On Mon, Apr 06, 2015 at 10:55:44PM -0400, Waiman Long wrote: > +++ b/kernel/locking/qspinlock_paravirt.h > @@ -0,0 +1,321 @@ > +#ifndef _GEN_PV_LOCK_SLOWPATH > +#error "do not include this file" > +#endif > + > +/* > + * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead > + * of spinning them. > + * > + * This relies on the architecture to provide two paravirt hypercalls: > + * > + * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val > + * pv_kick(cpu) -- wakes a suspended vcpu > + * > + * Using these we implement __pv_queue_spin_lock_slowpath() and > + * __pv_queue_spin_unlock() to replace native_queue_spin_lock_slowpath() and > + * native_queue_spin_unlock(). > + */ > + > +#define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET) > + > +enum vcpu_state { > + vcpu_running = 0, > + vcpu_halted, > +}; > + > +struct pv_node { > + struct mcs_spinlock mcs; > + struct mcs_spinlock __res[3]; > + > + int cpu; > + u8 state; > +}; > + > +/* > + * Hash table using open addressing with an LFSR probe sequence. > + * > + * Since we should not be holding locks from NMI context (very rare indeed) the > + * max load factor is 0.75, which is around the point where open addressing > + * breaks down. > + * > + * Instead of probing just the immediate bucket we probe all buckets in the > + * same cacheline. > + * > + * http://en.wikipedia.org/wiki/Hash_table#Open_addressing > + * > + * Dynamically allocate a hash table big enough to hold at least 4X the > + * number of possible cpus in the system. Allocation is done on page > + * granularity. So the minimum number of hash buckets should be at least > + * 256 to fully utilize a 4k page. > + */ > +#define LFSR_MIN_BITS 8 > +#define LFSR_MAX_BITS (2 + NR_CPUS_BITS) > +#if LFSR_MAX_BITS < LFSR_MIN_BITS > +#undef LFSR_MAX_BITS > +#define LFSR_MAX_BITS LFSR_MIN_BITS > +#endif > + > +struct pv_hash_bucket { > + struct qspinlock *lock; > + struct pv_node *node; > +}; > +#define PV_HB_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_bucket)) > +#define HB_RESERVED ((struct qspinlock *)1) This is unused. > + > +static struct pv_hash_bucket *pv_lock_hash; > +static unsigned int pv_lock_hash_bits __read_mostly; static unsigned int pv_taps __read_mostly; > + > +#include <linux/hash.h> > +#include <linux/lfsr.h> > +#include <linux/bootmem.h> > + > +/* > + * Allocate memory for the PV qspinlock hash buckets > + * > + * This function should be called from the paravirt spinlock initialization > + * routine. > + */ > +void __init __pv_init_lock_hash(void) > +{ > + int pv_hash_size = 4 * num_possible_cpus(); > + > + if (pv_hash_size < (1U << LFSR_MIN_BITS)) > + pv_hash_size = (1U << LFSR_MIN_BITS); > + /* > + * Allocate space from bootmem which should be page-size aligned > + * and hence cacheline aligned. > + */ > + pv_lock_hash = alloc_large_system_hash("PV qspinlock", > + sizeof(struct pv_hash_bucket), > + pv_hash_size, 0, HASH_EARLY, > + &pv_lock_hash_bits, NULL, > + pv_hash_size, pv_hash_size); pv_taps = lfsr_taps(pv_lock_hash_bits); > +} > + > +static inline u32 hash_align(u32 hash) > +{ > + return hash & ~(PV_HB_PER_LINE - 1); > +} > + > +static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node) > +{ > + unsigned long init_hash, hash = hash_ptr(lock, pv_lock_hash_bits); > + struct pv_hash_bucket *hb, *end; > + > + if (!hash) > + hash = 1; > + > + init_hash = hash; > + hb = &pv_lock_hash[hash_align(hash)]; > + for (;;) { > + for (end = hb + PV_HB_PER_LINE; hb < end; hb++) { > + if (!cmpxchg(&hb->lock, NULL, lock)) { > + WRITE_ONCE(hb->node, node); > + /* > + * We haven't set the _Q_SLOW_VAL yet. So > + * the order of writing doesn't matter. > + */ > + smp_wmb(); /* matches rmb from pv_hash_find */ This doesn't make sense. Both sites do ->lock first and ->node second. No amount of ordering can 'fix' that. I think we can safely remove this wmb and the rmb below, because the required ordering is already provided by setting/observing l->locked == SLOW. > + goto done; > + } > + } > + > + hash = lfsr(hash, pv_lock_hash_bits, 0); Since pv_lock_hash_bits is a variable, you end up running through that massive if() forest to find the corresponding tap every