[PATCH 15/39] i2400m: host-to-device protocol definitions

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This defines the structures and constants for the host-device
protocols:

 - boot / firmware upload protocol

 - general data transport protocol

 - control protocol

This header file is done in such a way that can also be used verbatim
by user space.

Signed-off-by: Inaky Perez-Gonzalez <inaky@xxxxxxxxxxxxxxx>
---
 include/linux/wimax/i2400m.h |  512 ++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 512 insertions(+), 0 deletions(-)
 create mode 100644 include/linux/wimax/i2400m.h

diff --git a/include/linux/wimax/i2400m.h b/include/linux/wimax/i2400m.h
new file mode 100644
index 0000000..74198f5
--- /dev/null
+++ b/include/linux/wimax/i2400m.h
@@ -0,0 +1,512 @@
+/*
+ * Intel Wireless WiMax Connection 2400m
+ * Host-Device protocol interface definitions
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ *   * Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ *   * Redistributions in binary form must reproduce the above copyright
+ *     notice, this list of conditions and the following disclaimer in
+ *     the documentation and/or other materials provided with the
+ *     distribution.
+ *   * Neither the name of Intel Corporation nor the names of its
+ *     contributors may be used to endorse or promote products derived
+ *     from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Intel Corporation <linux-wimax@xxxxxxxxx>
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@xxxxxxxxx>
+ *  - Initial implementation
+ *
+ *
+ * This header defines the data structures and constants used to
+ * communicate with the device.
+ *
+ * BOOTMODE/BOOTROM/FIRMWARE UPLOAD PROTOCOL
+ *
+ * The firmware upload protocol is quite simple and only requires a
+ * handful of commands. See drivers/net/wimax/i2400m/fw.c for more
+ * details.
+ *
+ * The BCF data structure is for the firmware file header.
+ *
+ *
+ * THE DATA / CONTROL PROTOCOL
+ *
+ * This is the normal protocol spoken with the device once the
+ * firmware is uploaded. It transports data payloads and control
+ * messages back and forth.
+ *
+ * It consists 'messages' that pack one or more payloads each. The
+ * format is described in detail in drivers/net/wimax/i2400m/rx.c and
+ * tx.c.
+ *
+ *
+ * THE L3L4 PROTOCOL
+ *
+ * The term L3L4 refers to Layer 3 (the device), Layer 4 (the
+ * driver/host software).
+ *
+ * This is the control protocol used by the host to control the i2400m
+ * device (scan, connect, disconnect...). This is sent to / received
+ * as control frames. These frames consist of a header and zero or
+ * more TLVs with information. We call each control frame a "message".
+ *
+ * Each message is composed of:
+ *
+ * HEADER
+ * [TLV0 + PAYLOAD0]
+ * [TLV1 + PAYLOAD1]
+ * [...]
+ * [TLVN + PAYLOADN]
+ *
+ * The HEADER is defined by 'struct i2400m_l3l4_hdr'. The payloads are
+ * defined by a TLV structure (Type Length Value) which is a 'header'
