From: Hans de Goede <j.w.r.degoede at hhs.nl> Content-Disposition: inline; filename=hwmon-abituguru-new-driver.patch New hardware monitoring driver for the Abit uGuru Signed-off-by: Hans de Goede <j.w.r.degoede at hhs.nl> Signed-off-by: Jean Delvare <khali at linux-fr.org> --- Documentation/hwmon/abituguru | 59 + Documentation/hwmon/abituguru-datasheet | 312 +++++++ MAINTAINERS | 6 + drivers/hwmon/Kconfig | 12 + drivers/hwmon/Makefile | 1 + drivers/hwmon/abituguru.c | 1391 +++++++++++++++++++++++++++++++ 6 files changed, 1781 insertions(+) --- /dev/null 1970-01-01 00:00:00.000000000 +0000 +++ linux-2.6.17-rc5/Documentation/hwmon/abituguru 2006-06-04 08:01:57.000000000 +0200 @@ -0,0 +1,59 @@ +Kernel driver abituguru +======================= + +Supported chips: + * Abit uGuru (Hardware Monitor part only) + Prefix: 'abituguru' + Addresses scanned: ISA 0x0E0 + Datasheet: Not available, this driver is based on reverse engineering. + A "Datasheet" has been written based on the reverse engineering it + should be available in the same dir as this file under the name + abituguru-datasheet. + +Authors: + Hans de Goede <j.w.r.degoede at hhs.nl>, + (Initial reverse engineering done by Olle Sandberg + <ollebull at gmail.com>) + + +Module Parameters +----------------- + +* force: bool Force detection. Note this parameter only causes the + detection to be skipped, if the uGuru can't be read + the module initialization (insmod) will still fail. +* fan_sensors: int Tell the driver how many fan speed sensors there are + on your motherboard. Default: 0 (autodetect). +* pwms: int Tell the driver how many fan speed controls (fan + pwms) your motherboard has. Default: 0 (autodetect). +* verbose: int How verbose should the driver be? (0-3): + 0 normal output + 1 + verbose error reporting + 2 + sensors type probing info\n" + 3 + retryable error reporting + Default: 2 (the driver is still in the testing phase) + +Notice if you need any of the first three options above please insmod the +driver with verbose set to 3 and mail me <j.w.r.degoede at hhs.nl> the output of: +dmesg | grep abituguru + + +Description +----------- + +This driver supports the hardware monitoring features of the Abit uGuru chip +found on Abit uGuru featuring motherboards (most modern Abit motherboards). + +The uGuru chip in reality is a Winbond W83L950D in disguise (despite Abit +claiming it is "a new microprocessor designed by the ABIT Engineers"). +Unfortunatly this doesn't help since the W83L950D is a generic +microcontroller with a custom Abit application running on it. + +Despite Abit not releasing any information regarding the uGuru, Olle +Sandberg <ollebull at gmail.com> has managed to reverse engineer the sensor part +of the uGuru. Without his work this driver would not have been possible. + +Known Issues +------------ + +The voltage and frequency control parts of the Abit uGuru are not supported. --- /dev/null 1970-01-01 00:00:00.000000000 +0000 +++ linux-2.6.17-rc5/Documentation/hwmon/abituguru-datasheet 2006-06-04 09:32:38.000000000 +0200 @@ -0,0 +1,312 @@ +uGuru datasheet +=============== + +First of all, what I know about uGuru is no fact based on any help, hints or +datasheet from Abit. The data I have got on uGuru have I assembled through +my weak knowledge in "backwards engineering". +And just for the record, you may have noticed uGuru isn't a chip developed by +Abit, as they claim it to be. It's realy just an microprocessor (uC) created by +Winbond (W83L950D). And no, reading the manual for this specific uC or +mailing Windbond for help won't give any usefull data about uGuru, as it is +the program inside the uC that is responding to calls. + +Olle Sandberg <ollebull at gmail.com>, 2005-05-25 + + +Original version by Olle Sandberg who did the heavy lifting of the initial +reverse engineering. This version has been almost fully rewritten for clarity +and extended with write support and info on more databanks, the write support +is once again reverse engineered by Olle the additional databanks have been +reverse engineered by me. I would like to express my thanks to Olle, this +document and the Linux driver could not have been written without his efforts. + +Note: because of the lack of specs only the sensors part of the uGuru is +described here and not the CPU / RAM / etc voltage & frequency control. + +Hans de Goede <j.w.r.degoede at hhs.nl>, 28-01-2006 + + +Detection +========= + +As far as known the uGuru is always placed at and using the (ISA) I/O-ports +0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two +ports are holding for detection. We will refer to 0xE0 as CMD (command-port) +and 0xE4 as DATA because Abit refers to them with these names. + +If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be +present. We have to check for two different values at data-port, because +after a reboot uGuru will hold 0x00 here, but if the driver is removed and +later on attached again data-port will hold 0x08, more about this later. + +After wider testing of the Linux kernel driver some variants of the uGuru have +turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also +have to test CMD for two different values. On these uGuru's DATA will initally +hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read +first! + +To be really sure an uGuru is present a test read of one or more register +sets should be done. + + +Reading / Writing +================= + +Addressing +---------- + +The uGuru has a number of different addressing levels. The first addressing +level we will call banks. A bank holds data for one or more sensors. The data +in a bank for a sensor is one or more bytes large. + +The number of bytes is fixed for a given bank, you should always read or write +that many bytes, reading / writing more will fail, the results when writing +less then the number of bytes for a given bank are undetermined. + +See below for all known bank addresses, numbers of sensors in that bank, +number of bytes data per sensor and contents/meaning of those bytes. + +Although both this document and the kernel driver have kept the sensor +terminoligy for the addressing within a bank this is not 100% correct, in +bank 0x24 for example the addressing within the bank selects a PWM output not +a sensor. + +Notice that some banks have both a read and a write address this is how the +uGuru determines if a read from or a write to the bank is taking place, thus +when reading you should always use the read address and when writing the +write address. The write address is always one (1) more then the read address. + + +uGuru ready +----------- + +Before you can read from or write to the uGuru you must first put the uGuru +in "ready" mode. + +To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA +to hold 0x09, DATA should read 0x09 within 250 read cycles. + +Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the +first read but sometimes it takes a