From: Dave Chinner <dchinner@xxxxxxxxxx> It's a global atomic counter, and we are hitting it at a rate of half a million transactions a second, so it's bouncing the counter cacheline all over the place on large machines. We don't actually need it anymore - it used to be required because the VFS freeze code could not track/prevent filesystem transactions that were running, but that problem no longer exists. Hence to remove the counter, we simply have to ensure that nothing calls xfs_sync_sb() while we are trying to quiesce the filesytem. That only happens if the log worker is still running when we call xfs_quiesce_attr(). The log worker is cancelled at the end of xfs_quiesce_attr() by calling xfs_log_quiesce(), so just call it early here and then we can remove the counter altogether. Concurrent create, 50 million inodes, identical 16p/16GB virtual machines on different physical hosts. Machine A has twice the CPU cores per socket of machine B: unpatched patched machine A: 3m16s 2m00s machine B: 4m04s 4m05s Create rates: unpatched patched machine A: 282k+/-31k 468k+/-21k machine B: 231k+/-8k 233k+/-11k Concurrent rm of same 50 million inodes: unpatched patched machine A: 6m42s 2m33s machine B: 4m47s 4m47s The transaction rate on the fast machine went from just under 300k/sec to 700k/sec, which indicates just how much of a bottleneck this atomic counter was. Signed-off-by: Dave Chinner <dchinner@xxxxxxxxxx> --- fs/xfs/xfs_mount.h | 1 - fs/xfs/xfs_super.c | 17 +++++------------ fs/xfs/xfs_trans.c | 27 +++++++++++---------------- 3 files changed, 16 insertions(+), 29 deletions(-) diff --git a/fs/xfs/xfs_mount.h b/fs/xfs/xfs_mount.h index c1f92c1847bb2..3725d25ad97e8 100644 --- a/fs/xfs/xfs_mount.h +++ b/fs/xfs/xfs_mount.h @@ -176,7 +176,6 @@ typedef struct xfs_mount { uint64_t m_resblks; /* total reserved blocks */ uint64_t m_resblks_avail;/* available reserved blocks */ uint64_t m_resblks_save; /* reserved blks @ remount,ro */ - atomic_t m_active_trans; /* number trans frozen */ struct delayed_work m_reclaim_work; /* background inode reclaim */ struct delayed_work m_eofblocks_work; /* background eof blocks trimming */ diff --git a/fs/xfs/xfs_super.c b/fs/xfs/xfs_super.c index aae469f73efeb..fa58cb07c8fdf 100644 --- a/fs/xfs/xfs_super.c +++ b/fs/xfs/xfs_super.c @@ -874,8 +874,10 @@ xfs_restore_resvblks(struct xfs_mount *mp) * there is no log replay required to write the inodes to disk - this is the * primary difference between a sync and a quiesce. * - * Note: xfs_log_quiesce() stops background log work - the callers must ensure - * it is started again when appropriate. + * We cancel log work early here to ensure all transactions the log worker may + * run have finished before we clean up and log the superblock and write an + * unmount record. The unfreeze process is responsible for restarting the log + * worker correctly. */ void xfs_quiesce_attr( @@ -883,9 +885,7 @@ xfs_quiesce_attr( { int error = 0; - /* wait for all modifications to complete */ - while (atomic_read(&mp->m_active_trans) > 0) - delay(100); + cancel_delayed_work_sync(&mp->m_log->l_work); /* force the log to unpin objects from the now complete transactions */ xfs_log_force(mp, XFS_LOG_SYNC); @@ -899,12 +899,6 @@ xfs_quiesce_attr( if (error) xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " "Frozen image may not be consistent."); - /* - * Just warn here till VFS can correctly support - * read-only remount without racing. - */ - WARN_ON(atomic_read(&mp->m_active_trans) != 0); - xfs_log_quiesce(mp); } @@ -1793,7 +1787,6 @@ static int xfs_init_fs_context( INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); spin_lock_init(&mp->m_perag_lock); mutex_init(&mp->m_growlock); - atomic_set(&mp->m_active_trans, 0); INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker); INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); diff --git a/fs/xfs/xfs_trans.c b/fs/xfs/xfs_trans.c index b055a5ab53465..217937d743dbb 100644 --- a/fs/xfs/xfs_trans.c +++ b/fs/xfs/xfs_trans.c @@ -68,7 +68,6 @@ xfs_trans_free( xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false); trace_xfs_trans_free(tp, _RET_IP_); - atomic_dec(&tp->t_mountp->m_active_trans); if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT)) sb_end_intwrite(tp->t_mountp->m_super); xfs_trans_free_dqinfo(tp); @@ -125,8 +124,6 @@ xfs_trans_dup( xfs_defer_move(ntp, tp); xfs_trans_dup_dqinfo(tp, ntp); - - atomic_inc(&tp->t_mountp->m_active_trans); return ntp; } @@ -275,7 +272,6 @@ xfs_trans_alloc( */ WARN_ON(resp->tr_logres > 0 && mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE); - atomic_inc(&mp->m_active_trans); tp->t_magic = XFS_TRANS_HEADER_MAGIC; tp->t_flags = flags; @@ -299,20 +295,19 @@ xfs_trans_alloc( /* * Create an empty transaction with no reservation. This is a defensive - * mechanism for routines that query metadata without actually modifying - * them -- if the metadata being queried is somehow cross-linked (think a - * btree block pointer that points higher in the tree), we risk deadlock. - * However, blocks grabbed as part of a transaction can be re-grabbed. - * The verifiers will notice the corrupt block and the operation will fail - * back to userspace without deadlocking. + * mechanism for routines that query metadata without actually modifying them -- + * if the metadata being queried is somehow cross-linked (think a btree block + * pointer that points higher in the tree), we risk deadlock. However, blocks + * grabbed as part of a transaction can be re-grabbed. The verifiers will + * notice the corrupt block and the operation will fail back to userspace + * without deadlocking. * - * Note the zero-length reservation; this transaction MUST be cancelled - * without any dirty data. + * Note the zero-length reservation; this transaction MUST be cancelled without + * any dirty data. * - * Callers should obtain freeze protection to avoid two conflicts with fs - * freezing: (1) having active transactions trip the m_active_trans ASSERTs; - * and (2) grabbing buffers at the same time that freeze is trying to drain - * the buffer LRU list. + * Callers should obtain freeze protection to avoid a conflict with fs freezing + * where we can be grabbing buffers at the same time that freeze is trying to + * drain the buffer LRU list. */ int xfs_trans_alloc_empty( -- 2.26.2.761.g0e0b3e54be