On Tue, 6 Feb 2024 04:31:23 +0530 <ankita@xxxxxxxxxx> wrote: > From: Ankit Agrawal <ankita@xxxxxxxxxx> > > NVIDIA's upcoming Grace Hopper Superchip provides a PCI-like device > for the on-chip GPU that is the logical OS representation of the > internal proprietary chip-to-chip cache coherent interconnect. > > The device is peculiar compared to a real PCI device in that whilst > there is a real 64b PCI BAR1 (comprising region 2 & region 3) on the > device, it is not used to access device memory once the faster > chip-to-chip interconnect is initialized (occurs at the time of host > system boot). The device memory is accessed instead using the chip-to-chip > interconnect that is exposed as a contiguous physically addressable > region on the host. This device memory aperture can be obtained from host > ACPI table using device_property_read_u64(), according to the FW > specification. Since the device memory is cache coherent with the CPU, > it can be mmap into the user VMA with a cacheable mapping using > remap_pfn_range() and used like a regular RAM. The device memory > is not added to the host kernel, but mapped directly as this reduces > memory wastage due to struct pages. > > There is also a requirement of a reserved 1G uncached region (termed as > resmem) to support the Multi-Instance GPU (MIG) feature [1]. This is > to work around a HW defect. Based on [2], the requisite properties > (uncached, unaligned access) can be achieved through a VM mapping (S1) > of NORMAL_NC and host (S2) mapping with MemAttr[2:0]=0b101. To provide > a different non-cached property to the reserved 1G region, it needs to > be carved out from the device memory and mapped as a separate region > in Qemu VMA with pgprot_writecombine(). pgprot_writecombine() sets the > Qemu VMA page properties (pgprot) as NORMAL_NC. > > Provide a VFIO PCI variant driver that adapts the unique device memory > representation into a more standard PCI representation facing userspace. > > The variant driver exposes these two regions - the non-cached reserved > (resmem) and the cached rest of the device memory (termed as usemem) as > separate VFIO 64b BAR regions. This is divergent from the baremetal > approach, where the device memory is exposed as a device memory region. > The decision for a different approach was taken in view of the fact that > it would necessiate additional code in Qemu to discover and insert those > regions in the VM IPA, along with the additional VM ACPI DSDT changes to > communicate the device memory region IPA to the VM workloads. Moreover, > this behavior would have to be added to a variety of emulators (beyond > top of tree Qemu) out there desiring grace hopper support. > > Since the device implements 64-bit BAR0, the VFIO PCI variant driver > maps the uncached carved out region to the next available PCI BAR (i.e. > comprising of region 2 and 3). The cached device memory aperture is > assigned BAR region 4 and 5. Qemu will then naturally generate a PCI > device in the VM with the uncached aperture reported as BAR2 region, > the cacheable as BAR4. The variant driver provides emulation for these > fake BARs' PCI config space offset registers. > > The hardware ensures that the system does not crash when the memory > is accessed with the memory enable turned off. It synthesis ~0 reads > and dropped writes on such access. So there is no need to support the > disablement/enablement of BAR through PCI_COMMAND config space register. > > The memory layout on the host looks like the following: > devmem (memlength) > |--------------------------------------------------| > |-------------cached------------------------|--NC--| > | | > usemem.phys/memphys resmem.phys > > PCI BARs need to be aligned to the power-of-2, but the actual memory on the > device may not. A read or write access to the physical address from the > last device PFN up to the next power-of-2 aligned physical address > results in reading ~0 and dropped writes. Note that the GPU device > driver [6] is capable of knowing the exact device memory size through > separate means. The device memory size is primarily kept in the system > ACPI tables for use by the VFIO PCI variant module. > > Note that the usemem memory is added by the VM Nvidia device driver [5] > to the VM kernel as memblocks. Hence make the usable memory size memblock > aligned. > > Currently there is no provision in KVM for a S2 mapping with > MemAttr[2:0]=0b101, but there is an ongoing effort to provide the same [3]. > As previously mentioned, resmem is mapped pgprot_writecombine(), that > sets the Qemu VMA page properties (pgprot) as NORMAL_NC. Using the > proposed changes in [4] and [3], KVM marks the region with > MemAttr[2:0]=0b101 in S2. > > If the bare metal properties are not present, the driver registers the > vfio-pci-core function pointers. > > This goes along with a qemu series [6] to provides the necessary > implementation of the Grace Hopper Superchip firmware specification so > that the guest operating system can see the correct ACPI modeling for > the coherent GPU device. Verified with the CUDA workload in the VM. > > [1] https://www.nvidia.com/en-in/technologies/multi-instance-gpu/ > [2] section D8.5.5 of https://developer.arm.com/documentation/ddi0487/latest/ > [3] https://lore.kernel.org/all/20231205033015.10044-1-ankita@xxxxxxxxxx/ > [4] https://lore.kernel.org/all/20230907181459.18145-2-ankita@xxxxxxxxxx/ > [5] https://github.com/NVIDIA/open-gpu-kernel-modules > [6] https://lore.kernel.org/all/20231203060245.31593-1-ankita@xxxxxxxxxx/ > > Signed-off-by: Aniket Agashe <aniketa@xxxxxxxxxx> > Signed-off-by: Ankit Agrawal <ankita@xxxxxxxxxx> > --- > MAINTAINERS | 6 + > drivers/vfio/pci/Kconfig | 2 + > drivers/vfio/pci/Makefile | 2 + > drivers/vfio/pci/nvgrace-gpu/Kconfig | 10 + > drivers/vfio/pci/nvgrace-gpu/Makefile | 3 + > drivers/vfio/pci/nvgrace-gpu/main.c | 856 ++++++++++++++++++++++++++ > 6 files changed, 879 insertions(+) > create mode 100644 drivers/vfio/pci/nvgrace-gpu/Kconfig > create mode 100644 drivers/vfio/pci/nvgrace-gpu/Makefile > create mode 100644 drivers/vfio/pci/nvgrace-gpu/main.c > > diff --git a/MAINTAINERS b/MAINTAINERS > index 8999497011a2..529ec8966f58 100644 > --- a/MAINTAINERS > +++ b/MAINTAINERS > @@ -23103,6 +23103,12 @@ L: kvm@xxxxxxxxxxxxxxx > S: Maintained > F: drivers/vfio/platform/ > > +VFIO NVIDIA GRACE GPU DRIVER > +M: Ankit Agrawal <ankita@xxxxxxxxxx> > +L: kvm@xxxxxxxxxxxxxxx > +S: Supported > +F: drivers/vfio/pci/nvgrace-gpu/ > + Entries should be alphabetical. This will end up colliding with [1] so I'll plan to fix it either way. Otherwise just a couple optional comments from me below. I see Zhi also has a few good comments. I'd suggest soliciting a review from the other variant driver reviewers for this version and maybe we can make v18 the final version. Thanks, Alex [1]https://lore.kernel.org/all/20240205235427.2103714-1-alex.williamson@xxxxxxxxxx/ > VGA_SWITCHEROO > R: Lukas Wunner <lukas@xxxxxxxxx> > S: Maintained > diff --git a/drivers/vfio/pci/Kconfig b/drivers/vfio/pci/Kconfig > index 18c397df566d..15821a2d77d2 100644 > --- a/drivers/vfio/pci/Kconfig > +++ b/drivers/vfio/pci/Kconfig > @@ -67,4 +67,6 @@ source "drivers/vfio/pci/pds/Kconfig" > > source "drivers/vfio/pci/virtio/Kconfig" > > +source "drivers/vfio/pci/nvgrace-gpu/Kconfig" > + > endmenu > diff --git a/drivers/vfio/pci/Makefile b/drivers/vfio/pci/Makefile > index 046139a4eca5..ce7a61f1d912 100644 > --- a/drivers/vfio/pci/Makefile > +++ b/drivers/vfio/pci/Makefile > @@ -15,3 +15,5 @@ obj-$(CONFIG_HISI_ACC_VFIO_PCI) += hisilicon/ > obj-$(CONFIG_PDS_VFIO_PCI) += pds/ > > obj-$(CONFIG_VIRTIO_VFIO_PCI) += virtio/ > + > +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu/ > diff --git a/drivers/vfio/pci/nvgrace-gpu/Kconfig b/drivers/vfio/pci/nvgrace-gpu/Kconfig > new file mode 100644 > index 000000000000..936e88d8d41d > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/Kconfig > @@ -0,0 +1,10 @@ > +# SPDX-License-Identifier: GPL-2.0-only > +config NVGRACE_GPU_VFIO_PCI > + tristate "VFIO support for the GPU in the NVIDIA Grace Hopper Superchip" > + depends on ARM64 || (COMPILE_TEST && 64BIT) > + select VFIO_PCI_CORE > + help > + VFIO support for the GPU in the NVIDIA Grace Hopper Superchip is > + required to assign the GPU device using KVM/qemu/etc. > + > + If you don't know what to do here, say N. > diff --git a/drivers/vfio/pci/nvgrace-gpu/Makefile b/drivers/vfio/pci/nvgrace-gpu/Makefile > new file mode 100644 > index 000000000000..3ca8c187897a > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/Makefile > @@ -0,0 +1,3 @@ > +# SPDX-License-Identifier: GPL-2.0-only > +obj-$(CONFIG_NVGRACE_GPU_VFIO_PCI) += nvgrace-gpu-vfio-pci.o > +nvgrace-gpu-vfio-pci-y := main.o > diff --git a/drivers/vfio/pci/nvgrace-gpu/main.c b/drivers/vfio/pci/nvgrace-gpu/main.c > new file mode 100644 > index 000000000000..6279af2bc6b8 > --- /dev/null > +++ b/drivers/vfio/pci/nvgrace-gpu/main.c > @@ -0,0 +1,856 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved > + */ > + > +#include <linux/vfio_pci_core.h> > + > +/* > + * The device memory usable to the workloads running in the VM is cached > + * and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region) > + * to the VM and is represented as usemem. > + * Moreover, the VM GPU device driver needs a non-cacheable region to > + * support the MIG feature. This region is also exposed as a 64b BAR > + * (comprising of BAR2 and BAR3 region) and represented as resmem. > + */ > +#define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX > +#define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX > + > +/* Memory size expected as non cached and reserved by the VM driver */ > +#define RESMEM_SIZE 0x40000000 > +#define MEMBLK_SIZE 0x20000000 > + > +/* > + * The state of the two device memory region - resmem and usemem - is > + * saved as struct mem_region. > + */ > +struct mem_region { > + phys_addr_t memphys; /* Base physical address of the region */ > + size_t memlength; /* Region size */ > + size_t bar_size; /* Reported region BAR size */ > + __le64 bar_val; /* Emulated BAR offset registers */ > + union { > + void *memaddr; > + void __iomem *ioaddr; > + }; /* Base virtual address of the region */ > +}; > + > +struct nvgrace_gpu_vfio_pci_core_device { > + struct vfio_pci_core_device core_device; > + /* Cached and usable memory for the VM. */ > + struct mem_region usemem; > + /* Non cached memory carved out from the end of device memory */ > + struct mem_region resmem; > + /* Lock to control device memory kernel mapping */ > + struct mutex remap_lock; > +}; > + > +static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + nvdev->resmem.bar_val = 0; > + nvdev->usemem.bar_val = 0; > +} > + > +/* Choose the structure corresponding to the fake BAR with a given index. */ > +static struct mem_region * > +nvgrace_gpu_memregion(int index, > + struct nvgrace_gpu_vfio_pci_core_device *nvdev) > +{ > + if (index == USEMEM_REGION_INDEX) > + return &nvdev->usemem; > + > + if (index == RESMEM_REGION_INDEX) > + return &nvdev->resmem; > + > + return NULL; > +} > + > +static int nvgrace_gpu_open_device(struct vfio_device *core_vdev) > +{ > + struct vfio_pci_core_device *vdev = > + container_of(core_vdev, struct vfio_pci_core_device, vdev); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + int ret; > + > + ret = vfio_pci_core_enable(vdev); > + if (ret) > + return ret; > + > + vfio_pci_core_finish_enable(vdev); > + > + if (nvdev->usemem.memlength) { > + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); > + mutex_init(&nvdev->remap_lock); > + } > + > + return 0; > +} > + > +static void nvgrace_gpu_close_device(struct vfio_device *core_vdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + /* Unmap the mapping to the device memory cached region */ > + if (nvdev->usemem.memaddr) { > + memunmap(nvdev->usemem.memaddr); > + nvdev->usemem.memaddr = NULL; > + } > + > + /* Unmap the mapping to the device memory non-cached region */ > + if (nvdev->resmem.ioaddr) { > + iounmap(nvdev->resmem.ioaddr); > + nvdev->resmem.ioaddr = NULL; > + } > + > + mutex_destroy(&nvdev->remap_lock); > + > + vfio_pci_core_close_device(core_vdev); > +} > + > +static int nvgrace_gpu_mmap(struct vfio_device *core_vdev, > + struct vm_area_struct *vma) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + unsigned long start_pfn; > + unsigned int index; > + u64 req_len, pgoff, end; > + int ret = 0; > + struct mem_region *memregion; > + > + index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); > + > + memregion = nvgrace_gpu_memregion(index, nvdev); > + if (!memregion) > + return vfio_pci_core_mmap(core_vdev, vma); > + > + /* > + * Request to mmap the BAR. Map to the CPU accessible memory on the > + * GPU using the memory information gathered from the system ACPI > + * tables. > + */ > + pgoff = vma->vm_pgoff & > + ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); > + > + if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) || > + check_add_overflow(PHYS_PFN(memregion->memphys), pgoff, &start_pfn) || > + check_add_overflow(PFN_PHYS(pgoff), req_len, &end)) > + return -EOVERFLOW; > + > + /* > + * Check that the mapping request does not go beyond available device > + * memory size > + */ > + if (end > memregion->memlength) > + return -EINVAL; > + > + /* > + * The carved out region of the device memory needs the NORMAL_NC > + * property. Communicate as such to the hypervisor. > + */ > + if (index == RESMEM_REGION_INDEX) > + vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); > + > + /* > + * Perform a PFN map to the memory and back the device BAR by the > + * GPU memory. > + * > + * The available GPU memory size may not be power-of-2 aligned. The > + * remainder is only backed by vfio_device_ops read/write handlers. > + * > + * During device reset, the GPU is safely disconnected to the CPU > + * and access to the BAR will be immediately returned preventing > + * machine check. > + */ > + ret = remap_pfn_range(vma, vma->vm_start, start_pfn, > + req_len, vma->vm_page_prot); > + if (ret) > + return ret; > + > + vma->vm_pgoff = start_pfn; > + > + return 0; > +} > + > +static long > +nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev, > + unsigned long arg) > +{ > + unsigned long minsz = offsetofend(struct vfio_region_info, offset); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + struct vfio_region_info_cap_sparse_mmap *sparse; > + struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; > + struct vfio_region_info info; > + struct mem_region *memregion; > + u32 size; > + int ret; > + > + if (copy_from_user(&info, (void __user *)arg, minsz)) > + return -EFAULT; > + > + if (info.argsz < minsz) > + return -EINVAL; > + > + memregion = nvgrace_gpu_memregion(info.index, nvdev); > + if (!memregion) > + return vfio_pci_core_ioctl(core_vdev, > + VFIO_DEVICE_GET_REGION_INFO, arg); > + > + /* > + * Request to determine the BAR region information. Send the > + * GPU memory information. > + */ > + size = struct_size(sparse, areas, 1); > + > + /* > + * Setup for sparse mapping for the device memory. Only the > + * available device memory on the hardware is shown as a > + * mappable region. > + */ > + sparse = kzalloc(size, GFP_KERNEL); > + if (!sparse) > + return -ENOMEM; > + > + sparse->nr_areas = 1; > + sparse->areas[0].offset = 0; > + sparse->areas[0].size = memregion->memlength; > + sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; > + sparse->header.version = 1; > + > + ret = vfio_info_add_capability(&caps, &sparse->header, size); > + kfree(sparse); > + if (ret) > + return ret; > + > + info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); > + /* > + * The region memory size may not be power-of-2 aligned. > + * Given that the memory as a BAR and may not be > + * aligned, roundup to the next power-of-2. > + */ > + info.size = memregion->bar_size; > + info.flags = VFIO_REGION_INFO_FLAG_READ | > + VFIO_REGION_INFO_FLAG_WRITE | > + VFIO_REGION_INFO_FLAG_MMAP; > + > + if (caps.size) { > + info.flags |= VFIO_REGION_INFO_FLAG_CAPS; > + if (info.argsz < sizeof(info) + caps.size) { > + info.argsz = sizeof(info) + caps.size; > + info.cap_offset = 0; > + } else { > + vfio_info_cap_shift(&caps, sizeof(info)); > + if (copy_to_user((void __user *)arg + > + sizeof(info), caps.buf, > + caps.size)) { > + kfree(caps.buf); > + return -EFAULT; > + } > + info.cap_offset = sizeof(info); > + } > + kfree(caps.buf); > + } > + return copy_to_user((void __user *)arg, &info, minsz) ? > + -EFAULT : 0; > +} > + > +static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev, > + unsigned int cmd, unsigned long arg) > +{ > + switch (cmd) { > + case VFIO_DEVICE_GET_REGION_INFO: > + return nvgrace_gpu_ioctl_get_region_info(core_vdev, arg); > + case VFIO_DEVICE_IOEVENTFD: > + return -ENOTTY; > + case VFIO_DEVICE_RESET: > + nvgrace_gpu_init_fake_bar_emu_regs(core_vdev); > + fallthrough; > + default: > + return vfio_pci_core_ioctl(core_vdev, cmd, arg); > + } > +} > + > +static __le64 > +nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64) > +{ > + u64 tmp_val; > + > + tmp_val = le64_to_cpu(val64); > + tmp_val &= ~(bar_size - 1); > + tmp_val |= flags; > + > + return cpu_to_le64(tmp_val); > +} > + > +/* > + * Both the usable (usemem) and the reserved (resmem) device memory region > + * are exposed as a 64b fake BARs in the VM. These