On Wed, Feb 06, 2019 at 03:00:26PM +0100, David Hildenbrand wrote: > On 04.02.19 23:56, Michael S. Tsirkin wrote: > > > > On Wed, Jan 09, 2019 at 08:17:31PM +0530, Pankaj Gupta wrote: > >> This patch series has implementation for "virtio pmem". > >> "virtio pmem" is fake persistent memory(nvdimm) in guest > >> which allows to bypass the guest page cache. This also > >> implements a VIRTIO based asynchronous flush mechanism. > > > > > > At Pankaj's request I looked at information leak implications of virtio > > pmem in light of the recent page cache side channels paper > > (https://arxiv.org/pdf/1901.01161.pdf) - to see what > > kind of side channels it might create if any. TLDR - I think that > > depending on the host side implementation there could be some, but this > > might be addressable by better documentation in both code and spec. > > The fake dax approach backing the guest memory by a host page cache > > does seem to have potential issues. > > > > For clarity: we are talking about leaking information either to a VM, or > > within a VM (I did not look into leaks to hypervisor in configurations > > such as SEV) through host page cache. > > > > Leaks into a VM: It seems clear that while pmem allows memory accesses > > versus read/write with e.g. a block device, from host page cache point > > of view this doesn't matter much: reads populate cache in the same way > > as memory faults. Thus ignoring presence of information leaks (which is > > an interesting question e.g. in light of recent discard support) pmem > > doesn't seem to be any better or worse for leaking information into a > > VM. > > +1, just a different way to access that cache. > > Conceptually a virtio-pmem devices is from the guest view a "device with > a managed buffer". Some accesses might be faster than others. There are > no guarantees on how fast a certain access is. And yes, actions on other > guests can result in accesses being slower but not faster. > > Also other storage devices have caches like that (well, the caches size > depends on the device) - thinking especially about storage systems - > which would in my opinion, also allow similar leaks. How are such > security concerns handled there? Are they different (besides eventually > access speed)? > > > > > Leaks within VM: Right now pmem seems to bypass the guest page cache > > completely. Whether pmem memory is then resident in a page cache would > > be up to the device/host. Assuming that it is, the "Preventing > > Efficient Eviction while Increasing the System Performance" > > countermeasure for the page cache side channel attack would appear to > > become ineffective with pmem. What is suggested is a per-process > > management of the page cache, and host does not have visibility of > > processes within a VM. Another possible countermeasure - not discussed > > in the paper - could be modify the applications to lock the security > > relevant pages in memory. Again this becomes impractical with pmem as > > host does not have visibility into that. However note that as long > > as the only countermeasure linux uses is "Privileged Access" > > (i.e. blocking mincore) nothing can be done as guest page cache > > remains as vulnerable as host page cache. > > This sounds very use-case specific. If I run a VM only with a very > specific workload (say, a container running one application), I usually > don't care about leaks within the VM. At least not leaks between > applications ;) > > In contrast, to running different applications (e.g. containers from > different customers) on one system, I really care about leaks within a VM. Clearly, not everyone cares about closing off information leaks. > > > > > > Countermeasures: which host-side countermeasures can be designed would > > depend on which countermeasures are used guest-side - we would need to > > make sure they are not broken by pmem. For "Preventing Efficient > > Eviction while Increasing the System Performance" modifying the host > > implementation to ensure that pmem device bypasses the host page cache > > would seem to address the security problem.Similarly, ensuring that a > > real memory device (e.g. DAX, RAM such as hugetlbfs, pmem for nested > > virt) is used for pmem would make the memory locking countermeasure > > work. Whether with such limitations the device is still useful > > performance wise is an open question. These questions probably should > > be addressed in the documentation, spec and possible qemu code. > > > I also want to note that using a disk/file as memory backend with > NVDIMMs in QEMU essentially results in the exact same questions we have > with virtio-pmem. > > E.g. kata-containers use nvdimms for the rootfile system (read-only) as > far as I am aware. > > Conceptually, a virtio-pmem device is just an emulated nvdimm device > with a flush interface. And the nice thing is, that it is designed to > also work on architectures that don't speak "nvdimm". > > > > > Severity of the security implications: some people argue that the > > security implications of the page cache leaks are minor. I do not have > > an opinion on this: the severity would seem to depend on the specific > > configuration. > > I guess configuration and use case. Good point. > Nice summary, thanks for looking into this Michael! > > > -- > > Thanks, > > David / dhildenb > _______________________________________________ > Virtualization mailing list > Virtualization@xxxxxxxxxxxxxxxxxxxxxxxxxx > https://lists.linuxfoundation.org/mailman/listinfo/virtualization _______________________________________________ Virtualization mailing list Virtualization@xxxxxxxxxxxxxxxxxxxxxxxxxx https://lists.linuxfoundation.org/mailman/listinfo/virtualization