single time. It cannot compile-time optimize it. Hence: hash = lfsr(hash, pv_taps); (I don't get the bits argument to the lfsr). In any case, like I said before, I think we should try a linear probe sequence first, the lfsr was over engineering from my side. > + hb = &pv_lock_hash[hash_align(hash)]; > + BUG_ON(hash == init_hash); > + } > + > +done: > + return &hb->lock; > +} > + > +static struct pv_node *pv_hash_find(struct qspinlock *lock) > +{ > + unsigned long init_hash, hash = hash_ptr(lock, pv_lock_hash_bits); > + struct pv_hash_bucket *hb, *end; > + struct pv_node *node = NULL; > + > + if (!hash) > + hash = 1; > + > + init_hash = hash; > + hb = &pv_lock_hash[hash_align(hash)]; > + for (;;) { > + for (end = hb + PV_HB_PER_LINE; hb < end; hb++) { > + struct qspinlock *l = READ_ONCE(hb->lock); > + > + if (l == lock) { > + smp_rmb(); /* matches wmb from pv_hash() */ per the above this can go, IF we observe SLOW we must also observe a consistent bucket. > + node = READ_ONCE(hb->node); > + goto done; > + } > + } > + > + hash = lfsr(hash, pv_lock_hash_bits, 0); idem the previous lfsr comment. > + hb = &pv_lock_hash[hash_align(hash)]; > + BUG_ON(hash == init_hash); > + } > +done: > + /* > + * Clear the hash bucket > + */ > + WRITE_ONCE(hb->lock, NULL); > + return node; > +} > +/* > + * Wait for l->locked to become clear; halt the vcpu after a short spin. > + * __pv_queue_spin_unlock() will wake us. > + */ > +static void pv_wait_head(struct qspinlock *lock, struct mcs_spinlock *node) > +{ > + struct __qspinlock *l = (void *)lock; > + struct qspinlock **lp = NULL; > + struct pv_node *pn = (struct pv_node *)node; > + int slow_set = false; > + int loop; > + > + for (;;) { > + for (loop = SPIN_THRESHOLD; loop; loop--) { > + if (!READ_ONCE(l->locked)) > + return; > + > + cpu_relax(); > + } > + > + WRITE_ONCE(pn->state, vcpu_halted); > + if (!lp) > + lp = pv_hash(lock, pn); > + /* > + * lp must be set before setting _Q_SLOW_VAL > + * > + * [S] lp = lock [RmW] l = l->locked = 0 > + * MB MB > + * [S] l->locked = _Q_SLOW_VAL [L] lp > + * > + * Matches the cmpxchg() in pv_queue_spin_unlock(). > + */ > + if (!slow_set && > + !cmpxchg(&l->locked, _Q_LOCKED_VAL, _Q_SLOW_VAL)) { > + /* > + * The lock is free and _Q_SLOW_VAL has never been > + * set. Need to clear the hash bucket before getting > + * the lock. > + */ > + WRITE_ONCE(*lp, NULL); > + return; > + } else if (slow_set && !READ_ONCE(l->locked)) > + return; > + slow_set = true; I'm somewhat puzzled by the slow_set thing; what is wrong with the thing I had, namely: if (!lp) { lp = pv_hash(lock, pn); /* * comment */ lv = cmpxchg(&l->locked, _Q_LOCKED_VAL, _Q_SLOW_VAL); if (lv != _Q_LOCKED_VAL) { /* we're woken, unhash and return */ WRITE_ONCE(*lp, NULL); return; } } > + > + pv_wait(&l->locked, _Q_SLOW_VAL); If we get a spurious wakeup (due to device interrupts or random kick) we'll loop around but ->locked will remain _Q_SLOW_VAL. > + } > + /* > + * Lock is unlocked now; the caller will acquire it without waiting. > + * As with pv_wait_node() we rely on the caller to do a load-acquire > + * for us. > + */ > +} > + > +/* > + * To be used in stead of queue_spin_unlock() for paravirt locks. Wakes > + * pv_wait_head() if appropriate. > + */ > +__visible void __pv_queue_spin_unlock(struct qspinlock *lock) > +{ > + struct __qspinlock *l = (void *)lock; > + struct pv_node *node; > + > + if (likely(cmpxchg(&l->locked, _Q_LOCKED_VAL, 0) == _Q_LOCKED_VAL)) > + return; > + > + /* > + * The queue head has been halted. Need to locate it and wake it up. > + */ > + node = pv_hash_find(lock); > + smp_store_release(&l->locked, 0); Ah yes, clever that. > + /* > + * At this point the memory pointed at by lock can be freed/reused, > + * however we can still use the PV node to kick the CPU. > + */ > + if (READ_ONCE(node->state) == vcpu_halted) > + pv_kick(node->cpu); > +} > +PV_CALLEE_SAVE_REGS_THUNK(__pv_queue_spin_unlock); However I feel the PV_CALLEE_SAVE_REGS_THUNK thing belongs in the x86 code. _______________________________________________ Virtualization mailing list Virtualization@xxxxxxxxxxxxxxxxxxxxxxxxxx https://lists.linuxfoundation.org/mailman/listinfo/virtualization