_regs = + dwc_otg_hcd->core_if->core_global_regs; + struct dwc_otg_host_if *host_if = + dwc_otg_hcd->core_if->host_if; + + /* Check if we need to adjust the PHY clock speed for + * low power and adjust it */ + if (params->host_support_fs_ls_low_power) { + union gusbcfg_data usbcfg; + + usbcfg.d32 = + dwc_read_reg32(&global_regs->gusbcfg); + + if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) + || (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) { + /* + * Low power + */ + union hcfg_data hcfg; + if (usbcfg.b.phylpwrclksel == 0) { + /* Set PHY low power clock select for FS/LS devices */ + usbcfg.b.phylpwrclksel = 1; + dwc_write_reg32(&global_regs->gusbcfg, + usbcfg.d32); + do_reset = 1; + } + + hcfg.d32 = + dwc_read_reg32(&host_if->host_global_regs->hcfg); + + if ((hprt0.b.prtspd == + DWC_HPRT0_PRTSPD_LOW_SPEED) + && (params-> + host_ls_low_power_phy_clk == + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) { + /* 6 MHZ */ + DWC_DEBUGPL(DBG_CIL, + "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); + if (hcfg.b.fslspclksel != + DWC_HCFG_6_MHZ) { + hcfg.b.fslspclksel = + DWC_HCFG_6_MHZ; + dwc_write_reg32(&host_if->host_global_regs->hcfg, + hcfg.d32); + do_reset = 1; + } + } else { + /* 48 MHZ */ + DWC_DEBUGPL(DBG_CIL, + "FS_PHY programming HCFG to 48 MHz ()\n"); + if (hcfg.b.fslspclksel != + DWC_HCFG_48_MHZ) { + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; + dwc_write_reg32(&host_if->host_global_regs->hcfg, + hcfg.d32); + do_reset = 1; + } + } + } else { + /* + * Not low power + */ + if (usbcfg.b.phylpwrclksel == 1) { + usbcfg.b.phylpwrclksel = 0; + dwc_write_reg32(&global_regs->gusbcfg, + usbcfg.d32); + do_reset = 1; + } + } + if (do_reset) + tasklet_schedule(dwc_otg_hcd->reset_tasklet); + } + if (!do_reset) + /* + * Port has been enabled set the reset + * change flag + */ + dwc_otg_hcd->flags.b.port_reset_change = 1; + } else { + dwc_otg_hcd->flags.b.port_enable_change = 1; + } + retval |= 1; + } + + /** Overcurrent Change Interrupt */ + if (hprt0.b.prtovrcurrchng) { + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " + "Port Overcurrent Changed--\n", hprt0.d32); + dwc_otg_hcd->flags.b.port_over_current_change = 1; + hprt0_modify.b.prtovrcurrchng = 1; + retval |= 1; + } + + /* Clear Port Interrupts */ + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, + hprt0_modify.d32); + + return retval; +} + +/** This interrupt indicates that one or more host channels has a pending + * interrupt. There are multiple conditions that can cause each host channel + * interrupt. This function determines which conditions have occurred for each + * host channel interrupt and handles them appropriately. */ +int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd) +{ + int i; + int retval = 0; + union haint_data haint; + + /* Clear appropriate bits in HCINTn to clear the interrupt bit in + * GINTSTS */ + + haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if); + + for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) { + if (haint.b2.chint & (1 << i)) + retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i); + } + + return retval; +} + +/* Macro used to clear one channel interrupt */ +#define clear_hc_int(_hc_regs_, _intr_) \ +do { \ + union hcint_data hcint_clear = {.d32 = 0}; \ + hcint_clear.b._intr_ = 1; \ + dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ +} while (0) + +/* + * Macro used to disable one channel interrupt. Channel interrupts are + * disabled when the channel is halted or released by the interrupt handler. + * There is no need to handle further interrupts of that type until the + * channel is re-assigned. In fact, subsequent handling may cause crashes + * because the channel structures are cleaned up when the channel is released. + */ +#define disable_hc_int(_hc_regs_, _intr_) \ + do { \ + union hcintmsk_data hcintmsk = {.d32 = 0}; \ + hcintmsk.b._intr_ = 1; \ + dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ + } while (0) + +/** + * Gets the actual length of a transfer after the transfer halts. _halt_status + * holds the reason for the halt. + * + * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, + * *_short_read is set to 1 upon return if less than the requested + * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon + * return. _short_read may also be NULL on entry, in which case it remains + * unchanged. + */ +static uint32_t get_actual_xfer_length(struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status _halt_status, + int *_short_read) +{ + union hctsiz_data hctsiz; + uint32_t length; + + if (_short_read != NULL) + *_short_read = 0; + + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + + if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { + if (hc->ep_is_in) { + length = hc->xfer_len - hctsiz.b.xfersize; + if (_short_read != NULL) + *_short_read = (hctsiz.b.xfersize != 0); + } else if (hc->qh->do_split) { + length = qtd->ssplit_out_xfer_count; + } else { + length = hc->xfer_len; + } + } else { + /* + * Must use the hctsiz.pktcnt field to determine how much data + * has been transferred. This field reflects the number of + * packets that have been transferred via the USB. This is + * always an integral number of packets if the transfer was + * halted before its normal completion. (Can't use the + * hctsiz.xfersize field because that reflects the number of + * bytes transferred via the AHB, not the USB). + */ + length = + (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet; + } + + return length; +} + +/** + * Updates the state of the URB after a Transfer Complete interrupt on the + * host channel. Updates the actual_length field of the URB based on the + * number of bytes transferred via the host channel. Sets the URB status + * if the data transfer is finished. + * + * Returns 1 if the data transfer specified by the URB is completely finished, + * 0 otherwise. + */ +static int update_urb_state_xfer_comp(struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct urb *urb, struct dwc_otg_qtd *qtd) +{ + int xfer_done = 0; + int short_read = 0; + + urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd, + DWC_OTG_HC_XFER_COMPLETE, + &short_read); + + if (short_read || (urb->actual_length == urb->transfer_buffer_length)) { + xfer_done = 1; + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) + urb->status = -EREMOTEIO; + else + urb->status = 0; + } +#ifdef DEBUG + { + union hctsiz_data hctsiz; + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", + __func__, (hc->ep_is_in ? "IN" : "OUT"), + hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len); + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", + hctsiz.b.xfersize); + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", + urb->transfer_buffer_length); + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", + urb->actual_length); + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", + short_read, xfer_done); + } +#endif + + return xfer_done; +} + +/* + * Save the starting data toggle for the next transfer. The data toggle is + * saved in the QH for non-control transfers and it's saved in the QTD for + * control transfers. + */ +static void save_data_toggle(struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + union hctsiz_data hctsiz; + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { + struct dwc_otg_qh *qh = hc->qh; + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) + qh->data_toggle = DWC_OTG_HC_PID_DATA0; + else + qh->data_toggle = DWC_OTG_HC_PID_DATA1; + } else { + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) + qtd->data_toggle = DWC_OTG_HC_PID_DATA0; + else + qtd->data_toggle = DWC_OTG_HC_PID_DATA1; + } +} + +/** + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are + * still linked to the QH, the QH is added to the end of the inactive + * non-periodic schedule. For periodic QHs, removes the QH from the periodic + * schedule if no more QTDs are linked to the QH. + */ +static void deactivate_qh(struct dwc_otg_hcd *hcd, + struct dwc_otg_qh *qh, int free_qtd) +{ + int continue_split = 0; + struct dwc_otg_qtd *qtd; + + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd); + + qtd = list_entry(qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); + + if (qtd->complete_split) { + continue_split = 1; + } else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || + (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) { + continue_split = 1; + } + + if (free_qtd) { + dwc_otg_hcd_qtd_remove_and_free(qtd); + continue_split = 0; + } + + qh->channel = NULL; + qh->qtd_in_process = NULL; + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); +} + +/** + * Updates the state of an Isochronous URB when the transfer is stopped for + * any reason. The fields of the current entry in the frame descriptor array + * are set based on the transfer state and the input _halt_status. Completes + * the Isochronous URB if all the URB frames have been completed. + * + * Returns DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. + */ +static enum dwc_otg_halt_status +update_isoc_urb_state(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + struct urb *urb = qtd->urb; + enum dwc_otg_halt_status ret_val = halt_status; + struct usb_iso_packet_descriptor *frame_desc; + + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; + switch (halt_status) { + case DWC_OTG_HC_XFER_COMPLETE: + frame_desc->status = 0; + frame_desc->actual_length = + get_actual_xfer_length(hc, hc_regs, qtd, + halt_status, NULL); + break; + case DWC_OTG_HC_XFER_FRAME_OVERRUN: + urb->error_count++; + if (hc->ep_is_in) + frame_desc->status = -ENOSR; + else + frame_desc->status = -ECOMM; + frame_desc->actual_length = 0; + break; + case DWC_OTG_HC_XFER_BABBLE_ERR: + urb->error_count++; + frame_desc->status = -EOVERFLOW; + /* Don't need to update actual_length in this case. */ + break; + case DWC_OTG_HC_XFER_XACT_ERR: + urb->error_count++; + frame_desc->status = -EPROTO; + frame_desc->actual_length = + get_actual_xfer_length(hc, hc_regs, qtd, + halt_status, NULL); + break; + default: + DWC_ERROR("%s: Unhandled halt_status (%d)\n", __func__, + halt_status); + BUG(); + break; + } + + if (++qtd->isoc_frame_index == urb->number_of_packets) { + /* + * urb->status is not used for isoc transfers. + * The individual frame_desc statuses are used instead. + */ + dwc_otg_hcd_complete_urb(hcd, urb, 0); + qtd->urb = NULL; + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + ret_val = DWC_OTG_HC_XFER_COMPLETE; + } + + return ret_val; +} + +/** + * Releases a host channel for use by other transfers. Attempts to select and + * queue more transactions since at least one host channel is available. + * + * @hcd: The HCD state structure. + * @hc: The host channel to release. + * @qtd: The QTD associated with the host channel. This QTD may be freed + * if the transfer is complete or an error has occurred. + * @_halt_status: Reason the channel is being released. This status + * determines the actions taken by this function. + */ +static void release_channel(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + enum dwc_otg_transaction_type tr_type; + int free_qtd; + + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", + __func__, hc->hc_num, halt_status); + + switch (halt_status) { + case DWC_OTG_HC_XFER_URB_COMPLETE: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_AHB_ERR: + case DWC_OTG_HC_XFER_STALL: + case DWC_OTG_HC_XFER_BABBLE_ERR: + free_qtd = 1; + break; + case DWC_OTG_HC_XFER_XACT_ERR: + if (qtd->error_count >= 3) { + DWC_DEBUGPL(DBG_HCDV, + " Complete URB with transaction error\n"); + free_qtd = 1; + qtd->urb->status = -EPROTO; + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); + qtd->urb = NULL; + } else { + free_qtd = 0; + } + break; + case DWC_OTG_HC_XFER_URB_DEQUEUE: + /* + * The QTD has already been removed and the QH has been + * deactivated. Don't want to do anything except release the + * host channel and try to queue more transfers. + */ + goto cleanup; + case DWC_OTG_HC_XFER_NO_HALT_STATUS: + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, + hc->hc_num); + free_qtd = 0; + break; + default: + free_qtd = 0; + break; + } + + deactivate_qh(hcd, hc->qh, free_qtd); + +cleanup: + /* + * Release the host channel for use by other transfers. The cleanup + * function clears the channel interrupt enables and conditions, so + * there's no need to clear the Channel Halted interrupt separately. + */ + dwc_otg_hc_cleanup(hcd->core_if, hc); + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); + + switch (hc->ep_type) { + case DWC_OTG_EP_TYPE_CONTROL: + case DWC_OTG_EP_TYPE_BULK: + hcd->non_periodic_channels--; + break; + + default: + /* + * Don't release reservations for periodic channels here. + * That's done when a periodic transfer is descheduled (i.e. + * when the QH is removed from the periodic schedule). + */ + break; + } + + /* Try to queue more transfers now that there's a free channel. */ + tr_type = dwc_otg_hcd_select_transactions(hcd); + if (tr_type != DWC_OTG_TRANSACTION_NONE) + dwc_otg_hcd_queue_transactions(hcd, tr_type); +} + +/** + * Halts a host channel. If the channel cannot be halted immediately because + * the request queue is full, this function ensures that the FIFO empty + * interrupt for the appropriate queue is enabled so that the halt request can + * be queued when there is space in the request queue. + * + * This function may also be called in DMA mode. In that case, the channel is + * simply released since the core always halts the channel automatically in + * DMA mode. + */ +static void halt_channel(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + if (hcd->core_if->dma_enable) { + release_channel(hcd, hc, qtd, halt_status); + return; + } + + /* Slave mode processing... */ + dwc_otg_hc_halt(hcd->core_if, hc, halt_status); + + if (hc->halt_on_queue) { + union gintmsk_data gintmsk = {.d32 = 0 }; + struct dwc_otg_core_global_regs *global_regs; + global_regs = hcd->core_if->core_global_regs; + + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || + hc->ep_type == DWC_OTG_EP_TYPE_BULK) { + /* + * Make sure the Non-periodic Tx FIFO empty interrupt + * is enabled so that the non-periodic schedule will + * be processed. + */ + gintmsk.b.nptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); + } else { + /* + * Move the QH from the periodic queued schedule to + * the periodic assigned schedule. This allows the + * halt to be queued when the periodic schedule is + * processed. + */ + list_move(&hc->qh->qh_list_entry, + &hcd->periodic_sched_assigned); + + /* + * Make sure the Periodic Tx FIFO Empty interrupt is + * enabled so that the periodic schedule will be + * processed. + */ + gintmsk.b.ptxfempty = 1; + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); + } + } +} + +/** + * Performs common cleanup for non-periodic transfers after a Transfer + * Complete interrupt. This function should be called after any endpoint type + * specific handling is finished to release the host channel. + */ +static void complete_non_periodic_xfer(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + union hcint_data hcint; + + qtd->error_count = 0; + + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + if (hcint.b.nyet) { + /* + * Got a NYET on the last transaction of the transfer. This + * means that the endpoint should be in the PING state at the + * beginning of the next transfer. + */ + hc->qh->ping_state = 1; + clear_hc_int(hc_regs, nyet); + } + + /* + * Always halt and release the host channel to make it available for + * more transfers. There may still be more phases for a control + * transfer or more data packets for a bulk transfer at this point, + * but the host channel is still halted. A channel will be reassigned + * to the transfer when the non-periodic schedule is processed after + * the channel is released. This allows transactions to be queued + * properly via dwc_otg_hcd_queue_transactions, which also enables the + * Tx FIFO Empty interrupt if necessary. + */ + if (hc->ep_is_in) { + /* + * IN transfers in Slave mode require an explicit disable to + * halt the channel. (In DMA mode, this call simply releases + * the channel.) + */ + halt_channel(hcd, hc, qtd, halt_status); + } else { + /* + * The channel is automatically disabled by the core for OUT + * transfers in Slave mode. + */ + release_channel(hcd, hc, qtd, halt_status); + } +} + +/** + * Performs common cleanup for periodic transfers after a Transfer Complete + * interrupt. This function should be called after any endpoint type specific + * handling is finished to release the host channel. + */ +static void complete_periodic_xfer(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + union hctsiz_data hctsiz; + qtd->error_count = 0; + + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) { + /* Core halts channel in these cases. */ + release_channel(hcd, hc, qtd, halt_status); + } else { + /* Flush any outstanding requests from the Tx queue. */ + halt_channel(hcd, hc, qtd, halt_status); + } +} + +/** + * Handles a host channel Transfer Complete interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_xfercomp_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + int urb_xfer_done; + enum dwc_otg_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE; + struct urb *urb = qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Transfer Complete--\n", hc->hc_num); + + /* + * Handle xfer complete on CSPLIT. + */ + if (hc->qh->do_split) + qtd->complete_split = 0; + + /* Update the QTD and URB states. */ + switch (pipe_type) { + case PIPE_CONTROL: + switch (qtd->control_phase) { + case DWC_OTG_CONTROL_SETUP: + if (urb->transfer_buffer_length > 0) + qtd->control_phase = DWC_OTG_CONTROL_DATA; + else + qtd->control_phase = DWC_OTG_CONTROL_STATUS; + DWC_DEBUGPL(DBG_HCDV, + " Control setup transaction done\n"); + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + case DWC_OTG_CONTROL_DATA:{ + urb_xfer_done = + update_urb_state_xfer_comp(hc, hc_regs, + urb, qtd); + if (urb_xfer_done) { + qtd->control_phase = + DWC_OTG_CONTROL_STATUS; + DWC_DEBUGPL(DBG_HCDV, + " Control data transfer done\n"); + } else { + save_data_toggle(hc, hc_regs, qtd); + } + halt_status = DWC_OTG_HC_XFER_COMPLETE; + break; + } + case DWC_OTG_CONTROL_STATUS: + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); + if (urb->status == -EINPROGRESS) + urb->status = 0; + dwc_otg_hcd_complete_urb(hcd, urb, urb->status); + qtd->urb = NULL; + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + break; + } + + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, + halt_status); + break; + case PIPE_BULK: + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); + urb_xfer_done = + update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); + if (urb_xfer_done) { + dwc_otg_hcd_complete_urb(hcd, urb, urb->status); + qtd->urb = NULL; + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; + } else { + halt_status = DWC_OTG_HC_XFER_COMPLETE; + } + + save_data_toggle(hc, hc_regs, qtd); + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, + halt_status); + break; + case PIPE_INTERRUPT: + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); + update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); + + /* + * Interrupt URB is done on the first transfer complete + * interrupt. + */ + dwc_otg_hcd_complete_urb(hcd, urb, urb->status); + qtd->urb = NULL; + save_data_toggle(hc, hc_regs, qtd); + complete_periodic_xfer(hcd, hc, hc_regs, qtd, + DWC_OTG_HC_XFER_URB_COMPLETE); + break; + case PIPE_ISOCHRONOUS: + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { + halt_status = + update_isoc_urb_state(hcd, hc, hc_regs, qtd, + DWC_OTG_HC_XFER_COMPLETE); + } + complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); + break; + } + + disable_hc_int(hc_regs, xfercompl); + + return 1; +} + +/** + * Handles a host channel STALL interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int32_t handle_hc_stall_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + struct urb *urb = qtd->urb; + int pipe_type = usb_pipetype(urb->pipe); + + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "STALL Received--\n", hc->hc_num); + + if (pipe_type == PIPE_CONTROL) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); + qtd->urb = NULL; + } + + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE); + qtd->urb = NULL; + /* + * USB protocol requires resetting the data toggle for bulk + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) + * setup command is issued to the endpoint. Anticipate the + * CLEAR_FEATURE command since a STALL has occurred and reset + * the data toggle now. + */ + hc->qh->data_toggle = 0; + } + + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL); + + disable_hc_int(hc_regs, stall); + + return 1; +} + +/* + * Updates the state of the URB when a transfer has been stopped due to an + * abnormal condition before the transfer completes. Modifies the + * actual_length field of the URB to reflect the number of bytes that have + * actually been transferred via the host channel. + */ +static void update_urb_state_xfer_intr(struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct urb *urb, + struct dwc_otg_qtd *qtd, + enum dwc_otg_halt_status halt_status) +{ + uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd, + halt_status, NULL); + urb->actual_length += bytes_transferred; + +#ifdef DEBUG + { + union hctsiz_data hctsiz; + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", + __func__, (hc->ep_is_in ? "IN" : "OUT"), + hc->hc_num); + DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", + hc->start_pkt_count); + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); + DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", + hc->max_packet); + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", + bytes_transferred); + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", + urb->actual_length); + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", + urb->transfer_buffer_length); + } +#endif +} + +/** + * Handles a host channel NAK interrupt. This handler may be called in either + * DMA mode or Slave mode. + */ +static int32_t handle_hc_nak_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "NAK Received--\n", hc->hc_num); + + /* + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and + * interrupt. Re-start the SSPLIT transfer. + */ + if (hc->do_split) { + if (hc->complete_split) + qtd->error_count = 0; + qtd->complete_split = 0; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); + goto handle_nak_done; + } + + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + if (hcd->core_if->dma_enable && hc->ep_is_in) { + /* + * NAK interrupts are enabled on bulk/control IN + * transfers in DMA mode for the sole purpose of + * resetting the error count after a transaction error + * occurs. The core will continue transferring data. + */ + qtd->error_count = 0; + goto handle_nak_done; + } + + /* + * NAK interrupts normally occur during OUT transfers in DMA + * or Slave mode. For IN transfers, more requests will be + * queued as request queue space is available. + */ + qtd->error_count = 0; + + if (!hc->qh->ping_state) { + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, + qtd, DWC_OTG_HC_XFER_NAK); + save_data_toggle(hc, hc_regs, qtd); + if (qtd->urb->dev->speed == USB_SPEED_HIGH) + hc->qh->ping_state = 1; + } + + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will + * start/continue. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); + break; + case PIPE_INTERRUPT: + qtd->error_count = 0; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); + break; + case PIPE_ISOCHRONOUS: + /* Should never get called for isochronous transfers. */ + BUG(); + break; + } + +handle_nak_done: + disable_hc_int(hc_regs, nak); + + return 1; +} + +/** + * Handles a host channel ACK interrupt. This interrupt is enabled when + * performing the PING protocol in Slave mode, when errors occur during + * either Slave mode or DMA mode, and during Start Split transactions. + */ +static int32_t handle_hc_ack_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "ACK Received--\n", hc->hc_num); + + if (hc->do_split) { + /* + * Handle ACK on SSPLIT. + * ACK should not occur in CSPLIT. + */ + if ((!hc->ep_is_in) + && (hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { + qtd->ssplit_out_xfer_count = hc->xfer_len; + } + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) { + /* Don't need complete for isochronous out transfers. */ + qtd->complete_split = 1; + } + + /* ISOC OUT */ + if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !hc->ep_is_in) { + switch (hc->xact_pos) { + case DWC_HCSPLIT_XACTPOS_ALL: + break; + case DWC_HCSPLIT_XACTPOS_END: + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; + qtd->isoc_split_offset = 0; + break; + case DWC_HCSPLIT_XACTPOS_BEGIN: + case DWC_HCSPLIT_XACTPOS_MID: + /* + * For BEGIN or MID, calculate the length for + * the next microframe to determine the correct + * SSPLIT token, either MID or END. + */ + do { + struct usb_iso_packet_descriptor + *frame_desc; + + frame_desc = + &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; + qtd->isoc_split_offset += 188; + + if ((frame_desc->length - + qtd->isoc_split_offset) <= 188) { + qtd->isoc_split_pos = + DWC_HCSPLIT_XACTPOS_END; + } else { + qtd->isoc_split_pos = + DWC_HCSPLIT_XACTPOS_MID; + } + + } while (0); + break; + } + } else { + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); + } + } else { + qtd->error_count = 0; + + if (hc->qh->ping_state) { + hc->qh->ping_state = 0; + /* + * Halt the channel so the transfer can be re-started + * from the appropriate point. This only happens in + * Slave mode. In DMA mode, the ping_state is cleared + * when the transfer is started because the core + * automatically executes the PING, then the transfer. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); + } + } + + /* + * If the ACK occurred when _not_ in the PING state, let the channel + * continue transferring data after clearing the error count. + */ + + disable_hc_int(hc_regs, ack); + + return 1; +} + +/** + * Handles a host channel NYET interrupt. This interrupt should only occur on + * Bulk and Control OUT endpoints and for complete split transactions. If a + * NYET occurs at the same time as a Transfer Complete interrupt, it is + * handled in the xfercomp interrupt handler, not here. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_nyet_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "NYET Received--\n", hc->hc_num); + + /* + * NYET on CSPLIT + * re-do the CSPLIT immediately on non-periodic + */ + if ((hc->do_split) && (hc->complete_split)) { + if ((hc->ep_type == DWC_OTG_EP_TYPE_INTR) || + (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { + int frnum = + dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd + (hcd)); + + if (dwc_full_frame_num(frnum) != + dwc_full_frame_num(hc->qh->sched_frame)) { + /* + * No longer in the same full speed frame. + * Treat this as a transaction error. + */ +#if 0 + /** @todo Fix system performance so this can + * be treated as an error. Right now complete + * splits cannot be scheduled precisely enough + * due to other system activity, so this error + * occurs regularly in Slave mode. + */ + qtd->error_count++; +#endif + qtd->complete_split = 0; + halt_channel(hcd, hc, qtd, + DWC_OTG_HC_XFER_XACT_ERR); + /** @todo add support for isoc release */ + goto handle_nyet_done; + } + } + + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); + goto handle_nyet_done; + } + + hc->qh->ping_state = 1; + qtd->error_count = 0; + + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd, + DWC_OTG_HC_XFER_NYET); + save_data_toggle(hc, hc_regs, qtd); + + /* + * Halt the channel and re-start the transfer so the PING + * protocol will start. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); + +handle_nyet_done: + disable_hc_int(hc_regs, nyet); + return 1; +} + +/** + * Handles a host channel babble interrupt. This handler may be called in + * either DMA mode or Slave mode. + */ +static int32_t handle_hc_babble_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Babble Error--\n", hc->hc_num); + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); + qtd->urb = NULL; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR); + } else { + enum dwc_otg_halt_status halt_status; + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, + DWC_OTG_HC_XFER_BABBLE_ERR); + halt_channel(hcd, hc, qtd, halt_status); + } + disable_hc_int(hc_regs, bblerr); + return 1; +} + +/** + * Handles a host channel AHB error interrupt. This handler is only called in + * DMA mode. + */ +static int32_t handle_hc_ahberr_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + union hcchar_data hcchar; + union hcsplt_data hcsplt; + union hctsiz_data hctsiz; + uint32_t hcdma; + struct urb *urb = qtd->urb; + + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "AHB Error--\n", hc->hc_num); + + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + hcdma = dwc_read_reg32(&hc_regs->hcdma); + + DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num); + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), + (usb_pipein(urb->pipe) ? "IN" : "OUT")); + DWC_ERROR(" Endpoint type: %s\n", + ({ + char *pipetype; + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + pipetype = "CONTROL"; + break; + case PIPE_BULK: + pipetype = "BULK"; + break; + case PIPE_INTERRUPT: + pipetype = "INTERRUPT"; + break; + case PIPE_ISOCHRONOUS: + pipetype = "ISOCHRONOUS"; + break; + default: + pipetype = "UNKNOWN"; + break; + } + pipetype; + })); + DWC_ERROR(" Speed: %s\n", + ({ + char *speed; + switch (urb->dev->speed) { + case USB_SPEED_HIGH: + speed = "HIGH"; + break; + case USB_SPEED_FULL: + speed = "FULL"; + break; + case USB_SPEED_LOW: + speed = "LOW"; + break; + default: + speed = "UNKNOWN"; + break; + } + speed; + })); + DWC_ERROR(" Max packet size: %d\n", + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: 0x%llx\n", + urb->transfer_buffer, (unsigned long long)urb->transfer_dma); + DWC_ERROR(" Setup buffer: %p, Setup DMA: 0x%llx\n", + urb->setup_packet, (unsigned long long)urb->setup_dma); + DWC_ERROR(" Interval: %d\n", urb->interval); + + dwc_otg_hcd_complete_urb(hcd, urb, -EIO); + qtd->urb = NULL; + + /* + * Force a channel halt. Don't call halt_channel because that won't + * write to the HCCHARn register in DMA mode to force the halt. + */ + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); + + disable_hc_int(hc_regs, ahberr); + return 1; +} + +/** + * Handles a host channel transaction error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_xacterr_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Transaction Error--\n", hc->hc_num); + + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + qtd->error_count++; + if (!hc->qh->ping_state) { + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, + qtd, + DWC_OTG_HC_XFER_XACT_ERR); + save_data_toggle(hc, hc_regs, qtd); + if (!hc->ep_is_in + && qtd->urb->dev->speed == USB_SPEED_HIGH) { + hc->qh->ping_state = 1; + } + } + + /* + * Halt the channel so the transfer can be re-started from + * the appropriate point or the PING protocol will start. + */ + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); + break; + case PIPE_INTERRUPT: + qtd->error_count++; + if ((hc->do_split) && (hc->complete_split)) + qtd->complete_split = 0; + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); + break; + case PIPE_ISOCHRONOUS: + { + enum dwc_otg_halt_status halt_status; + halt_status = + update_isoc_urb_state(hcd, hc, hc_regs, qtd, + DWC_OTG_HC_XFER_XACT_ERR); + + halt_channel(hcd, hc, qtd, halt_status); + } + break; + } + + disable_hc_int(hc_regs, xacterr); + + return 1; +} + +/** + * Handles a host channel frame overrun interrupt. This handler may be called + * in either DMA mode or Slave mode. + */ +static int32_t handle_hc_frmovrun_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + enum dwc_otg_halt_status halt_status; + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Frame Overrun--\n", hc->hc_num); + + switch (usb_pipetype(qtd->urb->pipe)) { + case PIPE_CONTROL: + case PIPE_BULK: + break; + case PIPE_INTERRUPT: + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN); + break; + case PIPE_ISOCHRONOUS: + halt_status = + update_isoc_urb_state(hcd, hc, hc_regs, qtd, + DWC_OTG_HC_XFER_FRAME_OVERRUN); + halt_channel(hcd, hc, qtd, halt_status); + break; + } + + disable_hc_int(hc_regs, frmovrun); + + return 1; +} + +/** + * Handles a host channel data toggle error interrupt. This handler may be + * called in either DMA mode or Slave mode. + */ +static int32_t handle_hc_datatglerr_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Data Toggle Error--\n", hc->hc_num); + + if (hc->ep_is_in) { + qtd->error_count = 0; + } else { + DWC_ERROR("Data Toggle Error on OUT transfer," + "channel %d\n", hc->hc_num); + } + + disable_hc_int(hc_regs, datatglerr); + + return 1; +} + +#ifdef DEBUG +/** + * This function is for debug only. It checks that a valid halt status is set + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is + * taken and a warning is issued. + * Returns 1 if halt status is ok, 0 otherwise. + */ +static inline int halt_status_ok(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + union hcchar_data hcchar; + union hctsiz_data hctsiz; + union hcint_data hcint; + union hcintmsk_data hcintmsk; + union hcsplt_data hcsplt; + + if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { + /* + * This code is here only as a check. This condition should + * never happen. Ignore the halt if it does occur. + */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); + DWC_WARN + ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " + "hcint 0x%08x, hcintmsk 0x%08x, " + "hcsplt 0x%08x, qtd->complete_split %d\n", __func__, + hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32, + hcintmsk.d32, hcsplt.d32, qtd->complete_split); + + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", + __func__, hc->hc_num); + DWC_WARN("\n"); + clear_hc_int(hc_regs, chhltd); + return 0; + } + + /* + * This code is here only as a check. hcchar.chdis should + * never be set when the halt interrupt occurs. Halt the + * channel again if it does occur. + */ + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); + if (hcchar.b.chdis) { + DWC_WARN("%s: hcchar.chdis set unexpectedly, " + "hcchar 0x%08x, trying to halt again\n", + __func__, hcchar.d32); + clear_hc_int(hc_regs, chhltd); + hc->halt_pending = 0; + halt_channel(hcd, hc, qtd, hc->halt_status); + return 0; + } + + return 1; +} +#endif + +/** + * Handles a host Channel Halted interrupt in DMA mode. This handler + * determines the reason the channel halted and proceeds accordingly. + */ +static void handle_hc_chhltd_intr_dma(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + union hcint_data hcint; + union hcintmsk_data hcintmsk; + + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { + /* + * Just release the channel. A dequeue can happen on a + * transfer timeout. In the case of an AHB Error, the channel + * was forced to halt because there's no way to gracefully + * recover. + */ + release_channel(hcd, hc, qtd, hc->halt_status); + return; + } + + /* Read the HCINTn register to determine the cause for the halt. */ + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); + + if (hcint.b.xfercomp) { + /* + * @todo This is here because of a possible hardware + * bug. Spec says that on SPLIT-ISOC OUT transfers in + * DMA mode that a HALT interrupt w/ACK bit set should + * occur, but I only see the XFERCOMP bit, even with + * it masked out. This is a workaround for that + * behavior. Should fix this when hardware is fixed. + */ + if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!hc->ep_is_in)) + handle_hc_ack_intr(hcd, hc, hc_regs, qtd); + handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.stall) { + handle_hc_stall_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.xacterr) { + /* + * Must handle xacterr before nak or ack. Could get a xacterr + * at the same time as either of these on a BULK/CONTROL OUT + * that started with a PING. The xacterr takes precedence. + */ + handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.nyet) { + /* + * Must handle nyet before nak or ack. Could get a nyet at the + * same time as either of those on a BULK/CONTROL OUT that + * started with a PING. The nyet takes precedence. + */ + handle_hc_nyet_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.bblerr) { + handle_hc_babble_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.frmovrun) { + handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.nak && !hcintmsk.b.nak) { + /* + * If nak is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the nak is handled by + * the nak interrupt handler, not here. Handle nak here for + * BULK/CONTROL OUT transfers, which halt on a NAK to allow + * rewinding the buffer pointer. + */ + handle_hc_nak_intr(hcd, hc, hc_regs, qtd); + } else if (hcint.b.ack && !hcintmsk.b.ack) { + /* + * If ack is not masked, it's because a non-split IN transfer + * is in an error state. In that case, the ack is handled by + * the ack interrupt handler, not here. Handle ack here for + * split transfers. Start splits halt on ACK. + */ + handle_hc_ack_intr(hcd, hc, hc_regs, qtd); + } else { + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { + /* + * A periodic transfer halted with no other channel + * interrupts set. Assume it was halted by the core + * because it could not be completed in its scheduled + * (micro)frame. + */ +#ifdef DEBUG + DWC_PRINT("%s: Halt channel %d (assume incomplete " + "periodic transfer)\n", + __func__, hc->hc_num); +#endif + halt_channel(hcd, hc, qtd, + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE); + } else { + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, " + "but reason for halting is unknown, hcint " + "0x%08x, intsts 0x%08x\n", + __func__, hc->hc_num, hcint.d32, + dwc_read_reg32(&hcd->core_if->core_global_regs-> + gintsts)); + } + } +} + +/** + * Handles a host channel Channel Halted interrupt. + * + * In slave mode, this handler is called only when the driver specifically + * requests a halt. This occurs during handling other host channel interrupts + * (e.g. nak, xacterr, stall, nyet, etc.). + * + * In DMA mode, this is the interrupt that occurs when the core has finished + * processing a transfer on a channel. Other host channel interrupts (except + * ahberr) are disabled in DMA mode. + */ +static int32_t handle_hc_chhltd_intr(struct dwc_otg_hcd *hcd, + struct dwc_hc *hc, + struct dwc_otg_hc_regs *hc_regs, + struct dwc_otg_qtd *qtd) +{ + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " + "Channel Halted--\n", hc->hc_num); + + if (hcd->core_if->dma_enable) { + handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd); + } else { +#ifdef DEBUG + if (!halt_status_ok(hcd, hc, hc_regs, qtd)) + return 1; +#endif + release_channel(hcd, hc, qtd, hc->halt_status); + } + + return 1; +} + +/** Handles interrupt for a specific Host Channel */ +int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd, + uint32_t _num) +{ + int retval = 0; + union hcint_data hcint; + union hcintmsk_data hcintmsk; + struct dwc_hc *hc; + struct dwc_otg_hc_regs *hc_regs; + struct dwc_otg_qtd *qtd; + + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num); + + hc = dwc_otg_hcd->hc_ptr_array[_num]; + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[_num]; + qtd = list_entry(hc->qh->qtd_list.next, struct dwc_otg_qtd, + qtd_list_entry); + + hcint.d32 = dwc_read_reg32(&hc_regs->hcint); + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); + DWC_DEBUGPL(DBG_HCDV, + " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); + hcint.d32 = hcint.d32 & hcintmsk.d32; + + if (!dwc_otg_hcd->core_if->dma_enable) { + if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) + hcint.b.chhltd = 0; + } + + if (hcint.b.xfercomp) { + retval |= + handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd); + /* + * If NYET occurred at same time as Xfer Complete, the NYET is + * handled by the Xfer Complete interrupt handler. Don't want + * to call the NYET interrupt handler in this case. + */ + hcint.b.nyet = 0; + } + if (hcint.b.chhltd) + retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.ahberr) + retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.stall) + retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.nak) + retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.ack) + retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.nyet) + retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.xacterr) + retval |= + handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.bblerr) + retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.frmovrun) + retval |= + handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + if (hcint.b.datatglerr) + retval |= + handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd); + + return retval; +} + +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c new file mode 100644 index 0000000..e4c96f2 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c @@ -0,0 +1,695 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ +#ifndef DWC_DEVICE_ONLY + +/* + * + * This file contains the functions to manage Queue Heads and Queue + * Transfer Descriptors. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/string.h> + +#include "dwc_otg_driver.h" +#include "dwc_otg_hcd.h" +#include "dwc_otg_regs.h" + +/** + * This function allocates and initializes a QH. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @urb: Holds the information about the device/endpoint that we need + * to initialize the QH. + * + * Returns Returns pointer to the newly allocated QH, or NULL on error. */ +struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd, + struct urb *urb) +{ + struct dwc_otg_qh *qh; + + /* Allocate memory */ + /** @todo add memflags argument */ + qh = dwc_otg_hcd_qh_alloc(); + if (qh == NULL) + return NULL; + + dwc_otg_hcd_qh_init(hcd, qh, urb); + return qh; +} + +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be + * removed from a list. QTD list should already be empty if called from URB + * Dequeue. + * + * @qh: The QH to free. + */ +void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh) +{ + struct dwc_otg_qtd *qtd; + struct list_head *pos; + + /* Free each QTD in the QTD list */ + for (pos = qh->qtd_list.next; + pos != &qh->qtd_list; pos = qh->qtd_list.next) { + list_del(pos); + qtd = dwc_list_to_qtd(pos); + dwc_otg_hcd_qtd_free(qtd); + } + + kfree(qh); + return; +} + +/** Initializes a QH structure. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @qh: The QH to init. + * @urb: Holds the information about the device/endpoint that we need + * to initialize the QH. */ +#define SCHEDULE_SLOP 10 +void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, + struct urb *urb) +{ + memset(qh, 0, sizeof(struct dwc_otg_qh)); + + /* Initialize QH */ + switch (usb_pipetype(urb->pipe)) { + case PIPE_CONTROL: + qh->ep_type = USB_ENDPOINT_XFER_CONTROL; + break; + case PIPE_BULK: + qh->ep_type = USB_ENDPOINT_XFER_BULK; + break; + case PIPE_ISOCHRONOUS: + qh->ep_type = USB_ENDPOINT_XFER_ISOC; + break; + case PIPE_INTERRUPT: + qh->ep_type = USB_ENDPOINT_XFER_INT; + break; + } + + qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0; + + qh->data_toggle = DWC_OTG_HC_PID_DATA0; + qh->maxp = + usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe))); + INIT_LIST_HEAD(&qh->qtd_list); + INIT_LIST_HEAD(&qh->qh_list_entry); + qh->channel = NULL; + + /* FS/LS Enpoint on HS Hub + * NOT virtual root hub */ + qh->do_split = 0; + if (((urb->dev->speed == USB_SPEED_LOW) || + (urb->dev->speed == USB_SPEED_FULL)) && + (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) { + DWC_DEBUGPL(DBG_HCD, + "QH init: EP %d: TT found at hub addr %d, for " + "port %d\n", + usb_pipeendpoint(urb->pipe), + urb->dev->tt->hub->devnum, urb->dev->ttport); + qh->do_split = 1; + } + + if (qh->ep_type == USB_ENDPOINT_XFER_INT || + qh->ep_type == USB_ENDPOINT_XFER_ISOC) { + /* Compute scheduling parameters once and save them. */ + union hprt0_data hprt; + + /* todo Account for split transfers in the bus time. */ + int bytecount = + dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp); + /* + * The results from usb_calc_bus_time are in nanosecs, + * so divide the result by 1000 to convert to + * microsecs expected by this driver + */ + qh->usecs = usb_calc_bus_time(urb->dev->speed, + usb_pipein(urb->pipe), + (qh->ep_type == + USB_ENDPOINT_XFER_ISOC), + bytecount) / 1000; + + /* Start in a slightly future (micro)frame. */ + qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, + SCHEDULE_SLOP); + qh->interval = urb->interval; +#if 0 + /* Increase interrupt polling rate for debugging. */ + if (qh->ep_type == USB_ENDPOINT_XFER_INT) + qh->interval = 8; +#endif + hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0); + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && + ((urb->dev->speed == USB_SPEED_LOW) || + (urb->dev->speed == USB_SPEED_FULL))) { + qh->interval *= 8; + qh->sched_frame |= 0x7; + qh->start_split_frame = qh->sched_frame; + } + + } + + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", + urb->dev->devnum); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", + usb_pipeendpoint(urb->pipe), + usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", + ({ + char *speed; + switch (urb->dev->speed) { + case USB_SPEED_LOW: + speed = "low"; + break; + case USB_SPEED_FULL: + speed = "full"; + break; + case USB_SPEED_HIGH: + speed = "high"; + break; + default: + speed = "?"; + break; + } + speed; + })); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", + ({ + char *type; + switch (qh->ep_type) { + case USB_ENDPOINT_XFER_ISOC: + type = "isochronous"; + break; + case USB_ENDPOINT_XFER_INT: + type = "interrupt"; + break; + case USB_ENDPOINT_XFER_CONTROL: + type = "control"; + break; + case USB_ENDPOINT_XFER_BULK: + type = "bulk"; + break; + default: + type = "?"; + break; + } + type; + })); +#ifdef DEBUG + if (qh->ep_type == USB_ENDPOINT_XFER_INT) { + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", + qh->usecs); + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", + qh->interval); + } +#endif + + return; +} + +/** + * Checks that a channel is available for a periodic transfer. + * + * Returns 0 if successful, negative error code otherise. + */ +static int periodic_channel_available(struct dwc_otg_hcd *hcd) +{ + /* + * Currently assuming that there is a dedicated host channnel for each + * periodic transaction plus at least one host channel for + * non-periodic transactions. + */ + int status; + int num_channels; + + num_channels = hcd->core_if->core_params->host_channels; + if ((hcd->periodic_channels + hcd->non_periodic_channels < + num_channels) && (hcd->periodic_channels < num_channels - 1)) { + status = 0; + } else { + DWC_NOTICE + ("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", + __func__, num_channels, hcd->periodic_channels, + hcd->non_periodic_channels); + status = -ENOSPC; + } + + return status; +} + +/** + * Checks that there is sufficient bandwidth for the specified QH in the + * periodic schedule. For simplicity, this calculation assumes that all the + * transfers in the periodic schedule may occur in the same (micro)frame. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @qh: QH containing periodic bandwidth required. + * + * Returns 0 if successful, negative error code otherwise. + */ +static int check_periodic_bandwidth(struct dwc_otg_hcd *hcd, + struct dwc_otg_qh *qh) +{ + int status; + uint16_t max_claimed_usecs; + + status = 0; + + if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) { + /* + * High speed mode. + * Max periodic usecs is 80% x 125 usec = 100 usec. + */ + max_claimed_usecs = 100 - qh->usecs; + } else { + /* + * Full speed mode. + * Max periodic usecs is 90% x 1000 usec = 900 usec. + */ + max_claimed_usecs = 900 - qh->usecs; + } + + if (hcd->periodic_usecs > max_claimed_usecs) { + DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n", + __func__, hcd->periodic_usecs, qh->usecs); + status = -ENOSPC; + } + + return status; +} + +/** + * Checks that the max transfer size allowed in a host channel is large enough + * to handle the maximum data transfer in a single (micro)frame for a periodic + * transfer. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @qh: QH for a periodic endpoint. + * + * Returns 0 if successful, negative error code otherwise. + */ +static int check_max_xfer_size(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) +{ + int status; + uint32_t max_xfer_size; + uint32_t max_channel_xfer_size; + + status = 0; + + max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp); + max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size; + + if (max_xfer_size > max_channel_xfer_size) { + DWC_NOTICE("%s: Periodic xfer length %d > " + "max xfer length for channel %d\n", + __func__, max_xfer_size, max_channel_xfer_size); + status = -ENOSPC; + } + + return status; +} + +/** + * Schedules an interrupt or isochronous transfer in the periodic schedule. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @qh: QH for the periodic transfer. The QH should already contain the + * scheduling information. + * + * Returns 0 if successful, negative error code otherwise. + */ +static int schedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) +{ + int status = 0; + + status = periodic_channel_available(hcd); + if (status) { + DWC_NOTICE("%s: No host channel available for periodic " + "transfer.\n", __func__); + return status; + } + + status = check_periodic_bandwidth(hcd, qh); + if (status) { + DWC_NOTICE("%s: Insufficient periodic bandwidth for " + "periodic transfer.\n", __func__); + return status; + } + + status = check_max_xfer_size(hcd, qh); + if (status) { + DWC_NOTICE("%s: Channel max transfer size too small " + "for periodic transfer.\n", __func__); + return status; + } + + /* Always start in the inactive schedule. */ + list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive); + + /* Reserve the periodic channel. */ + hcd->periodic_channels++; + + /* Update claimed usecs per (micro)frame. */ + hcd->periodic_usecs += qh->usecs; + + /* + * Update average periodic bandwidth claimed and # periodic + * reqs for usbfs. + */ + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += + qh->usecs / qh->interval; + if (qh->ep_type == USB_ENDPOINT_XFER_INT) { + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++; + DWC_DEBUGPL(DBG_HCD, + "Scheduled intr: qh %p, usecs %d, period %d\n", qh, + qh->usecs, qh->interval); + } else { + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++; + DWC_DEBUGPL(DBG_HCD, + "Scheduled isoc: qh %p, usecs %d, period %d\n", qh, + qh->usecs, qh->interval); + } + + return status; +} + +/** + * This function adds a QH to either the non periodic or periodic schedule if + * it is not already in the schedule. If the QH is already in the schedule, no + * action is taken. + * + * Returns 0 if successful, negative error code otherwise. + */ +int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) +{ + int status = 0; + + if (!spin_is_locked(&hcd->global_lock)) { + pr_err("%s don't have hcd->global_lock", __func__); + BUG(); + } + + if (!list_empty(&qh->qh_list_entry)) { + /* QH already in a schedule. */ + goto done; + } + + /* Add the new QH to the appropriate schedule */ + if (dwc_qh_is_non_per(qh)) { + /* Always start in the inactive schedule. */ + list_add_tail(&qh->qh_list_entry, + &hcd->non_periodic_sched_inactive); + } else { + status = schedule_periodic(hcd, qh); + } + +done: + return status; +} + +/** + * Removes an interrupt or isochronous transfer from the periodic schedule. + * + * @hcd: The HCD state structure for the DWC OTG controller. + * @qh: QH for the periodic transfer. + */ +static void deschedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) +{ + list_del_init(&qh->qh_list_entry); + + /* Release the periodic channel reservation. */ + hcd->periodic_channels--; + + /* Update claimed usecs per (micro)frame. */ + hcd->periodic_usecs -= qh->usecs; + + /* + * Update average periodic bandwidth claimed and # periodic + * reqs for usbfs. + */ + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= + qh->usecs / qh->interval; + + if (qh->ep_type == USB_ENDPOINT_XFER_INT) { + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--; + DWC_DEBUGPL(DBG_HCD, + "Descheduled intr: qh %p, usecs %d, period %d\n", + qh, qh->usecs, qh->interval); + } else { + hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--; + DWC_DEBUGPL(DBG_HCD, + "Descheduled isoc: qh %p, usecs %d, period %d\n", + qh, qh->usecs, qh->interval); + } +} + +/** + * Removes a QH from either the non-periodic or periodic schedule. Memory is + * not freed. + * + * @hcd: The HCD state structure. + * @qh: QH to remove from schedule. */ +void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh) +{ + if (!spin_is_locked(&hcd->global_lock)) { + pr_err("%s don't have hcd->global_lock", __func__); + BUG(); + } + + if (list_empty(&qh->qh_list_entry)) { + /* QH is not in a schedule. */ + goto done; + } + + if (dwc_qh_is_non_per(qh)) { + if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) { + hcd->non_periodic_qh_ptr = + hcd->non_periodic_qh_ptr->next; + } + list_del_init(&qh->qh_list_entry); + } else { + deschedule_periodic(hcd, qh); + } + +done: + ; +} + +/** + * Deactivates a QH. For non-periodic QHs, removes the QH from the active + * non-periodic schedule. The QH is added to the inactive non-periodic + * schedule if any QTDs are still attached to the QH. + * + * For periodic QHs, the QH is removed from the periodic queued schedule. If + * there are any QTDs still attached to the QH, the QH is added to either the + * periodic inactive schedule or the periodic ready schedule and its next + * scheduled frame is calculated. The QH is placed in the ready schedule if + * the scheduled frame has been reached already. Otherwise it's placed in the + * inactive schedule. If there are no QTDs attached to the QH, the QH is + * completely removed from the periodic schedule. + */ +void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh, + int sched_next_periodic_split) +{ + uint16_t frame_number; + + if (!spin_is_locked(&hcd->global_lock)) { + pr_err("%s don't have hcd->global_lock", __func__); + BUG(); + } + + if (dwc_qh_is_non_per(qh)) { + dwc_otg_hcd_qh_remove(hcd, qh); + if (!list_empty(&qh->qtd_list)) + /* Add back to inactive non-periodic schedule. */ + dwc_otg_hcd_qh_add(hcd, qh); + return; + } + + frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); + + if (qh->do_split) { + /* Schedule the next continuing periodic split transfer */ + if (sched_next_periodic_split) { + + qh->sched_frame = frame_number; + if (dwc_frame_num_le(frame_number, + dwc_frame_num_inc(qh->start_split_frame, + 1))) { + /* + * Allow one frame to elapse after + * start split microframe before + * scheduling complete split, but DONT + * if we are doing the next start + * split in the same frame for an ISOC + * out. + */ + if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) + || (qh->ep_is_in != 0)) { + qh->sched_frame = + dwc_frame_num_inc(qh->sched_frame, + 1); + } + } + } else { + qh->sched_frame = + dwc_frame_num_inc(qh->start_split_frame, + qh->interval); + if (dwc_frame_num_le(qh->sched_frame, frame_number)) + qh->sched_frame = frame_number; + + qh->sched_frame |= 0x7; + qh->start_split_frame = qh->sched_frame; + } + } else { + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, + qh->interval); + if (dwc_frame_num_le(qh->sched_frame, frame_number)) + qh->sched_frame = frame_number; + } + + if (list_empty(&qh->qtd_list)) { + dwc_otg_hcd_qh_remove(hcd, qh); + } else { + /* + * Remove from periodic_sched_queued and move to + * appropriate queue. + */ + if (qh->sched_frame == frame_number) { + list_move(&qh->qh_list_entry, + &hcd->periodic_sched_ready); + } else { + list_move(&qh->qh_list_entry, + &hcd->periodic_sched_inactive); + } + } +} + +/** + * This function allocates and initializes a QTD. + * + * @urb: The URB to create a QTD from. Each URB-QTD pair will end up + * pointing to each other so each pair should have a unique correlation. + * + * Returns Returns pointer to the newly allocated QTD, or NULL on error. */ +struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb) +{ + struct dwc_otg_qtd *qtd; + + qtd = dwc_otg_hcd_qtd_alloc(); + if (qtd == NULL) + return NULL; + + dwc_otg_hcd_qtd_init(qtd, urb); + return qtd; +} + +/** + * Initializes a QTD structure. + * + * @qtd: The QTD to initialize. + * @urb: The URB to use for initialization. + */ +void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb) +{ + memset(qtd, 0, sizeof(struct dwc_otg_qtd)); + qtd->urb = urb; + if (usb_pipecontrol(urb->pipe)) { + /* + * The only time the QTD data toggle is used is on the data + * phase of control transfers. This phase always starts with + * DATA1. + */ + qtd->data_toggle = DWC_OTG_HC_PID_DATA1; + qtd->control_phase = DWC_OTG_CONTROL_SETUP; + } + + /* start split */ + qtd->complete_split = 0; + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; + qtd->isoc_split_offset = 0; + + /* Store the qtd ptr in the urb to reference what QTD. */ + urb->hcpriv = qtd; + return; +} + +/** + * This function adds a QTD to the QTD-list of a QH. It will find the correct + * QH to place the QTD into. If it does not find a QH, then it will create a + * new QH. If the QH to which the QTD is added is not currently scheduled, it + * is placed into the proper schedule based on its EP type. + * + * @qtd: The QTD to add + * @dwc_otg_hcd: The DWC HCD structure + * + * Returns 0 if successful, negative error code otherwise. + */ +int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd, + struct dwc_otg_hcd *dwc_otg_hcd) +{ + struct usb_host_endpoint *ep; + struct dwc_otg_qh *qh; + int retval = 0; + + struct urb *urb = qtd->urb; + + /* + * Get the QH which holds the QTD-list to insert to. Create QH if it + * doesn't exist. + */ + ep = dwc_urb_to_endpoint(urb); + qh = ep->hcpriv; + if (qh == NULL) { + qh = dwc_otg_hcd_qh_create(dwc_otg_hcd, urb); + if (qh == NULL) { + retval = -ENOMEM; + goto done; + } + ep->hcpriv = qh; + } + qtd->qh = qh; + retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh); + if (retval == 0) + list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); +done: + return retval; +} + +#endif /* DWC_DEVICE_ONLY */ diff --git a/drivers/usb/host/dwc_otg/dwc_otg_octeon.c b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c new file mode 100644 index 0000000..5e92b3c --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c @@ -0,0 +1,1078 @@ +/* ========================================================================== + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/init.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/stat.h> /* permission constants */ +#include <linux/platform_device.h> +#include <linux/io.h> + +#include "dwc_otg_plat.h" +#include "dwc_otg_attr.h" +#include "dwc_otg_driver.h" +#include "dwc_otg_cil.h" +#ifndef DWC_HOST_ONLY +#include "dwc_otg_pcd.h" +#endif +#include "dwc_otg_hcd.h" + +#define DWC_DRIVER_VERSION "2.40a 10-APR-2006" +#define DWC_DRIVER_DESC "HS OTG USB Controller driver" + +static const char dwc_driver_name[] = "dwc_otg"; +int dwc_errata_write_count; /* See dwc_otg_plat.h, dwc_write_reg32 */ + +/*-------------------------------------------------------------------------*/ +/* Encapsulate the module parameter settings */ + +static struct dwc_otg_core_params dwc_otg_module_params = { + .opt = -1, + .otg_cap = -1, + .dma_enable = -1, + .dma_burst_size = -1, + .speed = -1, + .host_support_fs_ls_low_power = -1, + .host_ls_low_power_phy_clk = -1, + .enable_dynamic_fifo = -1, + .data_fifo_size = -1, + .dev_rx_fifo_size = -1, + .dev_nperio_tx_fifo_size = -1, + .dev_perio_tx_fifo_size = {-1, /* dev_perio_tx_fifo_size_1 */ + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1, + -1}, /* 15 */ + .host_rx_fifo_size = -1, + .host_nperio_tx_fifo_size = -1, + .host_perio_tx_fifo_size = -1, + .max_transfer_size = -1, + .max_packet_count = -1, + .host_channels = -1, + .dev_endpoints = -1, + .phy_type = -1, + .phy_utmi_width = -1, + .phy_ulpi_ddr = -1, + .phy_ulpi_ext_vbus = -1, + .i2c_enable = -1, + .ulpi_fs_ls = -1, + .ts_dline = -1, +}; + +/** + * Global Debug Level Mask. + */ +uint32_t g_dbg_lvl; /* 0 -> OFF */ + +/** + * This function shows the Driver Version. + */ +static ssize_t version_show(struct device_driver *dev, char *buf) +{ + return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n", + DWC_DRIVER_VERSION); +} + +static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); + +/** + * This function is called during module intialization to verify that + * the module parameters are in a valid state. + */ +static int check_parameters(struct dwc_otg_core_if *core_if) +{ + int i; + int retval = 0; + +/* Checks if the parameter is outside of its valid range of values */ +#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \ + ((dwc_otg_module_params._param_ < (_low_)) || \ + (dwc_otg_module_params._param_ > (_high_))) + +/* If the parameter has been set by the user, check that the parameter value is + * within the value range of values. If not, report a module error. */ +#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \ + do { \ + if (dwc_otg_module_params._param_ != -1) { \ + if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \ + DWC_ERROR("`%d' invalid for parameter `%s'\n", \ + dwc_otg_module_params._param_, _string_); \ + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ + retval++; \ + } \ + } \ + } while (0) + + DWC_OTG_PARAM_ERR(opt, 0, 1, "opt"); + DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap"); + DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable"); + DWC_OTG_PARAM_ERR(speed, 0, 1, "speed"); + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1, + "host_support_fs_ls_low_power"); + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1, + "host_ls_low_power_phy_clk"); + DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo"); + DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size"); + DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size"); + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768, + "dev_nperio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size"); + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768, + "host_nperio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768, + "host_perio_tx_fifo_size"); + DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, "max_transfer_size"); + DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count"); + DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels"); + DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints"); + DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type"); + DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr"); + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus"); + DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable"); + DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls"); + DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline"); + + if (dwc_otg_module_params.dma_burst_size != -1) { + if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) && + DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) && + DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) && + DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) && + DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) && + DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) && + DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) && + DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) { + DWC_ERROR + ("`%d' invalid for parameter `dma_burst_size'\n", + dwc_otg_module_params.dma_burst_size); + dwc_otg_module_params.dma_burst_size = 32; + retval++; + } + } + + if (dwc_otg_module_params.phy_utmi_width != -1) { + if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) && + DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) { + DWC_ERROR + ("`%d' invalid for parameter `phy_utmi_width'\n", + dwc_otg_module_params.phy_utmi_width); + dwc_otg_module_params.phy_utmi_width = 16; + retval++; + } + } + + for (i = 0; i < 15; i++) { + /* @todo should be like above */ + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != + (unsigned)-1) { + if (DWC_OTG_PARAM_TEST + (dev_perio_tx_fifo_size[i], 4, 768)) { + DWC_ERROR + ("`%d' invalid for parameter `%s_%d'\n", + dwc_otg_module_params. + dev_perio_tx_fifo_size[i], + "dev_perio_tx_fifo_size", i); + dwc_otg_module_params. + dev_perio_tx_fifo_size[i] = + dwc_param_dev_perio_tx_fifo_size_default; + retval++; + } + } + } + + /* At this point, all module parameters that have been set by the user + * are valid, and those that have not are left unset. Now set their + * default values and/or check the parameters against the hardware + * configurations of the OTG core. */ + +/* This sets the parameter to the default value if it has not been set by the + * user */ +#define PARAM_SET_DEFAULT(_param_) \ + ({ \ + int changed = 1; \ + if (dwc_otg_module_params._param_ == -1) { \ + changed = 0; \ + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ + } \ + changed; \ + }) + +/* This checks the macro agains the hardware configuration to see if it is + * valid. It is possible that the default value could be invalid. In this + * case, it will report a module error if the user touched the parameter. + * Otherwise it will adjust the value without any error. */ +#define PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \ + ({ \ + int changed = PARAM_SET_DEFAULT(_param_); \ + int error = 0; \ + if (!(_is_valid_)) { \ + if (changed) { \ + DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \ + error = 1; \ + } \ + dwc_otg_module_params._param_ = (_set_valid_); \ + } \ + error; \ + }) + + /* OTG Cap */ + retval += PARAM_CHECK_VALID(otg_cap, "otg_cap", + ({ + int valid; + valid = 1; + switch (dwc_otg_module_params.otg_cap) { + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: + if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) + valid = 0; + break; + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: + if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) + && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) + && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) + && (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) + valid = 0; + break; + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: + /* always valid */ + break; + } + valid; + }), + (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) + || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) + || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) + || (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) + ? + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); + + retval += PARAM_CHECK_VALID(dma_enable, "dma_enable", + ((dwc_otg_module_params. + dma_enable == 1) + && (core_if->hwcfg2.b. + architecture == 0)) ? 0 : 1, + 0); + + retval += PARAM_CHECK_VALID(opt, "opt", 1, 0); + + PARAM_SET_DEFAULT(dma_burst_size); + + retval += PARAM_CHECK_VALID(host_support_fs_ls_low_power, + "host_support_fs_ls_low_power", + 1, 0); + + retval += PARAM_CHECK_VALID(enable_dynamic_fifo, + "enable_dynamic_fifo", + ((dwc_otg_module_params.enable_dynamic_fifo == 0) + || (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); + + retval += PARAM_CHECK_VALID(data_fifo_size, + "data_fifo_size", + dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth, + core_if->hwcfg3.b.dfifo_depth); + + retval += PARAM_CHECK_VALID(dev_rx_fifo_size, + "dev_rx_fifo_size", + (dwc_otg_module_params.dev_rx_fifo_size <= + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); + + retval += PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, + "dev_nperio_tx_fifo_size", + dwc_otg_module_params.dev_nperio_tx_fifo_size <= + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16), + dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16); + + retval += PARAM_CHECK_VALID(host_rx_fifo_size, + "host_rx_fifo_size", + dwc_otg_module_params.host_rx_fifo_size <= + dwc_read_reg32(&core_if->core_global_regs->grxfsiz), + dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); + + retval += PARAM_CHECK_VALID(host_nperio_tx_fifo_size, + "host_nperio_tx_fifo_size", + dwc_otg_module_params.host_nperio_tx_fifo_size <= + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16), + dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16); + + retval += PARAM_CHECK_VALID(host_perio_tx_fifo_size, + "host_perio_tx_fifo_size", + dwc_otg_module_params.host_perio_tx_fifo_size <= + (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16), + (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)); + + retval += PARAM_CHECK_VALID(max_transfer_size, + "max_transfer_size", + dwc_otg_module_params.max_transfer_size < + (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)), + (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1); + + retval += PARAM_CHECK_VALID(max_packet_count, + "max_packet_count", + dwc_otg_module_params.max_packet_count < + (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)), + (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1); + + retval += PARAM_CHECK_VALID(host_channels, + "host_channels", + dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1), + core_if->hwcfg2.b.num_host_chan + 1); + + retval += PARAM_CHECK_VALID(dev_endpoints, + "dev_endpoints", + dwc_otg_module_params.dev_endpoints <= core_if->hwcfg2.b.num_dev_ep, + core_if->hwcfg2.b.num_dev_ep); + +/* + * Define the following to disable the FS PHY Hardware checking. This is for + * internal testing only. + * + * #define NO_FS_PHY_HW_CHECKS + */ + +#ifdef NO_FS_PHY_HW_CHECKS + retval += PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0); +#else + retval += PARAM_CHECK_VALID(phy_type, "phy_type", + ({ + int valid = 0; + if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ((core_if->hwcfg2.b.hs_phy_type == 1) || (core_if->hwcfg2.b.hs_phy_type == 3))) + valid = 1; + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ((core_if->hwcfg2.b.hs_phy_type == 2) || (core_if->hwcfg2.b.hs_phy_type == 3))) + valid = 1; + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && (core_if->hwcfg2.b.fs_phy_type == 1)) + valid = 1; + valid; + }), + ({ + int set = DWC_PHY_TYPE_PARAM_FS; + if (core_if->hwcfg2.b.hs_phy_type) { + if ((core_if->hwcfg2.b.hs_phy_type == 3) + || (core_if->hwcfg2.b.hs_phy_type == 1)) + set = DWC_PHY_TYPE_PARAM_UTMI; + else + set = DWC_PHY_TYPE_PARAM_ULPI; + } + set; + })); +#endif + + retval += PARAM_CHECK_VALID(speed, "speed", + dwc_otg_module_params.speed == 0 + && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, + dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); + + retval += PARAM_CHECK_VALID(host_ls_low_power_phy_clk, + "host_ls_low_power_phy_clk", + dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ + && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, + (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ); + + PARAM_SET_DEFAULT(phy_ulpi_ddr); + PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); + PARAM_SET_DEFAULT(phy_utmi_width); + PARAM_SET_DEFAULT(ulpi_fs_ls); + PARAM_SET_DEFAULT(ts_dline); + +#ifdef NO_FS_PHY_HW_CHECKS + retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0); +#else + retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", + dwc_otg_module_params.i2c_enable == 1 + && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0); +#endif + + for (i = 0; i < 15; i++) { + + int changed = 1; + int error = 0; + + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { + changed = 0; + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = + dwc_param_dev_perio_tx_fifo_size_default; + } + if (! + (dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= + (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz[i])))) { + if (changed) { + DWC_ERROR("`%d' invalid for parameter " + "`dev_perio_fifo_size_%d'. " + "Check HW configuration.