while before CMD holds 0xAC and thus it +has to be read a number of times (max 50). + +After reading CMD, DATA should hold 0x08 which means that the uGuru is ready +for input. As above DATA will usually hold 0x08 the first read but not always. +This step can be skipped, but it is undetermined what happens if the uGuru has +not yet reported 0x08 at DATA and you proceed with writing a bank address. + + +Sending bank and sensor addresses to the uGuru +---------------------------------------------- + +First the uGuru must be in "ready" mode as described above, DATA should hold +0x08 indicating that the uGuru wants input, in this case the bank address. + +Next write the bank address to DATA. After the bank address has been written +wait for to DATA to hold 0x08 again indicating that it wants / is ready for +more input (max 250 reads). + +Once DATA holds 0x08 again write the sensor address to CMD. + + +Reading +------- + +First send the bank and sensor addresses as described above. +Then for each byte of data you want to read wait for DATA to hold 0x01 +which indicates that the uGuru is ready to be read (max 250 reads) and once +DATA holds 0x01 read the byte from CMD. + +Once all bytes have been read data will hold 0x09, but there is no reason to +test for this. Notice that the number of bytes is bank address dependent see +above and below. + +After completing a successfull read it is advised to put the uGuru back in +ready mode, so that it is ready for the next read / write cycle. This way +if your program / driver is unloaded and later loaded again the detection +algorithm described above will still work. + + + +Writing +------- + +First send the bank and sensor addresses as described above. +Then for each byte of data you want to write wait for DATA to hold 0x00 +which indicates that the uGuru is ready to be written (max 250 reads) and +once DATA holds 0x00 write the byte to CMD. + +Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads) +don't ask why this is the way it is. + +Once DATA holds 0x01 read CMD it should hold 0xAC now. + +After completing a successfull write it is advised to put the uGuru back in +ready mode, so that it is ready for the next read / write cycle. This way +if your program / driver is unloaded and later loaded again the detection +algorithm described above will still work. + + +Gotchas +------- + +After wider testing of the Linux kernel driver some variants of the uGuru have +turned up which do not hold 0x08 at DATA within 250 reads after writing the +bank address. With these versions this happens quite frequent, using larger +timeouts doesn't help, they just go offline for a second or 2, doing some +internal callibration or whatever. Your code should be prepared to handle +this and in case of no response in this specific case just goto sleep for a +while and then retry. + + +Address Map +=========== + +Bank 0x20 Alarms (R) +-------------------- +This bank contains 0 sensors, iow the sensor address is ignored (but must be +written) just use 0. Bank 0x20 contains 3 bytes: + +Byte 0: +This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0 +corresponding to sensor 0, 1 to 1, etc. + +Byte 1: +This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0 +corresponding to sensor 8, 1 to 9, etc. + +Byte 2: +This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0 +corresponding to sensor 0, 1 to 1, etc. + + +Bank 0x21 Sensor Bank1 Values / Readings (R) +-------------------------------------------- +This bank contains 16 sensors, for each sensor it contains 1 byte. +So far the following sensors are known to be available on all motherboards: +Sensor 0 CPU temp +Sensor 1 SYS temp +Sensor 3 CPU core volt +Sensor 4 DDR volt +Sensor 10 DDR Vtt volt +Sensor 15 PWM temp + +Byte 0: +This byte holds the reading from the sensor. Sensors in Bank1 can be both +volt and temp sensors, this is motherboard specific. The uGuru however does +seem to know (be programmed with) what kindoff sensor is attached see Sensor +Bank1 Settings description. + +Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a +reading of 255 with 3494 mV. The sensors for higher voltages however are +connected through a division circuit. The currently known division circuits +in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources +use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV . + +Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree +Celsius and a reading of 255 with a reading of 255 degrees Celsius. + + +Bank 0x22 Sensor Bank1 Settings (R) +Bank 0x23 Sensor Bank1 Settings (W) +----------------------------------- + +This bank contains 16 sensors, for each sensor it contains 3 bytes. Each +set of 3 bytes contains the settings for the sensor with the same sensor +address in Bank 0x21 . + +Byte 0: +Alarm behaviour for the selected sensor. A 1 enables the described behaviour. +Bit 0: Give an alarm if measured temp is over the warning threshold (RW) * +Bit 1: Give an alarm if measured volt is over the max threshold (RW) ** +Bit 2: Give an alarm if measured volt is under the min threshold (RW) ** +Bit 3: Beep if alarm (RW) +Bit 4: 1 if alarm cause measured temp is over the warning threshold (R) +Bit 5: 1 if alarm cause measured volt is over the max threshold (R) +Bit 6: 1 if alarm cause measured volt is under the min threshold (R) +Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW) + Temp sensor: Shutdown if temp is over the shutdown threshold (RW) + +* This bit is only honored/used by the uGuru if a temp sensor is connected +** This bit is only honored/used by the uGuru if a volt sensor is connected +Note with some trickery this can be used to find out what kinda sensor is +detected see the Linux kernel driver for an example with many comments on +how todo this. + +Byte 1: +Temp sensor: warning threshold (scale as bank 0x21) +Volt sensor: min threshold (scale as bank 0x21) + +Byte 2: +Temp sensor: shutdown threshold (scale as bank 0x21) +Volt sensor: max threshold (scale as bank 0x21) + + +Bank 0x24 PWM outputs for FAN's (R) +Bank 0x25 PWM outputs for FAN's (W) +----------------------------------- + +This bank contains 3 "sensors", for each sensor it contains 5 bytes. +Sensor 0 usually controls the CPU fan +Sensor 1 usually controls the NB (or chipset for single chip) fan +Sensor 2 usually controls the System fan + +Byte 0: +Flag 0x80 to enable control, Fan runs at 100% when disabled. +low nibble (temp)sensor address at bank 0x21 used for control. + +Byte 1: +0-255 = 0-12v (linear), specify voltage at which fan will rotate when under +low threshold temp (specified in byte 3) + +Byte 2: +0-255 = 0-12v (linear), specify voltage at which fan will rotate when above +high threshold temp (specified in byte 4) + +Byte 3: +Low threshold temp (scale as bank 0x21) + +byte 4: +High threshold temp (scale as bank 0x21) + + +Bank 0x26 Sensors Bank2 Values / Readings (R) +--------------------------------------------- + +This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte. +So far the following sensors are known to be available on all motherboards: +Sensor 0: CPU fan speed +Sensor 1: NB (or chipset for single chip) fan speed +Sensor 2: SYS fan speed + +Byte 0: +This byte holds the reading from the sensor. 