fake BARs must respond > + * to the accesses on their respective PCI config space offsets. > + * > + * resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3. > + * usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5. > + */ > +static ssize_t > +nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev, > + char __user *buf, size_t count, loff_t *ppos) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + struct mem_region *memregion = NULL; > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + __le64 val64; > + size_t register_offset; > + loff_t copy_offset; > + size_t copy_count; > + int ret; > + > + ret = vfio_pci_core_read(core_vdev, buf, count, ppos); > + if (ret < 0) > + return ret; > + > + if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2, > + sizeof(val64), > + ©_offset, ©_count, > + ®ister_offset)) > + memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev); > + else if (vfio_pci_core_range_intersect_range(pos, count, > + PCI_BASE_ADDRESS_4, > + sizeof(val64), > + ©_offset, ©_count, > + ®ister_offset)) > + memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev); > + > + if (memregion) { > + val64 = nvgrace_gpu_get_read_value(memregion->bar_size, > + PCI_BASE_ADDRESS_MEM_TYPE_64 | > + PCI_BASE_ADDRESS_MEM_PREFETCH, > + memregion->bar_val); > + if (copy_to_user(buf + copy_offset, > + (void *)&val64 + register_offset, copy_count)) > + return -EFAULT; > + } > + > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev, > + const char __user *buf, size_t count, loff_t *ppos) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; > + size_t register_offset; > + loff_t copy_offset; > + size_t copy_count; > + struct mem_region *memregion = NULL; Nit, consistency and reverse Christmas tree variable declaration would suggest pushing this up in the list, but it's not strictly required. > + > + if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2, > + sizeof(u64), ©_offset, > + ©_count, ®ister_offset)) > + memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev); > + else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4, > + sizeof(u64), ©_offset, > + ©_count, ®ister_offset)) > + memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev); > + > + if (memregion) { > + if (copy_from_user((void *)&memregion->bar_val + register_offset, > + buf + copy_offset, copy_count)) > + return -EFAULT; > + *ppos += copy_count; > + return copy_count; > + } > + > + return vfio_pci_core_write(core_vdev, buf, count, ppos); > +} > + > +/* > + * Ad hoc map the device memory in the module kernel VA space. Primarily needed > + * as vfio does not require the userspace driver to only perform accesses through > + * mmaps of the vfio-pci BAR regions and such accesses should be supported using > + * vfio_device_ops read/write implementations. > + * > + * The usemem region is cacheable memory and hence is memremaped. > + * The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC). > + */ > +static int > +nvgrace_gpu_map_device_mem(int index, > + struct nvgrace_gpu_vfio_pci_core_device *nvdev) > +{ > + struct mem_region *memregion; > + int ret = 0; > + > + memregion = nvgrace_gpu_memregion(index, nvdev); > + if (!memregion) > + return -EINVAL; > + > + mutex_lock(&nvdev->remap_lock); > + if (index == USEMEM_REGION_INDEX && !memregion->memaddr) { > + memregion->memaddr = memremap(memregion->memphys, > + memregion->memlength, > + MEMREMAP_WB); > + if (!memregion->memaddr) > + ret = -ENOMEM; > + } else if (index == RESMEM_REGION_INDEX && !memregion->ioaddr) { > + memregion->ioaddr = ioremap_wc(memregion->memphys, > + memregion->memlength); > + if (!memregion->ioaddr) > + ret = -ENOMEM; > + } As .memaddr and .ioaddr are a union we can consolidate the NULL test. > + mutex_unlock(&nvdev->remap_lock); > + > + return ret; > +} > + > +/* > + * Read the data from the device memory (mapped either through ioremap > + * or memremap) into the user buffer. > + */ > +static int > +nvgrace_gpu_map_and_read(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + char __user *buf, size_t mem_count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + int ret; > + > + /* > + * Handle read on the BAR regions. Map to the target device memory > + * physical address and copy to the request read buffer. > + */ > + ret = nvgrace_gpu_map_device_mem(index, nvdev); > + if (ret) > + return