\n", + dwc_otg_module_params. + dev_perio_tx_fifo_size[i], i); + error = 1; + } + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = + dwc_read_reg32(&core_if->core_global_regs-> + dptxfsiz[i]); + } + retval += error; + } + + return retval; +} + +/** + * This function is the top level interrupt handler for the Common + * (Device and host modes) interrupts. + */ +static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev) +{ + struct dwc_otg_device *otg_dev = _dev; + int32_t retval = IRQ_NONE; + unsigned long flags; + + spin_lock_irqsave(&otg_dev->hcd->global_lock, flags); + + retval = dwc_otg_handle_common_intr(otg_dev->core_if); + + spin_unlock_irqrestore(&otg_dev->hcd->global_lock, flags); + + return IRQ_RETVAL(retval); +} + +/** + * This function is called when a device is unregistered with the + * dwc_otg_driver. This happens, for example, when the rmmod command is + * executed. The device may or may not be electrically present. If it is + * present, the driver stops device processing. Any resources used on behalf + * of this device are freed. + * + * @dev: + */ +static int dwc_otg_driver_remove(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct dwc_otg_device *otg_dev = dev->platform_data; + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, dev); + + if (otg_dev == NULL) + /* Memory allocation for the dwc_otg_device failed. */ + return -ENOMEM; + + /* + * Free the IRQ + */ + if (otg_dev->common_irq_installed) + free_irq(platform_get_irq(to_platform_device(dev), 0), otg_dev); + +#ifndef DWC_DEVICE_ONLY + if (otg_dev->hcd != NULL) + dwc_otg_hcd_remove(dev); +#endif + +#ifndef DWC_HOST_ONLY + if (otg_dev->pcd != NULL) + dwc_otg_pcd_remove(dev); +#endif + if (otg_dev->core_if != NULL) + dwc_otg_cil_remove(otg_dev->core_if); + + /* + * Remove the device attributes + */ + dwc_otg_attr_remove(dev); + + /* + * Clear the platform_data pointer. + */ + dev->platform_data = 0; + return 0; +} + +/** + * This function is called when an device is bound to a + * dwc_otg_driver. It creates the driver components required to + * control the device (CIL, HCD, and PCD) and it initializes the + * device. The driver components are stored in a dwc_otg_device + * structure. A reference to the dwc_otg_device is saved in the + * device. This allows the driver to access the dwc_otg_device + * structure on subsequent calls to driver methods for this device. + * + * @dev: device definition + */ +static __devinit int dwc_otg_driver_probe(struct platform_device *pdev) +{ + struct resource *res_base; + struct device *dev = &pdev->dev; + struct dwc_otg_device *dwc_otg_device; + int32_t snpsid; + unsigned long flags; + int irq; + int retval; + + dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev); + + dwc_otg_device = devm_kzalloc(&pdev->dev, + sizeof(struct dwc_otg_device), + GFP_KERNEL); + if (!dwc_otg_device) { + dev_err(dev, "kmalloc of dwc_otg_device failed\n"); + return -ENOMEM; + } + dwc_otg_device->reg_offset = 0xFFFFFFFF; + + /* + * Map the DWC_otg Core memory into virtual address space. + */ + res_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res_base) + goto err_ports; + + dwc_otg_device->base = + devm_ioremap_nocache(&pdev->dev, + res_base->start, + res_base->end - res_base->start); + + if (!dwc_otg_device->base) + goto err_ports; + + dev_dbg(dev, "base=%p\n", dwc_otg_device->base); + + /* + * Attempt to ensure this device is really a DWC_otg Controller. + * Read and verify the SNPSID register contents. The value should be + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". + */ + snpsid = + dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base + + 0x40)); + if ((snpsid & 0xFFFFF000) != 0x4F542000) { + dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid); + goto err_ports; + } + + /* + * Initialize driver data to point to the global DWC_otg + * Device structure. + */ + dev->platform_data = dwc_otg_device; + dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device); + + dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base, + &dwc_otg_module_params); + if (dwc_otg_device->core_if == 0) { + dev_err(dev, "CIL initialization failed!\n"); + goto err_ports; + } + dwc_otg_device->core_if->usb_num = to_platform_device(dev)->id; + + /* + * Validate parameter values. + */ + if (check_parameters(dwc_otg_device->core_if) != 0) + goto err_ports; + + /* + * Create Device Attributes in sysfs + */ + dwc_otg_attr_create(dev); + + /* + * Disable the global interrupt until all the interrupt + * handlers are installed. + */ + dwc_otg_disable_global_interrupts(dwc_otg_device->core_if); + /* + * Install the interrupt handler for the common interrupts before + * enabling common interrupts in core_init below. + */ + irq = platform_get_irq(to_platform_device(dev), 0); + DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", irq); + retval = request_irq(irq, dwc_otg_common_irq, + IRQF_SHARED, "dwc_otg", dwc_otg_device); + if (retval != 0) { + DWC_ERROR("request of irq%d failed\n", irq); + goto err_ports; + } else { + dwc_otg_device->common_irq_installed = 1; + } + + /* + * Initialize the DWC_otg core. + */ + dwc_otg_core_init(dwc_otg_device->core_if); + +#ifndef DWC_HOST_ONLY + /* + * Initialize the PCD + */ + retval = dwc_otg_pcd_init(dev); + if (retval != 0) { + DWC_ERROR("dwc_otg_pcd_init failed\n"); + dwc_otg_device->pcd = NULL; + goto err_ports; + } +#endif +#ifndef DWC_DEVICE_ONLY + /* + * Initialize the HCD + */ + retval = dwc_otg_hcd_init(dev); + if (retval != 0) { + DWC_ERROR("dwc_otg_hcd_init failed\n"); + dwc_otg_device->hcd = NULL; + goto err_ports; + } +#endif + + /* + * Enable the global interrupt after all the interrupt + * handlers are installed. + */ + local_irq_save(flags); + dwc_otg_enable_global_interrupts(dwc_otg_device->core_if); + local_irq_restore(flags); + + return 0; + +err_ports: + devm_kfree(&pdev->dev, dwc_otg_device); + return -ENOENT; +} + +/** + * This structure defines the methods to be called by a bus driver + * during the lifecycle of a device on that bus. Both drivers and + * devices are registered with a bus driver. The bus driver matches + * devices to drivers based on information in the device and driver + * structures. + * + * The probe function is called when the bus driver matches a device + * to this driver. The remove function is called when a device is + * unregistered with the bus driver. + */ +static struct platform_driver dwc_otg_driver = { + .probe = dwc_otg_driver_probe, + .remove = dwc_otg_driver_remove, + .driver = { + .name = dwc_driver_name, + .owner = THIS_MODULE}, +}; + +/** + * This function is called when the dwc_otg_driver is installed with the + * insmod command. It registers the dwc_otg_driver structure with the + * appropriate bus driver. This will cause the dwc_otg_driver_probe function + * to be called. In addition, the bus driver will automatically expose + * attributes defined for the device and driver in the special sysfs file + * system. + * + * Returns + */ +static int __init dwc_otg_driver_init(void) +{ + int retval; + + pr_info("%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION); + + /* Though core was configured for external dma override that with slave + mode only for CN31XX. DMA is broken in this chip */ + if (OCTEON_IS_MODEL(OCTEON_CN31XX)) + dwc_otg_module_params.dma_enable = 0; + + retval = platform_driver_register(&dwc_otg_driver); + + if (retval < 0) { + pr_err("%s retval=%d\n", __func__, retval); + return retval; + } + if (driver_create_file(&dwc_otg_driver.driver, &driver_attr_version)) + pr_warning("DWC_OTG: Failed to create driver version file\n"); + + return retval; +} +module_init(dwc_otg_driver_init); + +/** + * This function is called when the driver is removed from the kernel + * with the rmmod command. The driver unregisters itself with its bus + * driver. + * + */ +static void __exit dwc_otg_driver_cleanup(void) +{ + printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n"); + + driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); + + platform_driver_unregister(&dwc_otg_driver); + + printk(KERN_INFO "%s module removed\n", dwc_driver_name); +} +module_exit(dwc_otg_driver_cleanup); + +MODULE_DESCRIPTION(DWC_DRIVER_DESC); +MODULE_AUTHOR("Synopsys Inc."); +MODULE_LICENSE("GPL"); + +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); +module_param_named(opt, dwc_otg_module_params.opt, int, 0444); +MODULE_PARM_DESC(opt, "OPT Mode"); +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, + 0444); +MODULE_PARM_DESC(dma_burst_size, + "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); +module_param_named(speed, dwc_otg_module_params.speed, int, 0444); +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); +module_param_named(host_support_fs_ls_low_power, + dwc_otg_module_params.host_support_fs_ls_low_power, int, + 0444); +MODULE_PARM_DESC(host_support_fs_ls_low_power, + "Support Low Power w/FS or LS 0=Support 1=Don't Support"); +module_param_named(host_ls_low_power_phy_clk, + dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); +MODULE_PARM_DESC(host_ls_low_power_phy_clk, + "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); +module_param_named(enable_dynamic_fifo, + dwc_otg_module_params.enable_dynamic_fifo, int, 0444); +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); +module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, + 0444); +MODULE_PARM_DESC(data_fifo_size, + "Total number of words in the data FIFO memory 32-32768"); +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, + int, 0444); +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); +module_param_named(dev_nperio_tx_fifo_size, + dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, + "Number of words in the non-periodic Tx FIFO 16-32768"); +module_param_named(dev_perio_tx_fifo_size_1, + dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_2, + dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_3, + dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_4, + dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_5, + dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_6, + dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_7, + dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_8, + dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_9, + dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_10, + dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_11, + dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_12, + dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_13, + dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_14, + dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(dev_perio_tx_fifo_size_15, + dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, + "Number of words in the periodic Tx FIFO 4-768"); +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, + int, 0444); +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); +module_param_named(host_nperio_tx_fifo_size, + dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(host_nperio_tx_fifo_size, + "Number of words in the non-periodic Tx FIFO 16-32768"); +module_param_named(host_perio_tx_fifo_size, + dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); +MODULE_PARM_DESC(host_perio_tx_fifo_size, + "Number of words in the host periodic Tx FIFO 16-32768"); +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, + int, 0444); +/** @todo Set the max to 512K, modify checks */ +MODULE_PARM_DESC(max_transfer_size, + "The maximum transfer size supported in bytes 2047-65535"); +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, + int, 0444); +MODULE_PARM_DESC(max_packet_count, + "The maximum number of packets in a transfer 15-511"); +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, + 0444); +MODULE_PARM_DESC(host_channels, + "The number of host channel registers to use 1-16"); +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, + 0444); +MODULE_PARM_DESC(dev_endpoints, + "The number of endpoints in addition to EP0 available " + "for device mode 1-15"); +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, + 0444); +MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); +MODULE_PARM_DESC(phy_ulpi_ddr, + "ULPI at double or single data rate 0=Single 1=Double"); +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, + int, 0444); +MODULE_PARM_DESC(phy_ulpi_ext_vbus, + "ULPI PHY using internal or external vbus 0=Internal"); +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); +module_param_named(debug, g_dbg_lvl, int, 0644); +MODULE_PARM_DESC(debug, ""); + +/** @page "Module Parameters" + * + * The following parameters may be specified when starting the module. + * These parameters define how the DWC_otg controller should be + * configured. Parameter values are passed to the CIL initialization + * function dwc_otg_cil_init + * + * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code> + * + + <table> + <tr><td>Parameter Name</td><td>Meaning</td></tr> + + <tr> + <td>otg_cap</td> + <td>Specifies the OTG capabilities. The driver will automatically detect the + value for this parameter if none is specified. + - 0: HNP and SRP capable (default, if available) + - 1: SRP Only capable + - 2: No HNP/SRP capable + </td></tr> + + <tr> + <td>dma_enable</td> + <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs. + The driver will automatically detect the value for this parameter if none is + specified. + - 0: Slave + - 1: DMA (default, if available) + </td></tr> + + <tr> + <td>dma_burst_size</td> + <td>The DMA Burst size (applicable only for External DMA Mode). + - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) + </td></tr> + + <tr> + <td>speed</td> + <td>Specifies the maximum speed of operation in host and device mode. The + actual speed depends on the speed of the attached device and the value of + phy_type. + - 0: High Speed (default) + - 1: Full Speed + </td></tr> + + <tr> + <td>host_support_fs_ls_low_power</td> + <td>Specifies whether low power mode is supported when attached to a Full + Speed or Low Speed device in host mode. + - 0: Don't support low power mode (default) + - 1: Support low power mode + </td></tr> + + <tr> + <td>host_ls_low_power_phy_clk</td> + <td>Specifies the PHY clock rate in low power mode when connected to a Low + Speed device in host mode. This parameter is applicable only if + HOST_SUPPORT_FS_LS_LOW_POWER is enabled. + - 0: 48 MHz (default) + - 1: 6 MHz + </td></tr> + + <tr> + <td>enable_dynamic_fifo</td> + <td> Specifies whether FIFOs may be resized by the driver software. + - 0: Use cC FIFO size parameters + - 1: Allow dynamic FIFO sizing (default) + </td></tr> + + <tr> + <td>data_fifo_size</td> + <td>Total number of 4-byte words in the data FIFO memory. This memory + includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. + - Values: 32 to 32768 (default 8192) + + Note: The total FIFO memory depth in the FPGA configuration is 8192. + </td></tr> + + <tr> + <td>dev_rx_fifo_size</td> + <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic + FIFO sizing is enabled. + - Values: 16 to 32768 (default 1064) + </td></tr> + + <tr> + <td>dev_nperio_tx_fifo_size</td> + <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when + dynamic FIFO sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td> + <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode + when dynamic FIFO sizing is enabled. + - Values: 4 to 768 (default 256) + </td></tr> + + <tr> + <td>host_rx_fifo_size</td> + <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO + sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>host_nperio_tx_fifo_size</td> + <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when + dynamic FIFO sizing is enabled in the core. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>host_perio_tx_fifo_size</td> + <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO + sizing is enabled. + - Values: 16 to 32768 (default 1024) + </td></tr> + + <tr> + <td>max_transfer_size</td> + <td>The maximum transfer size supported in bytes. + - Values: 2047 to 65,535 (default 65,535) + </td></tr> + + <tr> + <td>max_packet_count</td> + <td>The maximum number of packets in a transfer. + - Values: 15 to 511 (default 511) + </td></tr> + + <tr> + <td>host_channels</td> + <td>The number of host channel registers to use. + - Values: 1 to 16 (default 12) + + Note: The FPGA configuration supports a maximum of 12 host channels. + </td></tr> + + <tr> + <td>dev_endpoints</td> + <td>The number of endpoints in addition to EP0 available for device mode + operations. + - Values: 1 to 15 (default 6 IN and OUT) + + Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in + addition to EP0. + </td></tr> + + <tr> + <td>phy_type</td> + <td>Specifies the type of PHY interface to use. By default, the driver will + automatically detect the phy_type. + - 0: Full Speed + - 1: UTMI+ (default, if available) + - 2: ULPI + </td></tr> + + <tr> + <td>phy_utmi_width</td> + <td>Specifies the UTMI+ Data Width. This parameter is applicable for a + phy_type of UTMI+. Also, this parameter is applicable only if the + OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the + core has been configured to work at either data path width. + - Values: 8 or 16 bits (default 16) + </td></tr> + + <tr> + <td>phy_ulpi_ddr</td> + <td>Specifies whether the ULPI operates at double or single data rate. This + parameter is only applicable if phy_type is ULPI. + - 0: single data rate ULPI interface with 8 bit wide data bus (default) + - 1: double data rate ULPI interface with 4 bit wide data bus + </td></tr> + + <tr> + <td>i2c_enable</td> + <td>Specifies whether to use the I2C interface for full speed PHY. This + parameter is only applicable if PHY_TYPE is FS. + - 0: Disabled (default) + - 1: Enabled + </td></tr> + +*/ diff --git a/drivers/usb/host/dwc_otg/dwc_otg_plat.h b/drivers/usb/host/dwc_otg/dwc_otg_plat.h new file mode 100644 index 0000000..93ef282 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_plat.h @@ -0,0 +1,236 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#if !defined(__DWC_OTG_PLAT_H__) +#define __DWC_OTG_PLAT_H__ + +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/list.h> +#include <linux/delay.h> +#include <linux/device.h> +#include <linux/io.h> + +#include <asm/octeon/octeon.h> +#include <asm/octeon/cvmx-usbnx-defs.h> + +#define SZ_256K 0x00040000 +#ifndef CONFIG_64BIT +#define OCTEON_USB_BASE_ADDRESS 0x80016F0010000000ull +#endif + +/** + * @file + * + * This file contains the Platform Specific constants, interfaces + * (functions and macros) for Linux. + * + */ + +/** + * Reads the content of a register. + * + * @_reg: address of register to read. + * Returns contents of the register. + * + + * Usage:<br> + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> + */ +static inline uint32_t dwc_read_reg32(uint32_t *_reg) +{ + uint32_t result; + /* USB device registers on Octeon are 32bit address swapped */ +#ifdef CONFIG_64BIT + uint64_t address = (unsigned long)_reg ^ 4; +#else + uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4); +#endif + result = cvmx_read64_uint32(address); + return result; +}; + +/** + * Writes a register with a 32 bit value. + * + * @_reg: address of register to read. + * @_value: to write to _reg. + * + * Usage:<br> + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> + */ +static inline void dwc_write_reg32(uint32_t *_reg, + const uint32_t _value) +{ + /* USB device registers on Octeon are 32bit address swapped */ +#ifdef CONFIG_64BIT + uint64_t address = (unsigned long)_reg ^ 4; +#else + uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4); +#endif + wmb(); + cvmx_write64_uint32(address, _value); + +#ifdef CONFIG_CPU_CAVIUM_OCTEON + /* O2P/O1P pass 1 bug workaround: A read must occur for at least + every 3rd write to insure that the writes do not overrun the + USBN. */ + if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) { + extern int dwc_errata_write_count; + if (++dwc_errata_write_count > 2) { + cvmx_read_csr(CVMX_USBNX_DMA0_INB_CHN0(0)); + dwc_errata_write_count = 0; + } + } +#endif +}; + +/** + * This function modifies bit values in a register. Using the + * algorithm: (reg_contents & ~clear_mask) | set_mask. + * + * @_reg: address of register to read. + * @_clear_mask: bit mask to be cleared. + * @_set_mask: bit mask to be