+ * (struct i2400m_tlv_hdr) and then the payload.
+ *
+ * All integers are represented as Little Endian.
+ *
+ * - REQUESTS AND EVENTS
+ *
+ * The requests can be clasified as follows:
+ *
+ *   COMMAND:  implies a request from the host to the device requesting
+ *             an action being performed. The device will reply with a
+ *             message (with the same type as the command), status and
+ *             no (TLV) payload. Execution of a command might cause
+ *             events (of different type) to be sent later on as
+ *             device's state changes.
+ *
+ *   GET/SET:  similar to COMMAND, but will not cause other
+ *             EVENTs. The reply, in the case of GET, will contain
+ *             TLVs with the requested information.
+ *
+ *   EVENT:    asynchronous messages sent from the device, maybe as a
+ *             consequence of previous COMMANDs but disassociated from
+ *             them.
+ *
+ * Only one request might be pending at the same time (ie: don't
+ * parallelize nor post another GET request before the previous
+ * COMMAND has been acknowledged with it's corresponding reply by the
+ * device).
+ *
+ * The different requests and their formats are described below:
+ *
+ *  I2400M_MT_*   Message types
+ *  I2400M_MS_*   Message status (for replies, events)
+ *  i2400m_tlv_*  TLVs
+ *
+ * data types are named 'struct i2400m_msg_OPNAME', OPNAME matching the
+ * operation.
+ */
+
+#ifndef __LINUX__WIMAX__I2400M_H__
+#define __LINUX__WIMAX__I2400M_H__
+
+#include <linux/types.h>
+
+
+/*
+ * Host Device Interface (HDI) common to all busses
+ */
+
+/* Boot-mode (firmware upload mode) commands */
+
+/* Header for the firmware file */
+struct i2400m_bcf_hdr {
+	__le32 module_type;
+	__le32 header_len;
+	__le32 header_version;
+	__le32 module_id;
+	__le32 module_vendor;
+	__le32 date;		/* BCD YYYMMDD */
+	__le32 size;
+	__le32 key_size;	/* in dwords */
+	__le32 modulus_size;	/* in dwords */
+	__le32 exponent_size;	/* in dwords */
+	__u8 reserved[88];
+} __attribute__ ((packed));
+
+/* Boot mode opcodes */
+enum i2400m_brh_opcode {
+	I2400M_BRH_READ = 1,
+	I2400M_BRH_WRITE = 2,
+	I2400M_BRH_JUMP = 3,
+	I2400M_BRH_SIGNED_JUMP = 8,
+	I2400M_BRH_HASH_PAYLOAD_ONLY = 9,
+};
+
+/* Boot mode command masks and stuff */
+enum i2400m_brh {
+	I2400M_BRH_SIGNATURE = 0xcbbc0000,
+	I2400M_BRH_SIGNATURE_MASK = 0xffff0000,
+	I2400M_BRH_SIGNATURE_SHIFT = 16,
+	I2400M_BRH_OPCODE_MASK = 0x0000000f,
+	I2400M_BRH_RESPONSE_MASK = 0x000000f0,
+	I2400M_BRH_RESPONSE_SHIFT = 4,
+	I2400M_BRH_DIRECT_ACCESS = 0x00000400,
+	I2400M_BRH_RESPONSE_REQUIRED = 0x00000200,
+	I2400M_BRH_USE_CHECKSUM = 0x00000100,
+};
+
+
+/* Constants for bcf->module_id */
+enum i2400m_bcf_mod_id {
+	/* Firmware file carries its own pokes -- pokes are a set of
+	 * magical values that have to be written in certain memory
+	 * addresses to get the device up and ready for firmware
+	 * download when it is in non-signed boot mode. */
+	I2400M_BCF_MOD_ID_POKES = 0x000000001,
+};
+
+
+/**