0-255 = 0-15300 (linear) + + +Bank 0x27 Sensors Bank2 Settings (R) +Bank 0x28 Sensors Bank2 Settings (W) +------------------------------------ + +This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes. + +Byte 0: +Alarm behaviour for the selected sensor. A 1 enables the described behaviour. +Bit 0: Give an alarm if measured rpm is under the min threshold (RW) +Bit 3: Beep if alarm (RW) +Bit 7: Shutdown if alarm persist for more then 4 seconds (RW) + +Byte 1: +min threshold (scale as bank 0x26) + + +Warning for the adventerous +=========================== + +A word of caution to those who want to experiment and see if they can figure +the voltage / clock programming out, I tried reading and only reading banks +0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this +resulted in a _permanent_ reprogramming of the voltages, luckily I had the +sensors part configured so that it would shutdown my system on any out of spec +voltages which proprably safed my computer (after a reboot I managed to +immediatly enter the bios and reload the defaults). This probably means that +the read/write cycle for the non sensor part is different from the sensor part. --- linux-2.6.17-rc5.orig/MAINTAINERS 2006-06-04 08:01:55.000000000 +0200 +++ linux-2.6.17-rc5/MAINTAINERS 2006-06-04 08:01:57.000000000 +0200 @@ -181,6 +181,12 @@ L: linux-aio at kvack.org S: Supported +ABIT UGURU HARDWARE MONITOR DRIVER +P: Hans de Goede +M: j.w.r.degoede at hhs.nl +L: lm-sensors at lm-sensors.org +S: Maintained + ACENIC DRIVER P: Jes Sorensen M: jes at trained-monkey.org --- linux-2.6.17-rc5.orig/drivers/hwmon/Kconfig 2006-06-04 08:01:56.000000000 +0200 +++ linux-2.6.17-rc5/drivers/hwmon/Kconfig 2006-06-04 08:01:57.000000000 +0200 @@ -27,6 +27,18 @@ tristate default n +config SENSORS_ABITUGURU + tristate "Abit uGuru" + depends on HWMON && EXPERIMENTAL + help + If you say yes here you get support for the Abit uGuru chips + sensor part. The voltage and frequency control parts of the Abit + uGuru are not supported. The Abit uGuru chip can be found on Abit + uGuru featuring motherboards (most modern Abit motherboards). + + This driver can also be built as a module. If so, the module + will be called abituguru. + config SENSORS_ADM1021 tristate "Analog Devices ADM1021 and compatibles" depends on HWMON && I2C --- linux-2.6.17-rc5.orig/drivers/hwmon/Makefile 2006-06-04 08:01:56.000000000 +0200 +++ linux-2.6.17-rc5/drivers/hwmon/Makefile 2006-06-04 08:01:57.000000000 +0200 @@ -12,6 +12,7 @@ obj-$(CONFIG_SENSORS_W83781D) += w83781d.o obj-$(CONFIG_SENSORS_W83791D) += w83791d.o +obj-$(CONFIG_SENSORS_ABITUGURU) += abituguru.o obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o --- /dev/null 1970-01-01 00:00:00.000000000 +0000 +++ linux-2.6.17-rc5/drivers/hwmon/abituguru.c 2006-06-04 09:32:04.000000000 +0200 @@ -0,0 +1,1391 @@ +/* + abituguru.c Copyright (c) 2005-2006 Hans de Goede <j.w.r.degoede at hhs.nl> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ +/* + This driver supports the sensor part of the custom Abit uGuru chip found + on Abit uGuru motherboards. Note: because of lack of specs the CPU / RAM / + etc voltage & frequency control is not supported! +*/ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/mutex.h> +#include <linux/err.h> +#include <linux/platform_device.h> +#include <linux/hwmon.h> +#include <linux/hwmon-sysfs.h> +#include <asm/io.h> + +/* Banks */ +#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ +#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ +#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ +#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ +/* max nr of sensors in bank2, currently mb's with max 6 fans are known */ +#define ABIT_UGURU_MAX_BANK2_SENSORS 6 +/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ +#define ABIT_UGURU_MAX_PWMS 5 +/* uGuru sensor bank 1 flags */ /* Alarm if: */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ +#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ +#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ +#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ +/* uGuru sensor bank 2 flags */ /* Alarm if: */ +#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ +/* uGuru sensor bank common flags */ +#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ +#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ +/* uGuru fan PWM (speed control) flags */ +#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ +/* Values used for conversion */ +#define ABIT_UGURU_FAN_MAX 15300 /* RPM */ +/* Bank1 sensor types */ +#define ABIT_UGURU_IN_SENSOR 0 +#define ABIT_UGURU_TEMP_SENSOR 1 +#define ABIT_UGURU_NC 2 +/* Timeouts / Retries, if these turn out to need a lot of fiddling we could + convert them to params. */ +/* 250 was determined by trial and error, 200 works most of the time, but not + always. I assume this is cpu-speed independent, since the ISA-bus and not + the CPU should be the bottleneck. Note that 250 sometimes is still not + enough (only reported on AN7 mb) this is handled by a higher layer. */ +#define ABIT_UGURU_WAIT_TIMEOUT 250 +/* Normally all expected status in abituguru_ready, are reported after the + first read, but sometimes not and we need to poll, 5 polls was not enough + 50 sofar is. */ +#define ABIT_UGURU_READY_TIMEOUT 50 +/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ +#define ABIT_UGURU_MAX_RETRIES 3 +#define ABIT_UGURU_RETRY_DELAY (HZ/5) +/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is a error */ +#define ABIT_UGURU_MAX_TIMEOUTS 2 + +/* All the variables below are named identical to the oguru and oguru2 programs + reverse engineered by Olle Sandberg, hence the names might not be 100% + logical. I could come up with better names, but I prefer keeping the names + identical so that this driver can be compared with his work more easily. */ +/* Two i/o-ports are used by uGuru */ +#define ABIT_UGURU_BASE 0x00E0 +/* Used to tell uGuru what to read and to read the actual data */ +#define ABIT_UGURU_CMD 0x00 +/* Mostly used to check if uGuru is busy */ +#define ABIT_UGURU_DATA 0x04 +#define ABIT_UGURU_REGION_LENGTH 5 +/* uGuru status' */ +#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ +#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ +#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ +#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ +/* utility macros */ +#define ABIT_UGURU_NAME "abituguru" +#define ABIT_UGURU_DEBUG(level, format, arg...) \ + if (level <= verbose) \ + printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg) + +/* Constants */ +/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ +static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; +/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values + correspond to 300-3000 RPM */ +static const u8 abituguru_bank2_min_threshold = 5; +static const u8 abituguru_bank2_max_threshold = 50; +/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 + are temperature trip points. */ +static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; +/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a + special case the minium allowed pwm% setting for this is 30% (77) on + some MB's this special case is handled in the code! */ +static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; +static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; + + +/* Insmod parameters */ +static int force; +module_param(force, bool, 0); +MODULE_PARM_DESC(force, "Set to one to force detection."); +static int fan_sensors; +module_param(fan_sensors, int, 0); +MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " + "(0 = autodetect)"); +static int pwms; +module_param(pwms, int, 0); +MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " + "(0 = autodetect)"); + +/* Default verbose is 2, since this driver is still in the testing phase */ +static int verbose = 2; +module_param(verbose, int, 0644); +MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" + " 0 normal output\n" + " 1 + verbose error reporting\n" + " 2 + sensors type probing info\n" + " 3 + retryable error reporting"); + + +/* For the Abit uGuru, we need to keep some data in memory. + The structure is dynamically allocated, at the same time when a new + abituguru device is allocated. */ +struct abituguru_data { + struct class_device *class_dev; /* hwmon registered device */ + struct mutex update_lock; /* protect access to data and uGuru */ + unsigned long last_updated; /* In jiffies */ + unsigned short addr; /* uguru base address */ + char uguru_ready; /* is the uguru in ready state? */ + unsigned char update_timeouts; /* number of update timeouts since last + successful update */ + + /* The sysfs attr and their names are generated automatically, for bank1 + we cannot use a predefined array because we don't know beforehand + of a sensor is a volt or a temp sensor, for bank2 and the pwms its + easier todo things the same way. For in sensors we have 9 (temp 7) + sysfs entries per sensor, for bank2 and pwms 6. */ + struct sensor_device_attribute_2 sysfs_attr[16 * 9 + + ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; + /* Buffer to store the dynamically generated sysfs names, we need 2120 + bytes for bank1 (worst case scenario of 16 in sensors), 444 bytes + for fan1-6 and 738 bytes for pwm1-6 + some room to spare in case I + miscounted :) */ + char bank1_names[3400]; + + /* Bank 1 data */ + u8 bank1_sensors[2]; /* number of [0] in, [1] temp sensors */ + u8 bank1_address[2][16];/* addresses of [0] in, [1] temp sensors */ + u8 bank1_value[16]; + /* This array holds 16 x 3 entries for all the bank 1 sensor settings + (flags, min, max for voltage / flags, warn, shutdown for temp). */ + u8 bank1_settings[16][3]; + /* Maximum value for each sensor used for scaling in mV/millidegrees + Celsius. */ + int bank1_max_value[16]; + + /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ + u8 bank2_sensors; /* actual number of bank2 sensors found */ + u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; + u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ + + /* Alarms 2 bytes for bank1, 1 byte for bank2 */ + u8 alarms[3]; + + /* Fan PWM (speed control) 5 bytes per PWM */ + u8 pwms; /* actual number of pwms found */ + u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; +}; + +/* wait till the uguru is in the specified state */ +static int abituguru_wait(struct abituguru_data *data, u8 state) +{ + int timeout = ABIT_UGURU_WAIT_TIMEOUT; + + while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { + timeout--; + if (timeout == 0) + return -EBUSY; + } + return 0; +} + +/* Put the uguru in ready for input state */ +static int abituguru_ready(struct abituguru_data *data) +{ + int timeout = ABIT_UGURU_READY_TIMEOUT; + + if (data->uguru_ready) + return 0; + + /* Reset? / Prepare for next read/write cycle */ + outb(0x00, data->addr + ABIT_UGURU_DATA); + + /* Wait till the uguru is ready */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { + ABIT_UGURU_DEBUG(1, + "timeout exceeded waiting for ready state\n"); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "CMD reg does not hold 0xAC after ready command\n"); + return -EIO; + } + } + + /* After this the ABIT_UGURU_DATA port should contain + ABIT_UGURU_STATUS_INPUT */ + timeout = ABIT_UGURU_READY_TIMEOUT; + while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { + timeout--; + if (timeout == 0) { + ABIT_UGURU_DEBUG(1, + "state != more input after ready command\n"); + return -EIO; + } + } + + data->uguru_ready = 1; + return 0; +} + +/* Send the bank and then sensor address to the uGuru for the next read/write + cycle. This function gets called as the first part of a read/write by + abituguru_read and abituguru_write. This function should never be + called by any other function. */ +static int abituguru_send_address(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, int retries) +{ + /* assume the caller does error handling itself if it has not requested + any retries, and thus be quiet. */ + int report_errors = retries; + + for (;;) { + /* Make sure the uguru is ready and then send the bank address, + after this the uguru is no longer "ready". */ + if (abituguru_ready(data) != 0) + return -EIO; + outb(bank_addr, data->addr + ABIT_UGURU_DATA); + data->uguru_ready = 0; + + /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again + and send the sensor addr */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { + if (retries) { + ABIT_UGURU_DEBUG(3, "timeout exceeded " + "waiting for more input state, %d " + "tries remaining\n", retries); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(ABIT_UGURU_RETRY_DELAY); + retries--; + continue; + } + if (report_errors) + ABIT_UGURU_DEBUG(1, "timeout exceeded " + "waiting for more input state " + "(bank: %d)\n", (int)bank_addr); + return -EBUSY; + } + outb(sensor_addr, data->addr + ABIT_UGURU_CMD); + return 0; + } +} + +/* Read count bytes from sensor sensor_addr in bank bank_addr and store the + result in buf, retry the send address part of the read retries times. */ +static int abituguru_read(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, retries); + if (i) + return i; + + /* And read the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "read state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + buf[i] = inb(data->addr + ABIT_UGURU_CMD); + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send + address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */ +static int abituguru_write(struct abituguru_data *data, + u8 bank_addr, u8 