set. + * + * Usage:<br> + * <code> // Clear the SOF Interrupt Mask bit and <br> + * // set the OTG Interrupt mask bit, leaving all others as they were. + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> + */ +static inline void dwc_modify_reg32(uint32_t *_reg, + const uint32_t _clear_mask, + const uint32_t _set_mask) +{ + uint32_t value = dwc_read_reg32(_reg); + value &= ~_clear_mask; + value |= _set_mask; + dwc_write_reg32(_reg, value); +}; + +/* + * Debugging support vanishes in non-debug builds. + */ + +/** + * The Debug Level bit-mask variable. + */ +extern uint32_t g_dbg_lvl; +/** + * Set the Debug Level variable. + */ +static inline uint32_t SET_DEBUG_LEVEL(const uint32_t _new) +{ + uint32_t old = g_dbg_lvl; + g_dbg_lvl = _new; + return old; +} + +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ +#define DBG_CIL (0x2) +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug + * messages */ +#define DBG_CILV (0x20) +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug + * messages */ +#define DBG_PCD (0x4) +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug + * messages */ +#define DBG_PCDV (0x40) +/** When debug level has the DBG_HCD bit set, display Host debug messages */ +#define DBG_HCD (0x8) +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug + * messages */ +#define DBG_HCDV (0x80) +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host + * mode. */ +#define DBG_HCD_URB (0x800) + +/** When debug level has any bit set, display debug messages */ +#define DBG_ANY (0xFF) + +/** All debug messages off */ +#define DBG_OFF 0 + +/** Prefix string for DWC_DEBUG print macros. */ +#define USB_DWC "DWC_otg: " + +/** + * Print a debug message when the Global debug level variable contains + * the bit defined in <code>lvl</code>. + * + * @lvl: - Debug level, use one of the DBG_ constants above. + * @x: - like printf + * + * Example:<p> + * <code> + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); + * </code> + * <br> + * results in:<br> + * <code> + * usb-DWC_otg: dwc_otg_cil_init(ca867000) + * </code> + */ +#ifdef DEBUG + +# define DWC_DEBUGPL(lvl, x...) \ + do { \ + if ((lvl)&g_dbg_lvl) \ + printk(KERN_DEBUG USB_DWC x); \ + } while (0) +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x) + +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) + +#else + +# define DWC_DEBUGPL(lvl, x...) do { } while (0) +# define DWC_DEBUGP(x...) + +# define CHK_DEBUG_LEVEL(level) (0) + +#endif /*DEBUG*/ +/* + * Print an Error message. + */ +#define DWC_ERROR(x...) printk(KERN_ERR USB_DWC x) +/* + * Print a Warning message. + */ +#define DWC_WARN(x...) printk(KERN_WARNING USB_DWC x) +/* + * Print a notice (normal but significant message). + */ +#define DWC_NOTICE(x...) printk(KERN_NOTICE USB_DWC x) +/* + * Basic message printing. + */ +#define DWC_PRINT(x...) printk(KERN_INFO USB_DWC x) +#endif diff --git a/drivers/usb/host/dwc_otg/dwc_otg_regs.h b/drivers/usb/host/dwc_otg/dwc_otg_regs.h new file mode 100644 index 0000000..34cc4f7 --- /dev/null +++ b/drivers/usb/host/dwc_otg/dwc_otg_regs.h @@ -0,0 +1,2355 @@ +/* ========================================================================== + * + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless + * otherwise expressly agreed to in writing between Synopsys and you. + * + * The Software IS NOT an item of Licensed Software or Licensed Product under + * any End User Software License Agreement or Agreement for Licensed Product + * with Synopsys or any supplement thereto. You are permitted to use and + * redistribute this Software in source and binary forms, with or without + * modification, provided that redistributions of source code must retain this + * notice. You may not view, use, disclose, copy or distribute this file or + * any information contained herein except pursuant to this license grant from + * Synopsys. If you do not agree with this notice, including the disclaimer + * below, then you are not authorized to use the Software. + * + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * ========================================================================== */ + +#ifndef __DWC_OTG_REGS_H__ +#define __DWC_OTG_REGS_H__ + +/* + * + * This file contains the data structures for accessing the DWC_otg + * core registers. + * + * The application interfaces with the HS OTG core by reading from and + * writing to the Control and Status Register (CSR) space through the + * AHB Slave interface. These registers are 32 bits wide, and the + * addresses are 32-bit-block aligned. + * CSRs are classified as follows: + * - Core Global Registers + * - Device Mode Registers + * - Device Global Registers + * - Device Endpoint Specific Registers + * - Host Mode Registers + * - Host Global Registers + * - Host Port CSRs + * - Host Channel Specific Registers + * + * Only the Core Global registers can be accessed in both Device and + * Host modes. When the HS OTG core is operating in one mode, either + * Device or Host, the application must not access registers from the + * other mode. When the core switches from one mode to another, the + * registers in the new mode of operation must be reprogrammed as they + * would be after a power-on reset. + */ + +/****************************************************************************/ +/* DWC_otg Core registers . + * The dwc_otg_core_global_regs structure defines the size + * and relative field offsets for the Core Global registers. + */ +struct dwc_otg_core_global_regs { + /* OTG Control and Status Register. Offset: 000h */ + uint32_t gotgctl; + /* OTG Interrupt Register. Offset: 004h */ + uint32_t gotgint; + /* Core AHB Configuration Register. Offset: 008h */ + uint32_t gahbcfg; +#define DWC_GLBINTRMASK 0x0001 +#define DWC_DMAENABLE 0x0020 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 + + /* Core USB Configuration Register. Offset: 00Ch */ + uint32_t gusbcfg; + /* Core Reset Register. Offset: 010h */ + uint32_t grstctl; + /* Core Interrupt Register. Offset: 014h */ + uint32_t gintsts; + /* Core Interrupt Mask Register. Offset: 018h */ + uint32_t gintmsk; + /* Receive Status Queue Read Register (Read Only). Offset: 01Ch */ + uint32_t grxstsr; + /* Receive Status Queue Read & POP Register (Read Only). Offset: 020h*/ + uint32_t grxstsp; + /* Receive FIFO Size Register. Offset: 024h */ + uint32_t grxfsiz; + /* Non Periodic Transmit FIFO Size Register. Offset: 028h */ + uint32_t gnptxfsiz; + /* + *Non Periodic Transmit FIFO/Queue Status Register (Read + * Only). Offset: 02Ch + */ + uint32_t gnptxsts; + /* I2C Access Register. Offset: 030h */ + uint32_t gi2cctl; + /* PHY Vendor Control Register. Offset: 034h */ + uint32_t gpvndctl; + /* General Purpose Input/Output Register. Offset: 038h */ + uint32_t ggpio; + /* User ID Register. Offset: 03Ch */ + uint32_t guid; + /* Synopsys ID Register (Read Only). Offset: 040h */ + uint32_t gsnpsid; + /* User HW Config1 Register (Read Only). Offset: 044h */ + uint32_t ghwcfg1; + /* User HW Config2 Register (Read Only). Offset: 048h */ + uint32_t ghwcfg2; +#define DWC_SLAVE_ONLY_ARCH 0 +#define DWC_EXT_DMA_ARCH 1 +#define DWC_INT_DMA_ARCH 2 + +#define DWC_MODE_HNP_SRP_CAPABLE 0 +#define DWC_MODE_SRP_ONLY_CAPABLE 1 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 +#define DWC_MODE_SRP_CAPABLE_HOST 5 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 + + /* User HW Config3 Register (Read Only). Offset: 04Ch */ + uint32_t ghwcfg3; + /* User HW Config4 Register (Read Only). Offset: 050h*/ + uint32_t ghwcfg4; + /* Reserved Offset: 054h-0FFh */ + uint32_t reserved[43]; + /* Host Periodic Transmit FIFO Size Register. Offset: 100h */ + uint32_t hptxfsiz; + /* + * Device Periodic Transmit FIFO#n Register. + * Offset: 104h + (FIFO_Number-1)*04h, + * 1 <= FIFO Number <= 15 (1<=n<=15). + */ + uint32_t dptxfsiz[15]; +}; + +/* + * This union represents the bit fields of the Core OTG Control + * and Status Register (GOTGCTL). Set the bits using the bit + * fields then write the d32 value to the register. + */ +union gotgctl_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved21_31:11; + unsigned currmod:1; + unsigned bsesvld:1; + unsigned asesvld:1; + unsigned reserved17:1; + unsigned conidsts:1; + unsigned reserved12_15:4; + unsigned devhnpen:1; + unsigned hstsethnpen:1; + unsigned hnpreq:1; + unsigned hstnegscs:1; + unsigned reserved2_7:6; + unsigned sesreq:1; + unsigned sesreqscs:1; +#else + unsigned sesreqscs:1; + unsigned sesreq:1; + unsigned reserved2_7:6; + unsigned hstnegscs:1; + unsigned hnpreq:1; + unsigned hstsethnpen:1; + unsigned devhnpen:1; + unsigned reserved12_15:4; + unsigned conidsts:1; + unsigned reserved17:1; + unsigned asesvld:1; + unsigned bsesvld:1; + unsigned currmod:1; + unsigned reserved21_31:11; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core OTG Interrupt Register + * (GOTGINT). Set/clear the bits using the bit fields then write the d32 + * value to the register. + */ +union gotgint_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved31_20:12; + unsigned debdone:1; + unsigned adevtoutchng:1; + unsigned hstnegdet:1; + unsigned reserver10_16:7; + unsigned hstnegsucstschng:1; + unsigned sesreqsucstschng:1; + unsigned reserved3_7:5; + unsigned sesenddet:1; + unsigned reserved0_1:2; +#else + + /* Current Mode */ + unsigned reserved0_1:2; + + /* Session End Detected */ + unsigned sesenddet:1; + + unsigned reserved3_7:5; + + /* Session Request Success Status Change */ + unsigned sesreqsucstschng:1; + /* Host Negotiation Success Status Change */ + unsigned hstnegsucstschng:1; + + unsigned reserver10_16:7; + + /* Host Negotiation Detected */ + unsigned hstnegdet:1; + /* A-Device Timeout Change */ + unsigned adevtoutchng:1; + /* Debounce Done */ + unsigned debdone:1; + + unsigned reserved31_20:12; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core AHB Configuration + * Register (GAHBCFG). Set/clear the bits using the bit fields then + * write the d32 value to the register. + */ +union gahbcfg_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 +#define DWC_GAHBCFG_DMAENABLE 1 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 +#define DWC_GAHBCFG_GLBINT_ENABLE 1 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved9_31:23; + unsigned ptxfemplvl:1; + unsigned nptxfemplvl:1; + unsigned reserved:1; + unsigned dmaenable:1; + unsigned hburstlen:4; + unsigned glblintrmsk:1; +#else + unsigned glblintrmsk:1; + unsigned hburstlen:4; + unsigned dmaenable:1; + unsigned reserved:1; + unsigned nptxfemplvl:1; + unsigned ptxfemplvl:1; + unsigned reserved9_31:23; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core USB Configuration + * Register (GUSBCFG). Set the bits using the bit fields then write + * the d32 value to the register. + */ +union gusbcfg_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:9; + unsigned term_sel_dl_pulse:1; + unsigned ulpi_int_vbus_indicator:1; + unsigned ulpi_ext_vbus_drv:1; + unsigned ulpi_clk_sus_m:1; + unsigned ulpi_auto_res:1; + unsigned ulpi_fsls:1; + unsigned otgutmifssel:1; + unsigned phylpwrclksel:1; + unsigned nptxfrwnden:1; + unsigned usbtrdtim:4; + unsigned hnpcap:1; + unsigned srpcap:1; + unsigned ddrsel:1; + unsigned physel:1; + unsigned fsintf:1; + unsigned ulpi_utmi_sel:1; + unsigned phyif:1; + unsigned toutcal:3; +#else + unsigned toutcal:3; + unsigned phyif:1; + unsigned ulpi_utmi_sel:1; + unsigned fsintf:1; + unsigned physel:1; + unsigned ddrsel:1; + unsigned srpcap:1; + unsigned hnpcap:1; + unsigned usbtrdtim:4; + unsigned nptxfrwnden:1; + unsigned phylpwrclksel:1; + unsigned otgutmifssel:1; + unsigned ulpi_fsls:1; + unsigned ulpi_auto_res:1; + unsigned ulpi_clk_sus_m:1; + unsigned ulpi_ext_vbus_drv:1; + unsigned ulpi_int_vbus_indicator:1; + unsigned term_sel_dl_pulse:1; + unsigned reserved:9; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core Reset Register + * (GRSTCTL). Set/clear the bits using the bit fields then write the + * d32 value to the register. + */ +union grstctl_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned ahbidle:1; + unsigned dmareq:1; + unsigned reserved11_29:19; + unsigned txfnum:5; + unsigned txfflsh:1; + unsigned rxfflsh:1; + unsigned intknqflsh:1; + unsigned hstfrm:1; + unsigned hsftrst:1; + unsigned csftrst:1; +#else + + /* + * Core Soft Reset (CSftRst) (Device and Host) + * + * The application can flush the control logic in the + * entire core using this bit. This bit resets the + * pipelines in the AHB Clock domain as well as the + * PHY Clock domain. + * + * The state machines are reset to an IDLE state, the + * control bits in the CSRs are cleared, all the + * transmit FIFOs and the receive FIFO are flushed. + * + * The status mask bits that control the generation of + * the interrupt, are cleared, to clear the + * interrupt. The interrupt status bits are not + * cleared, so the application can get the status of + * any events that occurred in the core after it has + * set this bit. + * + * Any transactions on the AHB are terminated as soon + * as possible following the protocol. Any + * transactions on the USB are terminated immediately. + * + * The configuration settings in the CSRs are + * unchanged, so the software doesn't have to + * reprogram these registers (Device + * Configuration/Host Configuration/Core System + * Configuration/Core PHY Configuration). + * + * The application can write to this bit, any time it + * wants to reset the core. This is a self clearing + * bit and the core clears this bit after all the + * necessary logic is reset in the core, which may + * take several clocks, depending on the current state + * of the core. + */ + unsigned csftrst:1; + /* + * Hclk Soft Reset + * + * The application uses this bit to reset the control logic in + * the AHB clock domain. Only AHB clock domain pipelines are + * reset. + */ + unsigned hsftrst:1; + /* + * Host Frame Counter Reset (Host Only)<br> + * + * The application can reset the (micro)frame number + * counter inside the core, using this bit. When the + * (micro)frame counter is reset, the subsequent SOF + * sent out by the core, will have a (micro)frame + * number of 0. + */ + unsigned hstfrm:1; + /* + * In Token Sequence Learning Queue Flush + * (INTknQFlsh) (Device Only) + */ + unsigned intknqflsh:1; + /* + * RxFIFO Flush (RxFFlsh) (Device and Host) + * + * The application can flush the entire Receive FIFO + * using this bit. <p>The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is reading from the RxFIFO nor the MAC + * is writing the data in to the FIFO. <p>The + * application should wait until the bit is cleared + * before performing any other operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned rxfflsh:1; + /* + * TxFIFO Flush (TxFFlsh) (Device and Host). + * + * This bit is used to selectively flush a single or + * all transmit FIFOs. The application must first + * ensure that the core is not in the middle of a + * transaction. <p>The application should write into + * this bit, only after making sure that neither the + * DMA engine is writing into the TxFIFO nor the MAC + * is reading the data out of the FIFO. <p>The + * application should wait until the core clears this + * bit, before performing any operations. This bit + * will takes 8 clocks (slowest of PHY or AHB clock) + * to clear. + */ + unsigned txfflsh:1; + + /* + * TxFIFO Number (TxFNum) (Device and Host). + * + * This is the FIFO number which needs to be flushed, + * using the TxFIFO Flush bit. This field should not + * be changed until the TxFIFO Flush bit is cleared by + * the core. + * - 0x0:Non Periodic TxFIFO Flush + * - 0x1:Periodic TxFIFO #1 Flush in device mode + * or Periodic TxFIFO in host mode + * - 0x2:Periodic TxFIFO #2 Flush in device mode. + * - ... + * - 0xF:Periodic TxFIFO #15 Flush in device mode + * - 0x10: Flush all the Transmit NonPeriodic and + * Transmit Periodic FIFOs in the core + */ + unsigned txfnum:5; + /* Reserved */ + unsigned reserved11_29:19; + /* + * DMA Request Signal. Indicated DMA request is in + * probress. Used for debug purpose. + */ + unsigned dmareq:1; + /* + * AHB Master Idle. Indicates the AHB Master State + * Machine is in IDLE condition. + */ + unsigned ahbidle:1; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core Interrupt Mask + * Register (GINTMSK). Set/clear the bits using the bit fields then + * write the d32 value to the register. + */ +union gintmsk_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned wkupintr:1; + unsigned sessreqintr:1; + unsigned disconnect:1; + unsigned conidstschng:1; + unsigned reserved27:1; + unsigned ptxfempty:1; + unsigned hcintr:1; + unsigned portintr:1; + unsigned reserved22_23:2; + unsigned incomplisoout:1; + unsigned incomplisoin:1; + unsigned outepintr:1; + unsigned inepintr:1; + unsigned epmismatch:1; + unsigned reserved16:1; + unsigned eopframe:1; + unsigned isooutdrop:1; + unsigned enumdone:1; + unsigned usbreset:1; + unsigned usbsuspend:1; + unsigned erlysuspend:1; + unsigned i2cintr:1; + unsigned reserved8:1; + unsigned goutnakeff:1; + unsigned ginnakeff:1; + unsigned nptxfempty:1; + unsigned rxstsqlvl:1; + unsigned sofintr:1; + unsigned otgintr:1; + unsigned modemismatch:1; + unsigned reserved0:1; +#else + unsigned reserved0:1; + unsigned modemismatch:1; + unsigned otgintr:1; + unsigned sofintr:1; + unsigned rxstsqlvl:1; + unsigned nptxfempty:1; + unsigned ginnakeff:1; + unsigned goutnakeff:1; + unsigned reserved8:1; + unsigned i2cintr:1; + unsigned erlysuspend:1; + unsigned usbsuspend:1; + unsigned usbreset:1; + unsigned enumdone:1; + unsigned isooutdrop:1; + unsigned eopframe:1; + unsigned reserved16:1; + unsigned epmismatch:1; + unsigned inepintr:1; + unsigned outepintr:1; + unsigned incomplisoin:1; + unsigned incomplisoout:1; + unsigned reserved22_23:2; + unsigned portintr:1; + unsigned hcintr:1; + unsigned ptxfempty:1; + unsigned reserved27:1; + unsigned conidstschng:1; + unsigned disconnect:1; + unsigned sessreqintr:1; + unsigned wkupintr:1; +#endif + } b; +}; + +/* + * This union represents the bit fields of the Core Interrupt Register + * (GINTSTS). Set/clear the bits using the bit fields then write the + * d32 value to the register. + */ +union gintsts_data { + /* raw register data */ + uint32_t d32; +#define DWC_SOF_INTR_MASK 0x0008 + + /* register bits */ + struct { +#define DWC_HOST_MODE 1 +#ifdef __BIG_ENDIAN_BITFIELD + unsigned wkupintr:1; + unsigned sessreqintr:1; + unsigned disconnect:1; + unsigned conidstschng:1; + unsigned reserved27:1; + unsigned ptxfempty:1; + unsigned