+ * i2400m_bootrom_header - Header for a boot-mode command
+ *
+ * @cmd: the above command descriptor
+ * @target_addr: where on the device memory should the action be performed.
+ * @data_size: for read/write, amount of data to be read/written
+ * @block_checksum: checksum value (if applicable)
+ * @payload: the beginning of data attached to this header
+ */
+struct i2400m_bootrom_header {
+	__le32 command;		/* Compose with enum i2400_brh */
+	__le32 target_addr;
+	__le32 data_size;
+	__le32 block_checksum;
+	char payload[0];
+} __attribute__ ((packed));
+
+
+/*
+ * Data / control protocol
+ */
+
+/* Packet types for the host-device interface */
+enum i2400m_pt {
+	I2400M_PT_DATA = 0,
+	I2400M_PT_CTRL,
+	I2400M_PT_TRACE,	/* For device debug */
+	I2400M_PT_RESET_WARM,	/* device reset */
+	I2400M_PT_RESET_COLD,	/* USB[transport] reset, like reconnect */
+	I2400M_PT_ILLEGAL
+};
+
+
+/*
+ * Payload for a data packet
+ *
+ * This is prefixed to each and every outgoing DATA type.
+ */
+struct i2400m_pl_data_hdr {
+	__le32 reserved;
+} __attribute__((packed));
+
+
+/* Misc constants */
+enum {
+	I2400M_PL_PAD = 16,	/* Payload data size alignment */
+	I2400M_PL_SIZE_MAX = 0x3EFF,
+	I2400M_MAX_PLS_IN_MSG = 60,
+	/* protocol barkers: sync sequences; for notifications they
+	 * are sent in groups of four. */
+	I2400M_H2D_PREVIEW_BARKER = 0xcafe900d,
+	I2400M_COLD_RESET_BARKER = 0xc01dc01d,
+	I2400M_WARM_RESET_BARKER = 0x50f750f7,
+	I2400M_NBOOT_BARKER = 0xdeadbeef,
+	I2400M_SBOOT_BARKER = 0x0ff1c1a1,
+	I2400M_ACK_BARKER = 0xfeedbabe,
+	I2400M_D2H_MSG_BARKER = 0xbeefbabe,
+};
+
+
+/*
+ * Hardware payload descriptor
+ *
+ * Bitfields encoded in a struct to enforce typing semantics.
+ *
+ * Look in rx.c and tx.c for a full description of the format.
+ */
+struct i2400m_pld {
+	__le32 val;
+} __attribute__ ((packed));
+
+#define I2400M_PLD_SIZE_MASK 0x00003fff
+#define I2400M_PLD_TYPE_SHIFT 16
+#define I2400M_PLD_TYPE_MASK 0x000f0000
+
+/*
+ * Header for a TX message or RX message
+ *
+ * @barker: preamble
+ * @size: used for management of the FIFO queue buffer; before
+ *     sending, this is converted to be a real preamble. This
+ *     indicates the real size of the TX message that starts at this
+ *     point. If the highest bit is set, then this message is to be
+ *     skipped.
+ * @sequence: sequence number of this message
+ * @offset: offset where the message itself starts -- see the comments
+ *     in the file header about message header and payload descriptor
+ *     alignment.
+ * @num_pls: number of payloads in this message
+ * @padding: amount of padding bytes at the end of the message to make
+ *           it be of block-size aligned
+ *
+ * Look in rx.c and tx.c for a full description of the format.
+ */
+struct i2400m_msg_hdr {
+	union {
+		__le32 barker;
+		__u32 size;	/* same size type as barker!! */
+	};
+	union {
+		__le32 sequence;
+		__u32 offset;	/* same size type as barker!! */
+	};
+	__le16 num_pls;
+	__le16 rsv1;
+	__le16 padding;