sensor_addr, u8 *buf, int count) +{ + int i; + + /* Send the address */ + i = abituguru_send_address(data, bank_addr, sensor_addr, + ABIT_UGURU_MAX_RETRIES); + if (i) + return i; + + /* And write the data */ + for (i = 0; i < count; i++) { + if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " + "write state (bank: %d, sensor: %d)\n", + (int)bank_addr, (int)sensor_addr); + break; + } + outb(buf[i], data->addr + ABIT_UGURU_CMD); + } + + /* Now we need to wait till the chip is ready to be read again, + don't ask why */ + if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { + ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " + "after write (bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Cmd port MUST be read now and should contain 0xAC */ + if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { + ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write " + "(bank: %d, sensor: %d)\n", (int)bank_addr, + (int)sensor_addr); + return -EIO; + } + + /* Last put the chip back in ready state */ + abituguru_ready(data); + + return i; +} + +/* Detect sensor type. Temp and Volt sensors are enabled with + different masks and will ignore enable masks not meant for them. + This enables us to test what kind of sensor we're dealing with. + By setting the alarm thresholds so that we will always get an + alarm for sensor type X and then enabling the sensor as sensor type + X, if we then get an alarm it is a sensor of type X. */ +static int __devinit +abituguru_detect_bank1_sensor_type(struct abituguru_data *data, + u8 sensor_addr) +{ + u8 val, buf[3]; + int ret = ABIT_UGURU_NC; + + /* First read the sensor and the current settings */ + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, + 1, ABIT_UGURU_MAX_RETRIES) != 1) + return -EIO; + + /* Test val is sane / usable for sensor type detection. */ + if ((val < 10u) || (val > 240u)) { + printk(KERN_WARNING ABIT_UGURU_NAME + ": bank1-sensor: %d reading (%d) too close to limits, " + "unable to determine sensor type, skipping sensor\n", + (int)sensor_addr, (int)val); + /* assume no sensor is there for sensors for which we can't + determine the sensor type because their reading is too close + to their limits, this usually means no sensor is there. */ + return ABIT_UGURU_NC; + } + + ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); + /* Volt sensor test, enable volt low alarm, set min value ridicously + high. If its a volt sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; + buf[1] = 245; + buf[2] = 250; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 20 ms to give the uguru time to read the sensors + and raise a voltage alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/50); + /* Check for alarm and check the alarm is a volt low alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) { + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + sensor_addr, + data->bank1_settings[sensor_addr], + 3) != 3) + return -EIO; + ABIT_UGURU_DEBUG(2, " found volt sensor\n"); + return ABIT_UGURU_IN_SENSOR; + } else + ABIT_UGURU_DEBUG(2, " alarm raised during volt " + "sensor test, but volt low flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " + "test\n"); + + /* Temp sensor test, enable sensor as a temp sensor, set beep value + ridicously low (but not too low, otherwise uguru ignores it). + If its a temp sensor this should always give us an alarm. */ + buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; + buf[1] = 5; + buf[2] = 10; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + buf, 3) != 3) + return -EIO; + /* Now we need 50 ms to give the uguru time to read the sensors + and raise a temp alarm */ + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(HZ/20); + /* Check for alarm and check the alarm is a temp high alarm. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, + sensor_addr, buf, 3, + ABIT_UGURU_MAX_RETRIES) != 3) + return -EIO; + if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { + ret = ABIT_UGURU_TEMP_SENSOR; + ABIT_UGURU_DEBUG(2, " found temp sensor\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm raised during temp " + "sensor test, but temp high flag not set\n"); + } else + ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " + "test\n"); + + /* Restore original settings */ + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, + data->bank1_settings[sensor_addr], 3) != 3) + return -EIO; + + return ret; +} + +/* These functions try to find out how many sensors there are in bank2 and how + many pwms there are. The purpose of this is to make sure that we don't give + the user the possibility to change settings for non-existent sensors / pwm. + The uGuru will happily read / write whatever memory happens to be after the + memory storing the PWM settings when reading/writing to a PWM which is not + there. Notice even if we detect a PWM which doesn't exist we normally won't + write to it, unless the user tries to change the settings. + + Although the uGuru allows reading (settings) from non existing bank2 + sensors, my version of the uGuru does seem to stop writing to them, the + write function above aborts in this case with: + "CMD reg does not hold 0xAC after write" + + Notice these 2 tests are non destructive iow read-only tests, otherwise + they would defeat their purpose. Although for the bank2_sensors detection a + read/write test would be feasible because of the reaction above, I've + however opted to stay on the safe side. */ +static void __devinit +abituguru_detect_no_bank2_sensors(struct abituguru_data *data) +{ + int i; + + if (fan_sensors) { + data->bank2_sensors = fan_sensors; + ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " + "\"fan_sensors\" module param\n", + (int)data->bank2_sensors); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + /* 0x89 are the known used bits: + -0x80 enable shutdown + -0x08 enable beep + -0x01 enable alarm + All other bits should be 0, but on some motherboards + 0x40 (bit 6) is also high, at least for fan1 */ + if ((!i && (data->bank2_settings[i][0] & ~0xC9)) || + (i && (data->bank2_settings[i][0] & ~0x89))) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: settings[0] = %02X\n", + i, (unsigned int)data->bank2_settings[i][0]); + break; + } + + /* check if the threshold is within the allowed range */ + if (data->bank2_settings[i][1] < + abituguru_bank2_min_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "below the minimum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_min_threshold); + break; + } + if (data->bank2_settings[i][1] > + abituguru_bank2_max_threshold) { + ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " + "to be a fan sensor: the threshold (%d) is " + "above the maximum (%d)\n", i, + (int)data->bank2_settings[i][1], + (int)abituguru_bank2_max_threshold); + break; + } + } + + data->bank2_sensors = i; + ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", + (int)data->bank2_sensors); +} + +static void __devinit +abituguru_detect_no_pwms(struct abituguru_data *data) +{ + int i, j; + + if (pwms) { + data->pwms = pwms; + ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " + "\"pwms\" module param\n", (int)data->pwms); + return; + } + + ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + /* 0x80 is the enable bit and the low + nibble is which temp sensor to use, + the other bits should be 0 */ + if (data->pwm_settings[i][0] & ~0x8F) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: settings[0] = %02X\n", + i, (unsigned int)data->pwm_settings[i][0]); + break; + } + + /* the low nibble must correspond to one of the temp sensors + we've found */ + for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; + j++) { + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == + (data->pwm_settings[i][0] & 0x0F)) + break; + } + if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: %d is not a valid temp " + "sensor address\n", i, + data->pwm_settings[i][0] & 0x0F); + break; + } + + /* check if all other settings are within the allowed range */ + for (j = 1; j < 5; j++) { + u8 min; + /* special case pwm1 min pwm% */ + if ((i == 0) && ((j == 1) || (j == 2))) + min = 77; + else + min = abituguru_pwm_min[j]; + if (data->pwm_settings[i][j] < min) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is below the minimum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)min); + goto abituguru_detect_no_pwms_exit; + } + if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does " + "not seem to be a pwm channel: " + "setting %d (%d) is above the maximum " + "value (%d)\n", i, j, + (int)data->pwm_settings[i][j], + (int)abituguru_pwm_max[j]); + goto abituguru_detect_no_pwms_exit; + } + } + + /* check that min temp < max temp and min pwm < max pwm */ + if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min pwm (%d) >= " + "max pwm (%d)\n", i, + (int)data->pwm_settings[i][1], + (int)data->pwm_settings[i][2]); + break; + } + if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { + ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " + "to be a pwm channel: min temp (%d) >= " + "max temp (%d)\n", i, + (int)data->pwm_settings[i][3], + (int)data->pwm_settings[i][4]); + break; + } + } + +abituguru_detect_no_pwms_exit: + data->pwms = i; + ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); +} + +/* Following are the sysfs callback functions. These functions expect: + sensor_device_attribute_2->index: sensor address/offset in the bank + sensor_device_attribute_2->nr: register offset, bitmask or NA. */ +static struct abituguru_data *abituguru_update_device(struct device *dev); + +static ssize_t show_bank1_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank1_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank1_settings[attr->index][attr->nr] * + data->bank1_max_value[attr->index] + 128) / 255); +} + +static ssize_t show_bank2_value(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t show_bank2_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", + (data->bank2_settings[attr->index][attr->nr] * + ABIT_UGURU_FAN_MAX + 128) / 255); +} + +static ssize_t store_bank1_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10) * 255 + + data->bank1_max_value[attr->index]/2) / + data->bank1_max_value[attr->index]; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (data->bank1_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank1_settings[attr->index][attr->nr]; + data->bank1_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, + attr->index, data->bank1_settings[attr->index], + 3) <= attr->nr) { + data->bank1_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) / + ABIT_UGURU_FAN_MAX; + ssize_t ret = count; + + /* this check can be done before taking the lock */ + if ((val < abituguru_bank2_min_threshold) || + (val > abituguru_bank2_max_threshold)) + return -EINVAL; + + mutex_lock(&data->update_lock); + if (data->bank2_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->bank2_settings[attr->index][attr->nr]; + data->bank2_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, + attr->index, data->bank2_settings[attr->index], + 2) <= attr->nr) { + data->bank2_settings[attr->index][attr->nr] = orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_bank1_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + /* See if the alarm bit for this sensor is set, and if the + alarm matches the type of alarm we're looking for (for volt + it can be either low or high). The type is stored in a few + readonly bits in the settings part of the relevant sensor. + The bitmask of the type is passed to us in attr->nr. */ + if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && + (data->bank1_settings[attr->index][0] & attr->nr)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_alarm(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = abituguru_update_device(dev); + if (!data) + return -EIO; + if (data->alarms[2] & (0x01 << attr->index)) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank1_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank1_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t show_bank2_mask(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + if (data->bank2_settings[attr->index][0] & attr->nr) + return sprintf(buf, "1\n"); + else + return sprintf(buf, "0\n"); +} + +static ssize_t store_bank1_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank1_settings[attr->index][0]; + + if (mask) + data->bank1_settings[attr->index][0] |= attr->nr; + else + data->bank1_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank1_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, + data->bank1_settings[attr->index], 3) < 1)) { + data->bank1_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t store_bank2_mask(struct device *dev, + struct device_attribute *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int mask = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + u8 orig_val; + + mutex_lock(&data->update_lock); + orig_val = data->bank2_settings[attr->index][0]; + + if (mask) + data->bank2_settings[attr->index][0] |= attr->nr; + else + data->bank2_settings[attr->index][0] &= ~attr->nr; + + if ((data->bank2_settings[attr->index][0] != orig_val) && + (abituguru_write(data, + ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, + data->bank2_settings[attr->index], 2) < 1)) { + data->bank2_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +/* Fan PWM (speed control) */ +static ssize_t show_pwm_setting(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * + abituguru_pwm_settings_multiplier[attr->nr]); +} + +static ssize_t store_pwm_setting(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 min, val = (simple_strtoul(buf, NULL, 10) + + abituguru_pwm_settings_multiplier[attr->nr]/2) / + abituguru_pwm_settings_multiplier[attr->nr]; + ssize_t ret = count; + + /* special case pwm1 min pwm% */ + if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) + min = 77; + else + min = abituguru_pwm_min[attr->nr]; + + /* this check can be done before taking the lock */ + if ((val < min) || (val > abituguru_pwm_max[attr->nr])) + return -EINVAL; + + mutex_lock(&data->update_lock); + /* this check needs to be done after taking the lock */ + if ((attr->nr & 1) && + (val >= data->pwm_settings[attr->index][attr->nr + 1])) + ret = -EINVAL; + else if (!