hcintr:1; + unsigned portintr:1; + unsigned reserved22_23:2; + unsigned incomplisoout:1; + unsigned incomplisoin:1; + unsigned outepintr:1; + unsigned inepint:1; + unsigned epmismatch:1; + unsigned intokenrx:1; + unsigned eopframe:1; + unsigned isooutdrop:1; + unsigned enumdone:1; + unsigned usbreset:1; + unsigned usbsuspend:1; + unsigned erlysuspend:1; + unsigned i2cintr:1; + unsigned reserved8:1; + unsigned goutnakeff:1; + unsigned ginnakeff:1; + unsigned nptxfempty:1; + unsigned rxstsqlvl:1; + unsigned sofintr:1; + unsigned otgintr:1; + unsigned modemismatch:1; + unsigned curmode:1; +#else + unsigned curmode:1; + unsigned modemismatch:1; + unsigned otgintr:1; + unsigned sofintr:1; + unsigned rxstsqlvl:1; + unsigned nptxfempty:1; + unsigned ginnakeff:1; + unsigned goutnakeff:1; + unsigned reserved8:1; + unsigned i2cintr:1; + unsigned erlysuspend:1; + unsigned usbsuspend:1; + unsigned usbreset:1; + unsigned enumdone:1; + unsigned isooutdrop:1; + unsigned eopframe:1; + unsigned intokenrx:1; + unsigned epmismatch:1; + unsigned inepint:1; + unsigned outepintr:1; + unsigned incomplisoin:1; + unsigned incomplisoout:1; + unsigned reserved22_23:2; + unsigned portintr:1; + unsigned hcintr:1; + unsigned ptxfempty:1; + unsigned reserved27:1; + unsigned conidstschng:1; + unsigned disconnect:1; + unsigned sessreqintr:1; + unsigned wkupintr:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 + * element then read out the bits using the bit elements. + */ +union device_grxsts_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_DSTS_SETUP_UPDT 0x6 /* SETUP Packet */ +#define DWC_DSTS_SETUP_COMP 0x4 /* Setup Phase Complete */ +#define DWC_DSTS_GOUT_NAK 0x1 /* Global OUT NAK */ +#define DWC_STS_XFER_COMP 0x3 /* OUT Data Transfer Complete */ +#define DWC_STS_DATA_UPDT 0x2 /* OUT Data Packet */ + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:7; + unsigned fn:4; + unsigned pktsts:4; + unsigned dpid:2; + unsigned bcnt:11; + unsigned epnum:4; +#else + unsigned epnum:4; + unsigned bcnt:11; + unsigned dpid:2; + unsigned pktsts:4; + unsigned fn:4; + unsigned reserved:7; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Host Receive Status Read and + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 + * element then read out the bits using the bit elements. + */ +union host_grxsts_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 +#define DWC_GRXSTS_PKTSTS_IN 0x2 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:11; + unsigned pktsts:4; + unsigned dpid:2; + unsigned bcnt:11; + unsigned chnum:4; +#else + unsigned chnum:4; + unsigned bcnt:11; + unsigned dpid:2; + unsigned pktsts:4; + unsigned reserved:11; +#endif + } b; +}; + +/* + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, + * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then + * read out the bits using the bit elements. + */ +union fifosize_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned depth:16; + unsigned startaddr:16; +#else + unsigned startaddr:16; + unsigned depth:16; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Non-Periodic Transmit + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the + * d32 element then read out the bits using the bit + * elements. + */ +union gnptxsts_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:1; + unsigned nptxqtop_chnep:4; + unsigned nptxqtop_token:2; + unsigned nptxqtop_terminate:1; + unsigned nptxqspcavail:8; + unsigned nptxfspcavail:16; +#else + unsigned nptxfspcavail:16; + unsigned nptxqspcavail:8; + /* + * Top of the Non-Periodic Transmit Request Queue + * - bit 24 - Terminate (Last entry for the selected + * channel/EP) + * - bits 26:25 - Token Type + * - 2'b00 - IN/OUT + * - 2'b01 - Zero Length OUT + * - 2'b10 - PING/Complete Split + * - 2'b11 - Channel Halt + * - bits 30:27 - Channel/EP Number + */ + unsigned nptxqtop_terminate:1; + unsigned nptxqtop_token:2; + unsigned nptxqtop_chnep:4; + unsigned reserved:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the I2C Control Register + * (I2CCTL). Read the register into the d32 element then read out the + * bits using the bit elements. + */ +union gi2cctl_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned bsydne:1; + unsigned rw:1; + unsigned reserved:2; + unsigned i2cdevaddr:2; + unsigned i2csuspctl:1; + unsigned ack:1; + unsigned i2cen:1; + unsigned addr:7; + unsigned regaddr:8; + unsigned rwdata:8; +#else + unsigned rwdata:8; + unsigned regaddr:8; + unsigned addr:7; + unsigned i2cen:1; + unsigned ack:1; + unsigned i2csuspctl:1; + unsigned i2cdevaddr:2; + unsigned reserved:2; + unsigned rw:1; + unsigned bsydne:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the User HW Config1 + * Register. Read the register into the d32 element then read + * out the bits using the bit elements. + */ +union hwcfg1_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned ep_dir15:2; + unsigned ep_dir14:2; + unsigned ep_dir13:2; + unsigned ep_dir12:2; + unsigned ep_dir11:2; + unsigned ep_dir10:2; + unsigned ep_dir9:2; + unsigned ep_dir8:2; + unsigned ep_dir7:2; + unsigned ep_dir6:2; + unsigned ep_dir5:2; + unsigned ep_dir4:2; + unsigned ep_dir3:2; + unsigned ep_dir2:2; + unsigned ep_dir1:2; + unsigned ep_dir0:2; +#else + unsigned ep_dir0:2; + unsigned ep_dir1:2; + unsigned ep_dir2:2; + unsigned ep_dir3:2; + unsigned ep_dir4:2; + unsigned ep_dir5:2; + unsigned ep_dir6:2; + unsigned ep_dir7:2; + unsigned ep_dir8:2; + unsigned ep_dir9:2; + unsigned ep_dir10:2; + unsigned ep_dir11:2; + unsigned ep_dir12:2; + unsigned ep_dir13:2; + unsigned ep_dir14:2; + unsigned ep_dir15:2; +#endif + } b; +}; + +/* + * This union represents the bit fields in the User HW Config2 + * Register. Read the register into the d32 element then read + * out the bits using the bit elements. + */ +union hwcfg2_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved31:1; + unsigned dev_token_q_depth:5; + unsigned host_perio_tx_q_depth:2; + unsigned nonperio_tx_q_depth:2; + unsigned rx_status_q_depth:2; + unsigned dynamic_fifo:1; + unsigned perio_ep_supported:1; + unsigned num_host_chan:4; + unsigned num_dev_ep:4; + unsigned fs_phy_type:2; + unsigned hs_phy_type:2; + unsigned point2point:1; + unsigned architecture:2; + unsigned op_mode:3; +#else + unsigned op_mode:3; + unsigned architecture:2; + unsigned point2point:1; + unsigned hs_phy_type:2; + unsigned fs_phy_type:2; + unsigned num_dev_ep:4; + unsigned num_host_chan:4; + unsigned perio_ep_supported:1; + unsigned dynamic_fifo:1; + unsigned rx_status_q_depth:2; + unsigned nonperio_tx_q_depth:2; + unsigned host_perio_tx_q_depth:2; + unsigned dev_token_q_depth:5; + unsigned reserved31:1; +#endif + } b; +}; + +/** + * This union represents the bit fields in the User HW Config3 + * Register. Read the register into the d32 element then read + * out the bits using the bit elements. + */ +union hwcfg3_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { + /* GHWCFG3 */ +#ifdef __BIG_ENDIAN_BITFIELD + unsigned dfifo_depth:16; + unsigned reserved15_13:3; + unsigned ahb_phy_clock_synch:1; + unsigned synch_reset_type:1; + unsigned optional_features:1; + unsigned vendor_ctrl_if:1; + unsigned i2c:1; + unsigned otg_func:1; + unsigned packet_size_cntr_width:3; + unsigned xfer_size_cntr_width:4; +#else + unsigned xfer_size_cntr_width:4; + unsigned packet_size_cntr_width:3; + unsigned otg_func:1; + unsigned i2c:1; + unsigned vendor_ctrl_if:1; + unsigned optional_features:1; + unsigned synch_reset_type:1; + unsigned ahb_phy_clock_synch:1; + unsigned reserved15_13:3; + unsigned dfifo_depth:16; +#endif + } b; +}; + +/** + * This union represents the bit fields in the User HW Config4 + * Register. Read the register into the d32 element then read + * out the bits using the bit elements. + */ +union hwcfg4_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved31_25:7; + unsigned session_end_filt_en:1; + unsigned b_valid_filt_en:1; + unsigned a_valid_filt_en:1; + unsigned vbus_valid_filt_en:1; + unsigned iddig_filt_en:1; + unsigned num_dev_mode_ctrl_ep:4; + unsigned utmi_phy_data_width:2; + unsigned min_ahb_freq:9; + unsigned power_optimiz:1; + unsigned num_dev_perio_in_ep:4; +#else + unsigned num_dev_perio_in_ep:4; + unsigned power_optimiz:1; + unsigned min_ahb_freq:9; + unsigned utmi_phy_data_width:2; + unsigned num_dev_mode_ctrl_ep:4; + unsigned iddig_filt_en:1; + unsigned vbus_valid_filt_en:1; + unsigned a_valid_filt_en:1; + unsigned b_valid_filt_en:1; + unsigned session_end_filt_en:1; + unsigned reserved31_25:7; +#endif + } b; +}; + + +/* + * Device Global Registers. Offsets 800h-BFFh + * + * The following structures define the size and relative field offsets + * for the Device Mode Registers. + * + * These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown. + */ +struct dwc_otg_dev_global_regs { + /* Device Configuration Register. Offset 800h */ + uint32_t dcfg; + /* Device Control Register. Offset: 804h */ + uint32_t dctl; + /* Device Status Register (Read Only). Offset: 808h */ + uint32_t dsts; + /* Reserved. Offset: 80Ch */ + uint32_t unused; + /* + * Device IN Endpoint Common Interrupt Mask Register. Offset: 810h + */ + uint32_t diepmsk; + /* + * Device OUT Endpoint Common Interrupt Mask + * Register. Offset: 814h + */ + uint32_t doepmsk; + /* + * Device All Endpoints Interrupt Register. Offset: 818h + */ + uint32_t daint; + /* + * Device All Endpoints Interrupt Mask Register. Offset: + * 81Ch + */ + uint32_t daintmsk; + /* + * Device IN Token Queue Read Register-1 (Read Only). + * Offset: 820h + */ + uint32_t dtknqr1; + /* + * Device IN Token Queue Read Register-2 (Read Only). + * Offset: 824h + */ + uint32_t dtknqr2; + /* + * Device VBUS discharge Register. Offset: 828h + */ + uint32_t dvbusdis; + /* + * Device VBUS Pulse Register. Offset: 82Ch + */ + uint32_t dvbuspulse; + /* + * Device IN Token Queue Read Register-3 (Read Only). + * Offset: 830h + */ + uint32_t dtknqr3; + /* + * Device IN Token Queue Read Register-4 (Read Only). + * Offset: 834h + */ + uint32_t dtknqr4; +}; + +/* + * This union represents the bit fields in the Device Configuration + * Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. Write the + * d32 member to the dcfg register. + */ +union dcfg_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_DCFG_FRAME_INTERVAL_95 3 +#define DWC_DCFG_FRAME_INTERVAL_90 2 +#define DWC_DCFG_FRAME_INTERVAL_85 1 +#define DWC_DCFG_FRAME_INTERVAL_80 0 +#define DWC_DCFG_SEND_STALL 1 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved9:10; + unsigned epmscnt:4; + unsigned reserved13_17:5; + unsigned perfrint:2; + unsigned devaddr:7; + unsigned reserved3:1; + unsigned nzstsouthshk:1; + unsigned devspd:2; +#else + + /* Device Speed */ + unsigned devspd:2; + /* Non Zero Length Status OUT Handshake */ + unsigned nzstsouthshk:1; + unsigned reserved3:1; + /* Device Addresses */ + unsigned devaddr:7; + /* Periodic Frame Interval */ + unsigned perfrint:2; + unsigned reserved13_17:5; + /* In Endpoint Mis-match count */ + unsigned epmscnt:4; + unsigned reserved9:10; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Device Control + * Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. + */ +union dctl_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:21; + unsigned cgoutnak:1; + unsigned sgoutnak:1; + unsigned cgnpinnak:1; + unsigned sgnpinnak:1; + unsigned tstctl:3; + unsigned goutnaksts:1; + unsigned gnpinnaksts:1; + unsigned sftdiscon:1; + unsigned rmtwkupsig:1; +#else + + /* Remote Wakeup */ + unsigned rmtwkupsig:1; + /* Soft Disconnect */ + unsigned sftdiscon:1; + /* Global Non-Periodic IN NAK Status */ + unsigned gnpinnaksts:1; + /* Global OUT NAK Status */ + unsigned goutnaksts:1; + /* Test Control */ + unsigned tstctl:3; + /* Set Global Non-Periodic IN NAK */ + unsigned sgnpinnak:1; + /* Clear Global Non-Periodic IN NAK */ + unsigned cgnpinnak:1; + /* Set Global OUT NAK */ + unsigned sgoutnak:1; + /* Clear Global OUT NAK */ + unsigned cgoutnak:1; + + unsigned reserved:21; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device Status + * Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. + */ +union dsts_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved22_31:10; + unsigned soffn:14; + unsigned reserved4_7:4; + unsigned errticerr:1; + unsigned enumspd:2; + unsigned suspsts:1; +#else + + /* Suspend Status */ + unsigned suspsts:1; + /* Enumerated Speed */ + unsigned enumspd:2; + /* Erratic Error */ + unsigned errticerr:1; + unsigned reserved4_7:4; + /* Frame or Microframe Number of the received SOF */ + unsigned soffn:14; + unsigned reserved22_31:10; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Device IN EP Interrupt + * Register and the Device IN EP Common Mask Register. + * + * It also represents the bit fields in the Device IN EP Common + * Interrupt Mask Register. + + * - Read the register into the d32 member then set/clear the + * bits using the bit elements. + */ +union diepint_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved07_31:25; + unsigned inepnakeff:1; + unsigned intknepmis:1; + unsigned intktxfemp:1; + unsigned timeout:1; + unsigned ahberr:1; + unsigned epdisabled:1; + unsigned xfercompl:1; +#else + +y /* Transfer complete mask */ + unsigned xfercompl:1; + /* Endpoint disable mask */ + unsigned epdisabled:1; + /* AHB Error mask */ + unsigned ahberr:1; + /* TimeOUT Handshake mask (non-ISOC EPs) */ + unsigned timeout:1; + /* IN Token received with TxF Empty mask */ + unsigned intktxfemp:1; + /* IN Token Received with EP mismatch mask */ + unsigned intknepmis:1; + /* IN Endpoint HAK Effective mask */ + unsigned inepnakeff:1; + unsigned reserved07_31:25; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Device OUT EP Interrupt + * Registerand Device OUT EP Common Interrupt Mask Register. + * + * It also represents the bit fields in the Device OUT EP Common + * Interrupt Mask Register. + * + * - Read the register into the d32 member then set/clear the + * bits using the bit elements. + */ +union doepint_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved04_31:28; + unsigned setup:1; + unsigned ahberr:1; + unsigned epdisabled:1; + unsigned xfercompl:1; +#else + + /* Transfer complete */ + unsigned xfercompl:1; + /* Endpoint disable */ + unsigned epdisabled:1; + /* AHB Error */ + unsigned ahberr:1; + /* Setup Phase Done (contorl EPs) */ + unsigned setup:1; + unsigned reserved04_31:28; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device All EP Interrupt + * and Mask Registers. + * - Read the register into the d32 member then set/clear the + * bits using the bit elements. + */ +union daint_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned out:16; + unsigned in:16; +#else + + /* IN Endpoint bits */ + unsigned in:16; + /* OUT Endpoint bits */ + unsigned out:16; +#endif + } ep; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned outep15:1; + unsigned outep14:1; + unsigned outep13:1; + unsigned outep12:1; + unsigned outep11:1; + unsigned outep10:1; + unsigned outep9:1; + unsigned outep8:1; + unsigned outep7:1; + unsigned outep6:1; + unsigned outep5:1; + unsigned outep4:1; + unsigned outep3:1; + unsigned outep2:1; + unsigned outep1:1; + unsigned outep0:1; + unsigned inep15:1; + unsigned inep14:1; + unsigned inep13:1; + unsigned inep12:1; + unsigned inep11:1; + unsigned inep10:1; + unsigned inep9:1; + unsigned inep8:1; + unsigned inep7:1; + unsigned inep6:1; + unsigned inep5:1; + unsigned inep4:1; + unsigned inep3:1; + unsigned inep2:1; + unsigned inep1:1; + unsigned inep0:1; +#else + + /* IN Endpoint bits */ + unsigned inep0:1; + unsigned inep1:1; + unsigned inep2:1; + unsigned inep3:1; + unsigned inep4:1; + unsigned inep5:1; + unsigned inep6:1; + unsigned inep7:1; + unsigned inep8:1; + unsigned inep9:1; + unsigned inep10:1; + unsigned inep11:1; + unsigned inep12:1; + unsigned inep13:1; + unsigned inep14:1; + unsigned inep15:1; + /* OUT Endpoint bits */ + unsigned outep0:1; + unsigned outep1:1; + unsigned outep2:1; + unsigned outep3:1; + unsigned outep4:1; + unsigned outep5:1; + unsigned outep6:1; + unsigned outep7:1; + unsigned outep8:1; + unsigned outep9:1; + unsigned outep10:1; + unsigned outep11:1; + unsigned outep12:1; + unsigned outep13:1; + unsigned outep14:1; + unsigned outep15:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device IN Token Queue + * Read Registers. + * - Read the register into the d32 member. + * - READ-ONLY Register + */ +union dtknq1_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned epnums0_5:24; + unsigned wrap_bit:1; + unsigned reserved05_06:2; + unsigned intknwptr:5; +#else + + /* In Token Queue Write Pointer */ + unsigned intknwptr:5; + /* Reserved */ + unsigned reserved05_06:2; + /* write pointer has wrapped. */ + unsigned wrap_bit:1; + /* EP Numbers of IN Tokens 0 ... 