+	__le16 rsv2;
+	struct i2400m_pld pld[0];
+} __attribute__ ((packed));
+
+
+
+/*
+ * L3/L4 control protocol
+ */
+
+enum {
+	/* Interface version */
+	I2400M_L3L4_VERSION             = 0x0100,
+};
+
+/* Message types */
+enum i2400m_mt {
+	I2400M_MT_RESERVED              = 0x0000,
+	I2400M_MT_INVALID               = 0xffff,
+	I2400M_MT_REPORT_MASK		= 0x8000,
+
+	I2400M_MT_GET_SCAN_RESULT  	= 0x4202,
+	I2400M_MT_SET_SCAN_PARAM   	= 0x4402,
+	I2400M_MT_CMD_RF_CONTROL   	= 0x4602,
+	I2400M_MT_CMD_SCAN         	= 0x4603,
+	I2400M_MT_CMD_CONNECT      	= 0x4604,
+	I2400M_MT_CMD_DISCONNECT   	= 0x4605,
+	I2400M_MT_CMD_EXIT_IDLE   	= 0x4606,
+	I2400M_MT_GET_LM_VERSION   	= 0x5201,
+	I2400M_MT_GET_DEVICE_INFO  	= 0x5202,
+	I2400M_MT_GET_LINK_STATUS  	= 0x5203,
+	I2400M_MT_GET_STATISTICS   	= 0x5204,
+	I2400M_MT_GET_STATE        	= 0x5205,
+	I2400M_MT_GET_MEDIA_STATUS	= 0x5206,
+	I2400M_MT_SET_INIT_CONFIG	= 0x5404,
+	I2400M_MT_CMD_INIT	        = 0x5601,
+	I2400M_MT_CMD_TERMINATE		= 0x5602,
+	I2400M_MT_CMD_MODE_OF_OP	= 0x5603,
+	I2400M_MT_CMD_RESET_DEVICE	= 0x5604,
+	I2400M_MT_CMD_MONITOR_CONTROL   = 0x5605,
+	I2400M_MT_CMD_ENTER_POWERSAVE   = 0x5606,
+	I2400M_MT_GET_TLS_OPERATION_RESULT = 0x6201,
+	I2400M_MT_SET_EAP_SUCCESS       = 0x6402,
+	I2400M_MT_SET_EAP_FAIL          = 0x6403,
+	I2400M_MT_SET_EAP_KEY          	= 0x6404,
+	I2400M_MT_CMD_SEND_EAP_RESPONSE = 0x6602,
+	I2400M_MT_REPORT_SCAN_RESULT    = 0xc002,
+	I2400M_MT_REPORT_STATE		= 0xd002,
+	I2400M_MT_REPORT_POWERSAVE_READY = 0xd005,
+	I2400M_MT_REPORT_EAP_REQUEST    = 0xe002,
+	I2400M_MT_REPORT_EAP_RESTART    = 0xe003,
+	I2400M_MT_REPORT_ALT_ACCEPT    	= 0xe004,
+	I2400M_MT_REPORT_KEY_REQUEST 	= 0xe005,
+};
+
+
+/*
+ * Message Ack Status codes
+ *
+ * When a message is replied-to, this status is reported.
+ */
+enum i2400m_ms {
+	I2400M_MS_DONE_OK                  = 0,
+	I2400M_MS_DONE_IN_PROGRESS         = 1,
+	I2400M_MS_INVALID_OP               = 2,
+	I2400M_MS_BAD_STATE                = 3,
+	I2400M_MS_ILLEGAL_VALUE            = 4,
+	I2400M_MS_MISSING_PARAMS           = 5,
+	I2400M_MS_VERSION_ERROR            = 6,
+	I2400M_MS_ACCESSIBILITY_ERROR      = 7,
+	I2400M_MS_BUSY                     = 8,
+	I2400M_MS_CORRUPTED_TLV            = 9,
+	I2400M_MS_UNINITIALIZED            = 10,
+	I2400M_MS_UNKNOWN_ERROR            = 11,
+	I2400M_MS_PRODUCTION_ERROR         = 12,
+	I2400M_MS_NO_RF                    = 13,
+	I2400M_MS_NOT_READY_FOR_POWERSAVE  = 14,
+	I2400M_MS_THERMAL_CRITICAL         = 15,
+	I2400M_MS_MAX
+};
+
+
+/**
+ * i2400m_tlv - enumeration of the different types of TLVs
+ *
+ * TLVs stand for type-length-value and are the header for a payload
+ * composed of almost anything. Each payload has a type assigned
+ * and a length.
+ */
+enum i2400m_tlv {
+	I2400M_TLV_L4_MESSAGE_VERSIONS = 129,
+	I2400M_TLV_SYSTEM_STATE = 141,
+	I2400M_TLV_MEDIA_STATUS = 161,
+	I2400M_TLV_RF_OPERATION = 162,
+	I2400M_TLV_RF_STATUS = 163,
+	I2400M_TLV_DEVICE_RESET_TYPE = 132,
+	I2400M_TLV_CONFIG_IDLE_PARAMETERS = 601,