(attr->nr & 1) && + (val <= data->pwm_settings[attr->index][attr->nr - 1])) + ret = -EINVAL; + else if (data->pwm_settings[attr->index][attr->nr] != val) { + u8 orig_val = data->pwm_settings[attr->index][attr->nr]; + data->pwm_settings[attr->index][attr->nr] = val; + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) <= attr->nr) { + data->pwm_settings[attr->index][attr->nr] = + orig_val; + ret = -EIO; + } + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_sensor(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int i; + /* We need to walk to the temp sensor addresses to find what + the userspace id of the configured temp sensor is. */ + for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) + if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == + (data->pwm_settings[attr->index][0] & 0x0F)) + return sprintf(buf, "%d\n", i+1); + + return -ENXIO; +} + +static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + unsigned long val = simple_strtoul(buf, NULL, 10) - 1; + ssize_t ret = count; + + mutex_lock(&data->update_lock); + if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { + u8 orig_val = data->pwm_settings[attr->index][0]; + u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; + data->pwm_settings[attr->index][0] &= 0xF0; + data->pwm_settings[attr->index][0] |= address; + if (data->pwm_settings[attr->index][0] != orig_val) { + if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, + data->pwm_settings[attr->index], + 5) < 1) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + } + } + else + ret = -EINVAL; + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_pwm_enable(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + int res = 0; + if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) + res = 2; + return sprintf(buf, "%d\n", res); +} + +static ssize_t store_pwm_enable(struct device *dev, struct device_attribute + *devattr, const char *buf, size_t count) +{ + struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); + struct abituguru_data *data = dev_get_drvdata(dev); + u8 orig_val, user_val = simple_strtoul(buf, NULL, 10); + ssize_t ret = count; + + mutex_lock(&data->update_lock); + orig_val = data->pwm_settings[attr->index][0]; + switch (user_val) { + case 0: + data->pwm_settings[attr->index][0] &= + ~ABIT_UGURU_FAN_PWM_ENABLE; + break; + case 2: + data->pwm_settings[attr->index][0] |= + ABIT_UGURU_FAN_PWM_ENABLE; + break; + default: + ret = -EINVAL; + } + if ((data->pwm_settings[attr->index][0] != orig_val) && + (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, + attr->index, data->pwm_settings[attr->index], + 5) < 1)) { + data->pwm_settings[attr->index][0] = orig_val; + ret = -EIO; + } + mutex_unlock(&data->update_lock); + return ret; +} + +static ssize_t show_name(struct device *dev, + struct device_attribute *devattr, char *buf) +{ + return sprintf(buf, "%s\n", ABIT_UGURU_NAME); +} + +/* Sysfs attr templates, the real entries are generated automatically. */ +static const +struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { + { + SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), + SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), + }, { + SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), + SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, + ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), + SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, + store_bank1_setting, 1, 0), + SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, + store_bank1_setting, 2, 0), + SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, + store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), + } +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { + SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), + SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, + store_bank2_setting, 1, 0), + SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), + SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), + SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, + store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { + SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, + store_pwm_enable, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, + store_pwm_sensor, 0, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, + store_pwm_setting, 1, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, + store_pwm_setting, 2, 0), + SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, + store_pwm_setting, 3, 0), + SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, + store_pwm_setting, 4, 0), +}; + +static const struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { + SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), +}; + +static int __devinit abituguru_probe(struct platform_device *pdev) +{ + struct abituguru_data *data; + int i, j, res; + char *sysfs_filename; + int sysfs_attr_i = 0; + + /* El weirdo probe order, to keep the sysfs order identical to the + BIOS and window-appliction listing order. */ + const u8 probe_order[16] = { 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, + 0x02, 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; + + if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL))) + return -ENOMEM; + + data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; + mutex_init(&data->update_lock); + platform_set_drvdata(pdev, data); + + /* See if the uGuru is ready */ + if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) + data->uguru_ready = 1; + + /* Completely read the uGuru this has 2 purposes: + - testread / see if one really is there. + - make an in memory copy of all the uguru settings for future use. */ + if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + + for (i = 0; i < 16; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, + data->bank1_settings[i], 3, + ABIT_UGURU_MAX_RETRIES) != 3) { + kfree(data); + return -ENODEV; + } + } + /* Note: We don't know how many bank2 sensors / pwms there really are, + but in order to "detect" this we need to read the maximum amount + anyways. If we read sensors/pwms not there we'll just read crap + this can't hurt. We need the detection because we don't want + unwanted writes, which will hurt! */ + for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, + ABIT_UGURU_MAX_RETRIES) != 1) { + kfree(data); + return -ENODEV; + } + if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, + data->bank2_settings[i], 2, + ABIT_UGURU_MAX_RETRIES) != 2) { + kfree(data); + return -ENODEV; + } + } + for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { + if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, + data->pwm_settings[i], 5, + ABIT_UGURU_MAX_RETRIES) != 5) { + kfree(data); + return -ENODEV; + } + } + data->last_updated = jiffies; + + /* Detect sensor types and fill the sysfs attr for bank1 */ + sysfs_filename = data->bank1_names; + for (i = 0; i < 16; i++) { + res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); + if (res < 0) { + kfree(data); + return -ENODEV; + } + if (res == ABIT_UGURU_NC) + continue; + + for (j = 0; j < (res ? 