4 */ + unsigned epnums0_5:24; +#endif + } b; +}; + +/* + * Device Logical IN Endpoint-Specific Registers. Offsets + * 900h-AFCh + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown. + */ +struct dwc_otg_dev_in_ep_regs { + /* + * Device IN Endpoint Control Register. Offset:900h + + * (ep_num * 20h) + 00h + */ + uint32_t diepctl; + /* Reserved. Offset:900h + (ep_num * 20h) + 04h */ + uint32_t reserved04; + /* + * Device IN Endpoint Interrupt Register. Offset:900h + + * (ep_num * 20h) + 08h + */ + uint32_t diepint; + /* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */ + uint32_t reserved0C; + /* + * Device IN Endpoint Transfer Size + * Register. Offset:900h + (ep_num * 20h) + 10h + */ + uint32_t dieptsiz; + /* + * Device IN Endpoint DMA Address Register. Offset:900h + + * (ep_num * 20h) + 14h + */ + uint32_t diepdma; + /* + * Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h + + * (ep_num * 20h) + 1Ch + */ + uint32_t reserved18[2]; +}; + +/** + * Device Logical OUT Endpoint-Specific Registers. Offsets: + * B00h-CFCh + * + * There will be one set of endpoint registers per logical endpoint + * implemented. + * + * These registers are visible only in Device mode and must not be + * accessed in Host mode, as the results are unknown. + */ +struct dwc_otg_dev_out_ep_regs { + /* + * Device OUT Endpoint Control Register. Offset:B00h + + * (ep_num * 20h) + 00h + */ + uint32_t doepctl; + /* + * Device OUT Endpoint Frame number Register. Offset: + * B00h + (ep_num * 20h) + 04h + */ + uint32_t doepfn; + /* + * Device OUT Endpoint Interrupt Register. Offset:B00h + + * (ep_num * 20h) + 08h + */ + uint32_t doepint; + /* + * Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */ + uint32_t reserved0C; + /* + * Device OUT Endpoint Transfer Size Register. Offset: + * B00h + (ep_num * 20h) + 10h + */ + uint32_t doeptsiz; + /* + * Device OUT Endpoint DMA Address Register. Offset:B00h + * + (ep_num * 20h) + 14h + */ + uint32_t doepdma; + /* + * Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h + + * (ep_num * 20h) + 1Ch + */ + uint32_t unused[2]; +}; + +/* + * This union represents the bit fields in the Device EP Control + * Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. + */ +union depctl_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#define DWC_DEP0CTL_MPS_64 0 +#define DWC_DEP0CTL_MPS_32 1 +#define DWC_DEP0CTL_MPS_16 2 +#define DWC_DEP0CTL_MPS_8 3 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned mps:11; + unsigned epena:1; + unsigned epdis:1; + unsigned setd1pid:1; + unsigned setd0pid:1; + unsigned snak:1; + unsigned cnak:1; + unsigned txfnum:4; + unsigned stall:1; + unsigned snp:1; + unsigned eptype:2; + unsigned naksts:1; + unsigned dpid:1; + unsigned usbactep:1; + unsigned nextep:4; +#else + + /* + * Maximum Packet Size + * IN/OUT EPn + * IN/OUT EP0 - 2 bits + * 2'b00: 64 Bytes + * 2'b01: 32 + * 2'b10: 16 + * 2'b11: 8 + */ + unsigned mps:11; + /* + * Next Endpoint + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved + */ + unsigned nextep:4; + + /* USB Active Endpoint */ + unsigned usbactep:1; + + /* + * Endpoint DPID (INTR/Bulk IN and OUT endpoints) + * This field contains the PID of the packet going to + * be received or transmitted on this endpoint. The + * application should program the PID of the first + * packet going to be received or transmitted on this + * endpoint , after the endpoint is + * activated. Application use the SetD1PID and + * SetD0PID fields of this register to program either + * D0 or D1 PID. + * + * The encoding for this field is + * - 0: D0 + * - 1: D1 + */ + unsigned dpid:1; + + /* NAK Status */ + unsigned naksts:1; + + /* + * Endpoint Type + * 2'b00: Control + * 2'b01: Isochronous + * 2'b10: Bulk + * 2'b11: Interrupt + */ + unsigned eptype:2; + + /* + * Snoop Mode + * OUT EPn/OUT EP0 + * IN EPn/IN EP0 - reserved + */ + unsigned snp:1; + + /* Stall Handshake */ + unsigned stall:1; + + /* + * Tx Fifo Number + * IN EPn/IN EP0 + * OUT EPn/OUT EP0 - reserved + */ + unsigned txfnum:4; + + /* Clear NAK */ + unsigned cnak:1; + /* Set NAK */ + unsigned snak:1; + /* + * Set DATA0 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA0. Set Even + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to even (micro) + * frame. + */ + unsigned setd0pid:1; + /* + * Set DATA1 PID (INTR/Bulk IN and OUT endpoints) + * Writing to this field sets the Endpoint DPID (DPID) + * field in this register to DATA1 Set Odd + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) + * Writing to this field sets the Even/Odd + * (micro)frame (EO_FrNum) field to odd (micro) frame. + */ + unsigned setd1pid:1; + + /* Endpoint Disable */ + unsigned epdis:1; + /* Endpoint Enable */ + unsigned epena:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device EP Transfer + * Size Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. + */ +union deptsiz_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:1; + unsigned mc:2; + unsigned pktcnt:10; + unsigned xfersize:19; +#else + + /* Transfer size */ + unsigned xfersize:19; + /* Packet Count */ + unsigned pktcnt:10; + /* Multi Count - Periodic IN endpoints */ + unsigned mc:2; + unsigned reserved:1; +#endif + } b; +}; + +/* + * This union represents the bit fields in the Device EP 0 Transfer + * Size Register. Read the register into the d32 member then + * set/clear the bits using the bit elements. + */ +union deptsiz0_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved31:1; + unsigned supcnt:2; + unsigned reserved20_28:9; + unsigned pktcnt:1; + unsigned reserved7_18:12; + unsigned xfersize:7; +#else + + /* Transfer size */ + unsigned xfersize:7; + /* Reserved */ + unsigned reserved7_18:12; + /* Packet Count */ + unsigned pktcnt:1; + /* Reserved */ + unsigned reserved20_28:9; + /* Setup Packet Count (DOEPTSIZ0 Only) */ + unsigned supcnt:2; + unsigned reserved31:1; +#endif + } b; +}; + +/** Maximum number of Periodic FIFOs */ +#define MAX_PERIO_FIFOS 15 + +/** Maximum number of Endpoints/HostChannels */ +#define MAX_EPS_CHANNELS 16 + +/* + * The dwc_otg_dev_if structure contains information needed to manage + * the DWC_otg controller acting in device mode. It represents the + * programming view of the device-specific aspects of the controller. + */ +struct dwc_otg_dev_if { + /* + * Pointer to device Global registers. + * Device Global Registers starting at offset 800h + */ + struct dwc_otg_dev_global_regs *dev_global_regs; +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 + + /* + * Device Logical IN Endpoint-Specific Registers 900h-AFCh + */ + struct dwc_otg_dev_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS]; +#define DWC_DEV_IN_EP_REG_OFFSET 0x900 +#define DWC_EP_REG_OFFSET 0x20 + + /* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ + struct dwc_otg_dev_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS]; +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 + + /* Device configuration information */ + uint8_t speed; /* Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ + uint8_t num_eps; /* Number of EPs range: 1-16 (includes EP0) */ + uint8_t num_perio_eps; /* # of Periodic EP range: 0-15 */ + + /* Size of periodic FIFOs (Bytes) */ + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; + +}; + + +/* Host Mode Register Structures */ + +/* + * The Host Global Registers structure defines the size and relative + * field offsets for the Host Mode Global Registers. Host Global + * Registers offsets 400h-7FFh. + */ +struct dwc_otg_host_global_regs { + /* Host Configuration Register. Offset: 400h */ + uint32_t hcfg; + /* Host Frame Interval Register. Offset: 404h */ + uint32_t hfir; + /* Host Frame Number / Frame Remaining Register. Offset: 408h */ + uint32_t hfnum; + /* Reserved. Offset: 40Ch */ + uint32_t reserved40C; + /* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */ + uint32_t hptxsts; + /* Host All Channels Interrupt Register. Offset: 414h */ + uint32_t haint; + /* Host All Channels Interrupt Mask Register. Offset: 418h */ + uint32_t haintmsk; +}; + +/* + * This union represents the bit fields in the Host Configuration Register. + * Read the register into the d32 member then set/clear the bits using + * the bit elements. Write the d32 member to the hcfg register. + */ +union hcfg_data { + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { +#define DWC_HCFG_6_MHZ 2 +#define DWC_HCFG_48_MHZ 1 +#define DWC_HCFG_30_60_MHZ 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:29; + unsigned fslssupp:1; + unsigned fslspclksel:2; +#else + + /* FS/LS Phy Clock Select */ + unsigned fslspclksel:2; + /* FS/LS Only Support */ + unsigned fslssupp:1; + unsigned reserved:29; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +union hfir_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:16; + unsigned frint:16; +#else + unsigned frint:16; + unsigned reserved:16; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host Frame Remaing/Number + * Register. + */ +union hfnum_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#define DWC_HFNUM_MAX_FRNUM 0x3FFF + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned frrem:16; + unsigned frnum:16; +#else + unsigned frnum:16; + unsigned frrem:16; +#endif + } b; +}; + +union hptxsts_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned ptxqtop_odd:1; + unsigned ptxqtop_chnum:4; + unsigned ptxqtop_token:2; + unsigned ptxqtop_terminate:1; + unsigned ptxqspcavail:8; + unsigned ptxfspcavail:16; +#else + unsigned ptxfspcavail:16; + unsigned ptxqspcavail:8; + /* + * Top of the Periodic Transmit Request Queue + * - bit 24 - Terminate (last entry for the selected channel) + * - bits 26:25 - Token Type + * - 2'b00 - Zero length + * - 2'b01 - Ping + * - 2'b10 - Disable + * - bits 30:27 - Channel Number + * - bit 31 - Odd/even microframe + */ + unsigned ptxqtop_terminate:1; + unsigned ptxqtop_token:2; + unsigned ptxqtop_chnum:4; + unsigned ptxqtop_odd:1; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host Port Control and Status + * Register. Read the register into the d32 member then set/clear the + * bits using the bit elements. Write the d32 member to the + * hprt0 register. + */ +union hprt0_data { + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved19_31:13; + unsigned prtspd:2; + unsigned prttstctl:4; + unsigned prtpwr:1; + unsigned prtlnsts:2; + unsigned reserved9:1; + unsigned prtrst:1; + unsigned prtsusp:1; + unsigned prtres:1; + unsigned prtovrcurrchng:1; + unsigned prtovrcurract:1; + unsigned prtenchng:1; + unsigned prtena:1; + unsigned prtconndet:1; + unsigned prtconnsts:1; +#else + unsigned prtconnsts:1; + unsigned prtconndet:1; + unsigned prtena:1; + unsigned prtenchng:1; + unsigned prtovrcurract:1; + unsigned prtovrcurrchng:1; + unsigned prtres:1; + unsigned prtsusp:1; + unsigned prtrst:1; + unsigned reserved9:1; + unsigned prtlnsts:2; + unsigned prtpwr:1; + unsigned prttstctl:4; + unsigned prtspd:2; + unsigned reserved19_31:13; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +union haint_data { + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:16; + unsigned ch15:1; + unsigned ch14:1; + unsigned ch13:1; + unsigned ch12:1; + unsigned ch11:1; + unsigned ch10:1; + unsigned ch9:1; + unsigned ch8:1; + unsigned ch7:1; + unsigned ch6:1; + unsigned ch5:1; + unsigned ch4:1; + unsigned ch3:1; + unsigned ch2:1; + unsigned ch1:1; + unsigned ch0:1; +#else + unsigned ch0:1; + unsigned ch1:1; + unsigned ch2:1; + unsigned ch3:1; + unsigned ch4:1; + unsigned ch5:1; + unsigned ch6:1; + unsigned ch7:1; + unsigned ch8:1; + unsigned ch9:1; + unsigned ch10:1; + unsigned ch11:1; + unsigned ch12:1; + unsigned ch13:1; + unsigned ch14:1; + unsigned ch15:1; + unsigned reserved:16; +#endif + } b; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:16; + unsigned chint:16; +#else + unsigned chint:16; + unsigned reserved:16; +#endif + } b2; +}; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +union haintmsk_data { + /** raw register data */ + uint32_t d32; + /** register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:16; + unsigned ch15:1; + unsigned ch14:1; + unsigned ch13:1; + unsigned ch12:1; + unsigned ch11:1; + unsigned ch10:1; + unsigned ch9:1; + unsigned ch8:1; + unsigned ch7:1; + unsigned ch6:1; + unsigned ch5:1; + unsigned ch4:1; + unsigned ch3:1; + unsigned ch2:1; + unsigned ch1:1; + unsigned ch0:1; +#else + unsigned ch0:1; + unsigned ch1:1; + unsigned ch2:1; + unsigned ch3:1; + unsigned ch4:1; + unsigned ch5:1; + unsigned ch6:1; + unsigned ch7:1; + unsigned ch8:1; + unsigned ch9:1; + unsigned ch10:1; + unsigned ch11:1; + unsigned ch12:1; + unsigned ch13:1; + unsigned ch14:1; + unsigned ch15:1; + unsigned reserved:16; +#endif + } b; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:16; + unsigned chint:16; +#else + unsigned chint:16; + unsigned reserved:16; +#endif + } b2; +}; + +/* + * Host Channel Specific Registers. 500h-5FCh + */ +struct dwc_otg_hc_regs { + /* + * Host Channel 0 Characteristic Register. + * Offset: 500h + (chan_num * 20h) + 00h + */ + uint32_t hcchar; + /* + * Host Channel 0 Split Control Register. + * Offset: 500h + (chan_num * 20h) + 04h + */ + uint32_t hcsplt; + /* + * Host Channel 0 Interrupt Register. + * Offset: 500h + (chan_num * 20h) + 08h + */ + uint32_t hcint; + /* + * Host Channel 0 Interrupt Mask Register. + * Offset: 500h + (chan_num * 20h) + 0Ch + */ + uint32_t hcintmsk; + /* + * Host Channel 0 Transfer Size Register. + * Offset: 500h + (chan_num * 20h) + 10h + */ + uint32_t hctsiz; + /* + * Host Channel 0 DMA Address Register. + * Offset: 500h + (chan_num * 20h) + 14h + */ + uint32_t hcdma; + /* + * Reserved. + * Offset: 500h + (chan_num * 20h) + 18h - + * 500h + (chan_num * 20h) + 1Ch + */ + uint32_t reserved[2]; +}; + +/** + * This union represents the bit fields in the Host Channel Characteristics + * Register. Read the register into the d32 member then set/clear the + * bits using the bit elements. Write the d32 member to the + * hcchar register. + */ +union hcchar_data { + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned chen:1; + unsigned chdis:1; + unsigned oddfrm:1; + unsigned devaddr:7; + unsigned multicnt:2; + unsigned eptype:2; + unsigned lspddev:1; + unsigned reserved:1; + unsigned epdir:1; + unsigned epnum:4; + unsigned mps:11; +#else + + /* Maximum packet size in bytes */ + unsigned mps:11; + + /* Endpoint number */ + unsigned epnum:4; + + /* 0: OUT, 1: IN */ + unsigned epdir:1; + + unsigned reserved:1; + + /* 0: Full/high speed device, 1: Low speed device */ + unsigned lspddev:1; + + /* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ + unsigned eptype:2; + + /* Packets per frame for periodic transfers. 0 is reserved. */ + unsigned multicnt:2; + + /* Device address */ + unsigned devaddr:7; + + /* + * Frame to transmit periodic transaction. + * 0: even, 1: odd + */ + unsigned oddfrm:1; + + /* Channel disable */ + unsigned chdis:1; + + /* Channel enable */ + unsigned chen:1; +#endif + } b; +}; + +union hcsplt_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#define DWC_HCSPLIT_XACTPOS_ALL 3 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2 +#define DWC_HCSPLIT_XACTPOS_END 1 +#define DWC_HCSPLIT_XACTPOS_MID 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned spltena:1; + unsigned reserved:14; + unsigned compsplt:1; + unsigned xactpos:2; + unsigned hubaddr:7; + unsigned prtaddr:7; +#else + + /* Port Address */ + unsigned prtaddr:7; + + /* Hub Address */ + unsigned hubaddr:7; + + /* Transaction Position */ + unsigned xactpos:2; + + /* Do Complete Split */ + unsigned compsplt:1; + + /* Reserved */ + unsigned reserved:14; + + /* Split Enble */ + unsigned spltena:1; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host All Interrupt + * Register. + */ +union hcint_data { + /* raw register data */ + uint32_t d32; + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:21; + unsigned datatglerr:1; + unsigned frmovrun:1; + unsigned bblerr:1; + unsigned xacterr:1; + unsigned nyet:1; + unsigned ack:1; + unsigned nak:1; + unsigned stall:1; + unsigned ahberr:1; + unsigned chhltd:1; + unsigned xfercomp:1; +#else + + /* Transfer Complete */ + unsigned xfercomp:1; + /* Channel Halted */ + unsigned chhltd:1; + /* AHB Error */ + unsigned ahberr:1; + /* STALL Response Received */ + unsigned stall:1; + /* NAK Response Received */ + unsigned nak:1; + /* ACK Response Received */ + unsigned ack:1; + /* NYET Response Received */ + unsigned nyet:1; + /* Transaction Err */ + unsigned xacterr:1; + /* Babble Error */ + unsigned bblerr:1; + /* Frame Overrun */ + unsigned frmovrun:1; + /* Data Toggle Error */ + unsigned datatglerr:1; + /* Reserved */ + unsigned reserved:21; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host Channel Transfer Size + * Register. Read the register into the d32 member then set/clear the + * bits using the bit elements. Write the d32 member to the + * hcchar register. + */ +union hctsiz_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#define DWC_HCTSIZ_SETUP 3 +#define DWC_HCTSIZ_MDATA 3 +#define DWC_HCTSIZ_DATA2 1 +#define DWC_HCTSIZ_DATA1 2 +#define DWC_HCTSIZ_DATA0 0 + +#ifdef __BIG_ENDIAN_BITFIELD + unsigned dopng:1; + unsigned pid:2; + unsigned pktcnt:10; + unsigned xfersize:19; +#else + + /* Total transfer size in bytes */ + unsigned xfersize:19; + + /* Data packets to transfer */ + unsigned pktcnt:10; + + /* + * Packet ID for next data packet + * 0: DATA0 + * 1: DATA2 + * 2: DATA1 + * 3: MDATA (non-Control), SETUP (Control) + */ + unsigned pid:2; + + /* Do PING protocol when 1 */ + unsigned dopng:1; +#endif + } b; +}; + +/** + * This union represents the bit fields in the Host Channel Interrupt Mask + * Register. Read the register into the d32 member then set/clear the + * bits using the bit elements. Write the d32 member to the + * hcintmsk register. + */ +union hcintmsk_data { + /** raw register data */ + uint32_t d32; + + /** register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:21; + unsigned datatglerr:1; + unsigned frmovrun:1; + unsigned bblerr:1; + unsigned xacterr:1; + unsigned nyet:1; + unsigned ack:1; + unsigned nak:1; + unsigned stall:1; + unsigned ahberr:1; + unsigned chhltd:1; + unsigned xfercompl:1; +#else + unsigned xfercompl:1; + unsigned chhltd:1; + unsigned ahberr:1; + unsigned stall:1; + unsigned nak:1; + unsigned ack:1; + unsigned nyet:1; + unsigned xacterr:1; + unsigned bblerr:1; + unsigned frmovrun:1; + unsigned datatglerr:1; + unsigned reserved:21; +#endif + } b; +}; + +/** OTG Host Interface Structure. + * + * The OTG Host Interface Structure structure contains information + * needed to manage the DWC_otg controller acting in host mode. It + * represents the programming view of the host-specific aspects of the + * controller. + */ +struct dwc_otg_host_if { + /* Host Global Registers starting at offset 400h.*/ + struct dwc_otg_host_global_regs *host_global_regs; +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 + + /* Host Port 0 Control and Status Register */ + uint32_t *hprt0; +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 + + /* Host Channel Specific Registers at offsets 500h-5FCh. */ + struct dwc_otg_hc_regs *hc_regs[MAX_EPS_CHANNELS]; +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20 + + /* Host configuration information */ + /* Number of Host Channels (range: 1-16) */ + uint8_t num_host_channels; + /* Periodic EPs supported (0: no, 1: yes) */ + uint8_t perio_eps_supported; + /* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ + uint16_t perio_tx_fifo_size; + +}; + +/** + * This union represents the bit fields in the Power and Clock Gating Control + * Register. Read the register into the d32 member then set/clear the + * bits using the bit elements. + */ +union pcgcctl_data { + /* raw register data */ + uint32_t d32; + + /* register bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + unsigned reserved:27; + unsigned physuspended:1; + unsigned rstpdwnmodule:1; + unsigned pwrclmp:1; + unsigned gatehclk:1; + unsigned stoppclk:1; +#else + + /* Stop Pclk */ + unsigned stoppclk:1; + /* Gate Hclk */ + unsigned gatehclk:1; + /* Power Clamp */ + unsigned pwrclmp:1; + /* Reset Power Down Modules */ + unsigned rstpdwnmodule:1; + /* PHY Suspended */ + unsigned physuspended:1; + + unsigned reserved:27; +#endif + } b; +}; + +#endif -- 1.6.0.6