ret; > + > + if (index == USEMEM_REGION_INDEX) { > + if (copy_to_user(buf, > + (u8 *)nvdev->usemem.memaddr + offset, > + mem_count)) > + ret = -EFAULT; > + } else { > + /* > + * The hardware ensures that the system does not crash when > + * the device memory is accessed with the memory enable > + * turned off. It synthesizes ~0 on such read. So there is > + * no need to check or support the disablement/enablement of > + * BAR through PCI_COMMAND config space register. Pass > + * test_mem flag as false. > + */ > + ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false, > + nvdev->resmem.ioaddr, > + buf, offset, mem_count, > + 0, 0, false); > + } > + > + return ret; > +} > + > +/* > + * Read count bytes from the device memory at an offset. The actual device > + * memory size (available) may not be a power-of-2. So the driver fakes > + * the size to a power-of-2 (reported) when exposing to a user space driver. > + * > + * Reads extending beyond the reported size are truncated; reads starting > + * beyond the reported size generate -EINVAL; reads extending beyond the > + * actual device size is filled with ~0. > + */ > +static ssize_t > +nvgrace_gpu_read_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + char __user *buf, size_t count, loff_t *ppos) > +{ > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct mem_region *memregion; > + size_t mem_count, i; > + u8 val = 0xFF; > + int ret; > + > + memregion = nvgrace_gpu_memregion(index, nvdev); > + if (!memregion) > + return -EINVAL; > + > + if (offset >= memregion->bar_size) > + return -EINVAL; > + > + /* Clip short the read request beyond reported BAR size */ > + count = min(count, memregion->bar_size - (size_t)offset); > + > + /* > + * Determine how many bytes to be actually read from the device memory. > + * Read request beyond the actual device memory size is filled with ~0, > + * while those beyond the actual reported size is skipped. > + */ > + if (offset >= memregion->memlength) > + mem_count = 0; > + else > + mem_count = min(count, memregion->memlength - (size_t)offset); > + > + ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos); > + if (ret) > + return ret; > + > + /* > + * Only the device memory present on the hardware is mapped, which may > + * not be power-of-2 aligned. A read to an offset beyond the device memory > + * size is filled with ~0. > + */ > + for (i = mem_count; i < count; i++) > + put_user(val, (unsigned char __user *)(buf + i)); > + > + *ppos += count; > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_read(struct vfio_device *core_vdev, > + char __user *buf, size_t count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + if (nvgrace_gpu_memregion(index, nvdev)) > + return nvgrace_gpu_read_mem(nvdev, buf, count, ppos); > + > + if (index == VFIO_PCI_CONFIG_REGION_INDEX) > + return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos); > + > + return vfio_pci_core_read(core_vdev, buf, count, ppos); > +} > + > +/* > + * Write the data to the device memory (mapped either through ioremap > + * or memremap) from the user buffer. > + */ > +static int > +nvgrace_gpu_map_and_write(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + const char __user *buf, size_t mem_count, > + loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK; > + int ret; > + > + ret = nvgrace_gpu_map_device_mem(index, nvdev); > + if (ret) > + return ret; > + > + if (index == USEMEM_REGION_INDEX) { > + if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos, > + buf, mem_count)) > + return -EFAULT; > + } else { > + /* > + * The hardware ensures that the system does not crash when > + * the device memory is accessed with the memory enable > + * turned off. It drops such writes. So there is no need to > + * check or support the disablement/enablement of BAR > + * through PCI_COMMAND config space register. Pass test_mem > + * flag as false. > + */ > + ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false, > + nvdev->resmem.ioaddr, > + (char __user *)buf, pos, mem_count, > + 0, 0, true); > + } > + > + return ret; > +} > + > +/* > + * Write count bytes to the device memory at a given offset. The actual device > + * memory size (available) may not be a power-of-2. So the driver fakes the > + * size to a power-of-2 (reported) when exposing to a user space driver. > + * > + * Writes extending beyond