7 : 9); j++) { + const char *name_templ = abituguru_sysfs_bank1_templ[ + res][j].dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_bank1_templ[res][j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + data->bank1_sensors[res] + res) + 1; + data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; + sysfs_attr_i++; + } + data->bank1_max_value[probe_order[i]] = + abituguru_bank1_max_value[res]; + data->bank1_address[res][data->bank1_sensors[res]] = + probe_order[i]; + data->bank1_sensors[res]++; + } + /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ + abituguru_detect_no_bank2_sensors(data); + for (i = 0; i < data->bank2_sensors; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_fan_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_fan_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Detect number of sensors and fill the sysfs attr for pwms */ + abituguru_detect_no_pwms(data); + for (i = 0; i < data->pwms; i++) { + for (j = 0; j < 6; j++) { + const char *name_templ = abituguru_sysfs_pwm_templ[j]. + dev_attr.attr.name; + data->sysfs_attr[sysfs_attr_i] = + abituguru_sysfs_pwm_templ[j]; + data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = + sysfs_filename; + sysfs_filename += sprintf(sysfs_filename, name_templ, + i + 1) + 1; + data->sysfs_attr[sysfs_attr_i].index = i; + sysfs_attr_i++; + } + } + /* Last add any "generic" entries to sysfs */ + for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { + data->sysfs_attr[sysfs_attr_i] = abituguru_sysfs_attr[i]; + sysfs_attr_i++; + } + printk(KERN_INFO ABIT_UGURU_NAME ": found Abit uGuru\n"); + + /* Register sysfs hooks */ + data->class_dev = hwmon_device_register(&pdev->dev); + if (IS_ERR(data->class_dev)) { + kfree(data); + return PTR_ERR(data->class_dev); + } + for (i = 0; i < sysfs_attr_i; i++) + device_create_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); + + return 0; +} + +static int __devexit abituguru_remove(struct platform_device *pdev) +{ + struct abituguru_data *data = platform_get_drvdata(pdev); + + platform_set_drvdata(pdev, NULL); + hwmon_device_unregister(data->class_dev); + kfree(data); + + return 0; +} + +static struct abituguru_data *abituguru_update_device(struct device *dev) +{ + int i, err; + struct abituguru_data *data = dev_get_drvdata(dev); + /* fake a complete successful read if no update necessary. */ + char success = 1; + + mutex_lock(&data->update_lock); + if (time_after(jiffies, data->last_updated + HZ)) { + success = 0; + if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, + data->alarms, 3, 0)) != 3) + goto LEAVE_UPDATE; + for (i = 0; i < 16; i++) { + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1, i, + &data->bank1_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK1 + 1, i, + data->bank1_settings[i], 3, 0)) != 3) + goto LEAVE_UPDATE; + } + for (i = 0; i < data->bank2_sensors; i++) + if ((err = abituguru_read(data, + ABIT_UGURU_SENSOR_BANK2, i, + &data->bank2_value[i], 1, 0)) != 1) + goto LEAVE_UPDATE; + /* success! */ + success = 1; + data->update_timeouts = 0; +LEAVE_UPDATE: + /* handle timeout condition */ + if (err == -EBUSY) { + /* No overflow please */ + if (data->update_timeouts < 255u) + data->update_timeouts++; + if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { + ABIT_UGURU_DEBUG(3, "timeout exceeded, will " + "try again next update\n"); + /* Just a timeout, fake a successful read */ + success = 1; + } else + ABIT_UGURU_DEBUG(1, "timeout exceeded %d " + "times waiting for more input state\n", + (int)data->update_timeouts); + } + /* On success set last_updated */ + if (success) + data->last_updated = jiffies; + } + mutex_unlock(&data->update_lock); + + if (success) + return data; + else + return NULL; +} + +static struct platform_driver abituguru_driver = { + .driver = { + .owner = THIS_MODULE, + .name = ABIT_UGURU_NAME, + }, + .probe = abituguru_probe, + .remove = __devexit_p(abituguru_remove), +}; + +static int __init abituguru_detect(void) +{ + /* See if there is an uguru there. After a reboot uGuru will hold 0x00 + at DATA and 0xAC, when this driver has already been loaded once + DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either + scenario but some will hold 0x00. + Some uGuru's initally hold 0x09 at DATA and will only hold 0x08 + after reading CMD first, so CMD must be read first! */ + u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); + u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); + if (((data_val == 0x00) || (data_val == 0x08)) && + ((cmd_val == 0x00) || (cmd_val == 0xAC))) + return ABIT_UGURU_BASE; + + ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " + "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); + + if (force) { + printk(KERN_INFO ABIT_UGURU_NAME ": Assuming Abit uGuru is " + "present because of \"force\" parameter\n"); + return ABIT_UGURU_BASE; + } + + /* No uGuru found */ + return -ENODEV; +} + +static struct platform_device *abituguru_pdev; + +static int __init abituguru_init(void) +{ + int address, err; + struct resource res = { .flags = IORESOURCE_IO }; + + address = abituguru_detect(); + if (address < 0) + return address; + + err = platform_driver_register(&abituguru_driver); + if (err) + goto exit; + + abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); + if (!abituguru_pdev) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device allocation failed\n"); + err = -ENOMEM; + goto exit_driver_unregister; + } + + res.start = address; + res.end = address + ABIT_UGURU_REGION_LENGTH - 1; + res.name = ABIT_UGURU_NAME; + + err = platform_device_add_resources(abituguru_pdev, &res, 1); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device resource addition failed (%d)\n", err); + goto exit_device_put; + } + + err = platform_device_add(abituguru_pdev); + if (err) { + printk(KERN_ERR ABIT_UGURU_NAME + ": Device addition failed (%d)\n", err); + goto exit_device_put; + } + + return 0; + +exit_device_put: + platform_device_put(abituguru_pdev); +exit_driver_unregister: + platform_driver_unregister(&abituguru_driver); +exit: + return err; +} + +static void __exit abituguru_exit(void) +{ + platform_device_unregister(abituguru_pdev); + platform_driver_unregister(&abituguru_driver); +} + +MODULE_AUTHOR("Hans de Goede <j.w.r.degoede at hhs.nl>"); +MODULE_DESCRIPTION("Abit uGuru Sensor device"); +MODULE_LICENSE("GPL"); + +module_init(abituguru_init); +module_exit(abituguru_exit); -- Jean Delvare