+};
+
+
+struct i2400m_tlv_hdr {
+	__le16 type;
+	__le16 length;		/* payload's */
+	__u8   pl[0];
+} __attribute__((packed));
+
+
+struct i2400m_l3l4_hdr {
+	__le16 type;
+	__le16 length;		/* payload's */
+	__le16 version;
+	__le16 resv1;
+	__le16 status;
+	__le16 resv2;
+	struct i2400m_tlv_hdr pl[0];
+} __attribute__((packed));
+
+
+/**
+ * i2400m_system_state - different states of the device
+ */
+enum i2400m_system_state {
+	I2400M_SS_UNINITIALIZED = 1,
+	I2400M_SS_INIT,
+	I2400M_SS_READY,
+	I2400M_SS_SCAN,
+	I2400M_SS_STANDBY,
+	I2400M_SS_CONNECTING,
+	I2400M_SS_WIMAX_CONNECTED,
+	I2400M_SS_DATA_PATH_CONNECTED,
+	I2400M_SS_IDLE,
+	I2400M_SS_DISCONNECTING,
+	I2400M_SS_OUT_OF_ZONE,
+	I2400M_SS_SLEEPACTIVE,
+	I2400M_SS_PRODUCTION,
+	I2400M_SS_CONFIG,
+	I2400M_SS_RF_OFF,
+	I2400M_SS_RF_SHUTDOWN,
+	I2400M_SS_DEVICE_DISCONNECT,
+	I2400M_SS_MAX,
+};
+
+
+/**
+ * i2400m_tlv_system_state - report on the state of the system
+ *
+ * @state: see enum i2400m_system_state
+ */
+struct i2400m_tlv_system_state {
+	struct i2400m_tlv_hdr hdr;
+	__le32 state;
+} __attribute__((packed));
+
+
+struct i2400m_tlv_l4_message_versions {
+	struct i2400m_tlv_hdr hdr;
+	__le16 major;
+	__le16 minor;
+	__le16 branch;
+	__le16 reserved;
+} __attribute__((packed));
+
+
+struct i2400m_tlv_detailed_device_info {
+	struct i2400m_tlv_hdr hdr;
+	__u8 reserved1[400];
+	__u8 mac_address[6];
+	__u8 reserved2[2];
+} __attribute__((packed));
+
+
+enum i2400m_rf_switch_status {
+	I2400M_RF_SWITCH_ON = 1,
+	I2400M_RF_SWITCH_OFF = 2,
+};
+
+struct i2400m_tlv_rf_switches_status {
+	struct i2400m_tlv_hdr hdr;
+	__u8 sw_rf_switch;	/* 1 ON, 2 OFF */
+	__u8 hw_rf_switch;	/* 1 ON, 2 OFF */
+	__u8 reserved[2];
+} __attribute__((packed));
+
+
+enum {
+	i2400m_rf_operation_on = 1,
+	i2400m_rf_operation_off = 2
+};
+
+struct i2400m_tlv_rf_operation {
+	struct i2400m_tlv_hdr hdr;
+	__le32 status;	/* 1 ON, 2 OFF */
+} __attribute__((packed));
+
+
+enum i2400m_tlv_reset_type {
+	I2400M_RESET_TYPE_COLD = 1,
+	I2400M_RESET_TYPE_WARM
+};
+
+struct i2400m_tlv_device_reset_type {
+	struct i2400m_tlv_hdr hdr;
+	__le32 reset_type;
+} __attribute__((packed));
+
+
+struct i2400m_tlv_config_idle_parameters {
+	struct i2400m_tlv_hdr hdr;
+	__le32 idle_timeout;	/* 100 to 300000 ms [5min], 100 increments
+				 * 0 disabled */
+	__le32 idle_paging_interval;	/* frames */
+} __attribute__((packed));
+
+
+enum i2400m_media_status {
+	I2400M_MEDIA_STATUS_LINK_UP = 1,
+	I2400M_MEDIA_STATUS_LINK_DOWN,
+	I2400M_MEDIA_STATUS_LINK_RENEW,
+};
+
+struct i2400m_tlv_media_status {
+	struct i2400m_tlv_hdr hdr;
+	__le32 media_status;
+} __attribute__((packed));
+
+#endif /* #ifndef __LINUX__WIMAX__I2400M_H__ */
-- 
1.5.6.5


[Index of Archives]     [Linux Kernel]     [Linux Wireless]     [Linux Bluetooth]     [Linux Netdev]     [Linux Kernel Newbies]     [IDE]     [Security]     [Git]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux ATA RAID]     [Samba]     [Video 4 Linux]     [Device Mapper]

  Powered by Linux