the reported size are truncated; writes starting > + * beyond the reported size generate -EINVAL. > + */ > +static ssize_t > +nvgrace_gpu_write_mem(struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + size_t count, loff_t *ppos, const char __user *buf) > +{ > + u64 offset = *ppos & VFIO_PCI_OFFSET_MASK; > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct mem_region *memregion; > + size_t mem_count; > + int ret = 0; > + > + memregion = nvgrace_gpu_memregion(index, nvdev); > + if (!memregion) > + return -EINVAL; > + > + if (offset >= memregion->bar_size) > + return -EINVAL; > + > + /* Clip short the write request beyond reported BAR size */ > + count = min(count, memregion->bar_size - (size_t)offset); > + > + /* > + * Determine how many bytes to be actually written to the device memory. > + * Do not write to the offset beyond available size. > + */ > + if (offset >= memregion->memlength) > + goto exitfn; > + > + /* > + * Only the device memory present on the hardware is mapped, which may > + * not be power-of-2 aligned. Drop access outside the available device > + * memory on the hardware. > + */ > + mem_count = min(count, memregion->memlength - (size_t)offset); > + > + ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos); > + if (ret) > + return ret; > + > +exitfn: > + *ppos += count; > + return count; > +} > + > +static ssize_t > +nvgrace_gpu_write(struct vfio_device *core_vdev, > + const char __user *buf, size_t count, loff_t *ppos) > +{ > + unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = > + container_of(core_vdev, struct nvgrace_gpu_vfio_pci_core_device, > + core_device.vdev); > + > + if (nvgrace_gpu_memregion(index, nvdev)) > + return nvgrace_gpu_write_mem(nvdev, count, ppos, buf); > + > + if (index == VFIO_PCI_CONFIG_REGION_INDEX) > + return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos); > + > + return vfio_pci_core_write(core_vdev, buf, count, ppos); > +} > + > +static const struct vfio_device_ops nvgrace_gpu_vfio_pci_ops = { > + .name = "nvgrace-gpu-vfio-pci", > + .init = vfio_pci_core_init_dev, > + .release = vfio_pci_core_release_dev, > + .open_device = nvgrace_gpu_open_device, > + .close_device = nvgrace_gpu_close_device, > + .ioctl = nvgrace_gpu_ioctl, > + .read = nvgrace_gpu_read, > + .write = nvgrace_gpu_write, > + .mmap = nvgrace_gpu_mmap, > + .request = vfio_pci_core_request, > + .match = vfio_pci_core_match, > + .bind_iommufd = vfio_iommufd_physical_bind, > + .unbind_iommufd = vfio_iommufd_physical_unbind, > + .attach_ioas = vfio_iommufd_physical_attach_ioas, > + .detach_ioas = vfio_iommufd_physical_detach_ioas, > +}; > + > +static const struct vfio_device_ops nvgrace_gpu_vfio_pci_core_ops = { > + .name = "nvgrace-gpu-vfio-pci-core", > + .init = vfio_pci_core_init_dev, > + .release = vfio_pci_core_release_dev, > + .open_device = nvgrace_gpu_open_device, > + .close_device = vfio_pci_core_close_device, > + .ioctl = vfio_pci_core_ioctl, > + .device_feature = vfio_pci_core_ioctl_feature, > + .read = vfio_pci_core_read, > + .write = vfio_pci_core_write, > + .mmap = vfio_pci_core_mmap, > + .request = vfio_pci_core_request, > + .match = vfio_pci_core_match, > + .bind_iommufd = vfio_iommufd_physical_bind, > + .unbind_iommufd = vfio_iommufd_physical_unbind, > + .attach_ioas = vfio_iommufd_physical_attach_ioas, > + .detach_ioas = vfio_iommufd_physical_detach_ioas, > +}; > + > +static struct > +nvgrace_gpu_vfio_pci_core_device *nvgrace_gpu_drvdata(struct pci_dev *pdev) > +{ > + struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev); > + > + return container_of(core_device, struct nvgrace_gpu_vfio_pci_core_device, > + core_device); > +} > + > +static int > +nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev, > + u64 *pmemphys, u64 *pmemlength) > +{ > + int ret; > + > + /* > + * The memory information is present in the system ACPI tables as DSD > + * properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size. > + */ > + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa", > + pmemphys); > + if (ret) > + return ret; > + > + if (*pmemphys > type_max(phys_addr_t)) > + return -EOVERFLOW; > + > + ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size", > + pmemlength); > + if (ret) > + return ret; > + > + if (*pmemlength > type_max(size_t)) > + return -EOVERFLOW; > + > + /* > + * If the C2C link is not up due to an error, the coherent device > + * memory size is returned as 0. Fail in such case. > + */ > + if (*pmemlength == 0) > + return -ENOMEM; > + > + return ret; > +} > + > +static int > +nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev, > + struct nvgrace_gpu_vfio_pci_core_device *nvdev, > + u64 memphys, u64 memlength) > +{ > + int ret = 0; > + > + /* > + * The VM GPU device driver needs a non-cacheable region to support > + * the MIG feature. Since the device memory is mapped as NORMAL cached, > + * carve out a region from the end with a different NORMAL_NC > + * property (called as reserved memory and represented as resmem). This > + * region then is exposed as a 64b BAR (region 2 and 3) to the VM, while > + * exposing the rest (termed as usable memory and represented using usemem) > + * as cacheable 64b BAR (region 4 and 5). > + * > + * devmem (memlength) > + * |-------------------------------------------------| > + * | | > + * usemem.phys/memphys resmem.phys > + */ > + nvdev->usemem.memphys = memphys; > + > + /* > + * The device memory exposed to the VM is added to the kernel by the > + * VM driver module in chunks of memory block size. Only the usable > + * memory (usemem) is added to the kernel for usage by the VM > + * workloads. Make the usable memory size memblock aligned. > + */ > + if (check_sub_overflow(memlength, RESMEM_SIZE, > + &nvdev->usemem.memlength)) { > + ret = -EOVERFLOW; > + goto done; > + } > + nvdev->usemem.memlength = round_down(nvdev->usemem.memlength, > + MEMBLK_SIZE); > + if ((check_add_overflow(nvdev->usemem.memphys, > + nvdev->usemem.memlength, > + &nvdev->resmem.memphys)) || > + (check_sub_overflow(memlength, nvdev->usemem.memlength, > + &nvdev->resmem.memlength))) { > + ret = -EOVERFLOW; > + goto done; > + } > + > + /* > + * The memory regions are exposed as BARs. Calculate and save > + * the BAR size for them. > + */ > + nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength); > + nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength); > +done: > + return ret; > +} > + > +static int nvgrace_gpu_probe(struct pci_dev *pdev, > + const struct pci_device_id *id) > +{ > + const struct vfio_device_ops *ops = &nvgrace_gpu_vfio_pci_core_ops; > + struct nvgrace_gpu_vfio_pci_core_device *nvdev; > + u64 memphys, memlength; > + int ret; > + > + ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength); > + if (!ret) > + ops = &nvgrace_gpu_vfio_pci_ops; > + > + nvdev = vfio_alloc_device(nvgrace_gpu_vfio_pci_core_device, core_device.vdev, > + &pdev->dev, ops); > + if (IS_ERR(nvdev)) > + return PTR_ERR(nvdev); > + > + dev_set_drvdata(&pdev->dev, &nvdev->core_device); > + > + if (ops == &nvgrace_gpu_vfio_pci_ops) { > + /* > + * Device memory properties are identified in the host ACPI > + * table. Set the nvgrace_gpu_vfio_pci_core_device structure. > + */ > + ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev, > + memphys, memlength); > + if (ret) > + goto out_put_vdev; > + } > + > + ret = vfio_pci_core_register_device(&nvdev->core_device); > + if (ret) > + goto out_put_vdev; > + > + return ret; > + > +out_put_vdev: > + vfio_put_device(&nvdev->core_device.vdev); > + return ret; > +} > + > +static void nvgrace_gpu_remove(struct pci_dev *pdev) > +{ > + struct nvgrace_gpu_vfio_pci_core_device *nvdev = nvgrace_gpu_drvdata(pdev); > + struct vfio_pci_core_device *vdev = &nvdev->core_device; > + > + vfio_pci_core_unregister_device(vdev); > + vfio_put_device(&vdev->vdev); > +} > + > +static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = { > + /* GH200 120GB */ > + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) }, > + /* GH200 480GB */ > + { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) }, > + {} > +}; > + > +MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table); > + > +static struct pci_driver nvgrace_gpu_vfio_pci_driver = { > + .name = KBUILD_MODNAME, > + .id_table = nvgrace_gpu_vfio_pci_table, > + .probe = nvgrace_gpu_probe, > + .remove = nvgrace_gpu_remove, > + .err_handler = &vfio_pci_core_err_handlers, > + .driver_managed_dma = true, > +}; > + > +module_pci_driver(nvgrace_gpu_vfio_pci_driver); > + > +MODULE_LICENSE("GPL"); > +MODULE_AUTHOR("Ankit Agrawal <ankita@xxxxxxxxxx>"); > +MODULE_AUTHOR("Aniket Agashe <aniketa@xxxxxxxxxx>"); > +MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");