Signed-off-by: Laszczak Pawel <pawell@xxxxxxxxxxx> --- drivers/usb/usbssp/gadget-mem.c | 2275 +++++++++++++++++++++++++++++++ 1 file changed, 2275 insertions(+) create mode 100644 drivers/usb/usbssp/gadget-mem.c diff --git a/drivers/usb/usbssp/gadget-mem.c b/drivers/usb/usbssp/gadget-mem.c new file mode 100644 index 000000000000..309d5ec7555b --- /dev/null +++ b/drivers/usb/usbssp/gadget-mem.c @@ -0,0 +1,2275 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * USBSSP device controller driver + * + * Copyright (C) 2018 Cadence. + * + * Author: Pawel Laszczak + * Some code borrowed from the Linux XHCI driver. + */ + +#include <linux/usb.h> +#include <linux/pci.h> +#include <linux/slab.h> +#include <linux/dmapool.h> +#include <linux/dma-mapping.h> +#include "gadget.h" +#include "gadget-trace.h" +#include "gadget-debugfs.h" + +/* + * Allocates a generic ring segment from the ring pool, sets the dma address, + * initializes the segment to zero, and sets the private next pointer to NULL. + * + * "All components of all Command and Transfer TRBs shall be initialized to '0'" + */ +static struct usbssp_segment *usbssp_segment_alloc( + struct usbssp_udc *usbssp_data, unsigned int cycle_state, + unsigned int max_packet, gfp_t flags) +{ + struct usbssp_segment *seg; + dma_addr_t dma; + int i; + + seg = kzalloc(sizeof(*seg), flags); + if (!seg) + return NULL; + + seg->trbs = dma_pool_zalloc(usbssp_data->segment_pool, flags, &dma); + if (!seg->trbs) { + kfree(seg); + return NULL; + } + + if (max_packet) { + seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA); + if (!seg->bounce_buf) { + dma_pool_free(usbssp_data->segment_pool, + seg->trbs, dma); + kfree(seg); + return NULL; + } + } + + /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ + if (cycle_state == 0) { + for (i = 0; i < TRBS_PER_SEGMENT; i++) + seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); + } + seg->dma = dma; + seg->next = NULL; + + return seg; +} + +static void usbssp_segment_free(struct usbssp_udc *usbssp_data, + struct usbssp_segment *seg) +{ + if (seg->trbs) { + dma_pool_free(usbssp_data->segment_pool, seg->trbs, seg->dma); + seg->trbs = NULL; + } + kfree(seg->bounce_buf); + kfree(seg); +} + +static void usbssp_free_segments_for_ring(struct usbssp_udc *usbssp_data, + struct usbssp_segment *first) +{ + struct usbssp_segment *seg; + + seg = first->next; + while (seg != first) { + struct usbssp_segment *next = seg->next; + + usbssp_segment_free(usbssp_data, seg); + seg = next; + } + usbssp_segment_free(usbssp_data, first); +} + +/* + * Make the prev segment point to the next segment. + * + * Change the last TRB in the prev segment to be a Link TRB which points to the + * DMA address of the next segment. The caller needs to set any Link TRB + * related flags, such as End TRB, Toggle Cycle, and no snoop. + */ +static void usbssp_link_segments(struct usbssp_udc *usbssp_data, + struct usbssp_segment *prev, + struct usbssp_segment *next, + enum usbssp_ring_type type) +{ + u32 val; + + if (!prev || !next) + return; + prev->next = next; + if (type != TYPE_EVENT) { + prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = + cpu_to_le64(next->dma); + + /* Set the last TRB in the segment to have a TRB type ID + * of Link TRB + */ + val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); + val &= ~TRB_TYPE_BITMASK; + val |= TRB_TYPE(TRB_LINK); + prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); + } +} + +/* + * Link the ring to the new segments. + * Set Toggle Cycle for the new ring if needed. + */ +static void usbssp_link_rings(struct usbssp_udc *usbssp_data, + struct usbssp_ring *ring, + struct usbssp_segment *first, + struct usbssp_segment *last, + unsigned int num_segs) +{ + struct usbssp_segment *next; + + if (!ring || !first || !last) + return; + + next = ring->enq_seg->next; + usbssp_link_segments(usbssp_data, ring->enq_seg, first, ring->type); + usbssp_link_segments(usbssp_data, last, next, ring->type); + ring->num_segs += num_segs; + ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; + + if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { + ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control + &= ~cpu_to_le32(LINK_TOGGLE); + last->trbs[TRBS_PER_SEGMENT-1].link.control + |= cpu_to_le32(LINK_TOGGLE); + ring->last_seg = last; + } +} + +/* + * We need a radix tree for mapping physical addresses of TRBs to which stream + * ID they belong to. We need to do this because the device controller won't + * tell us which stream ring the TRB came from. We could store the stream ID + * in an event data TRB, but that doesn't help us for the cancellation case, + * since the endpoint may stop before it reaches that event data TRB. + * + * The radix tree maps the upper portion of the TRB DMA address to a ring + * segment that has the same upper portion of DMA addresses. For example, + * say I have segments of size 1KB, that are always 1KB aligned. A segment may + * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the + * key to the stream ID is 0x43244. I can use the DMA address of the TRB to + * pass the radix tree a key to get the right stream ID: + * + * 0x10c90fff >> 10 = 0x43243 + * 0x10c912c0 >> 10 = 0x43244 + * 0x10c91400 >> 10 = 0x43245 + * + * Obviously, only those TRBs with DMA addresses that are within the segment + * will make the radix tree return the stream ID for that ring. + * + * Caveats for the radix tree: + * + * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an + * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be + * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the + * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit + * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit + * extended systems (where the DMA address can be bigger than 32-bits), + * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. + */ +static int usbssp_insert_segment_mapping( + struct radix_tree_root *trb_address_map, + struct usbssp_ring *ring, + struct usbssp_segment *seg, + gfp_t mem_flags) +{ + unsigned long key; + int ret; + + key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); + /* Skip any segments that were already added. */ + if (radix_tree_lookup(trb_address_map, key)) + return 0; + + ret = radix_tree_maybe_preload(mem_flags); + if (ret) + return ret; + ret = radix_tree_insert(trb_address_map, key, ring); + radix_tree_preload_end(); + return ret; +} + +static void usbssp_remove_segment_mapping( + struct radix_tree_root *trb_address_map, + struct usbssp_segment *seg) +{ + unsigned long key; + + key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); + if (radix_tree_lookup(trb_address_map, key)) + radix_tree_delete(trb_address_map, key); +} + +static int usbssp_update_stream_segment_mapping( + struct radix_tree_root *trb_address_map, + struct usbssp_ring *ring, + struct usbssp_segment *first_seg, + struct usbssp_segment *last_seg, + gfp_t mem_flags) +{ + struct usbssp_segment *seg; + struct usbssp_segment *failed_seg; + int ret; + + if (WARN_ON_ONCE(trb_address_map == NULL)) + return 0; + + seg = first_seg; + do { + ret = usbssp_insert_segment_mapping(trb_address_map, + ring, seg, mem_flags); + if (ret) + goto remove_streams; + if (seg == last_seg) + return 0; + seg = seg->next; + } while (seg != first_seg); + + return 0; + +remove_streams: + failed_seg = seg; + seg = first_seg; + do { + usbssp_remove_segment_mapping(trb_address_map, seg); + if (seg == failed_seg) + return ret; + seg = seg->next; + } while (seg != first_seg); + + return ret; +} + +static void usbssp_remove_stream_mapping(struct usbssp_ring *ring) +{ + struct usbssp_segment *seg; + + if (WARN_ON_ONCE(ring->trb_address_map == NULL)) + return; + + seg = ring->first_seg; + do { + usbssp_remove_segment_mapping(ring->trb_address_map, seg); + seg = seg->next; + } while (seg != ring->first_seg); +} + +static int usbssp_update_stream_mapping(struct usbssp_ring *ring, + gfp_t mem_flags) +{ + return usbssp_update_stream_segment_mapping(ring->trb_address_map, ring, + ring->first_seg, ring->last_seg, mem_flags); +} + +void usbssp_ring_free(struct usbssp_udc *usbssp_data, struct usbssp_ring *ring) +{ + if (!ring) + return; + + trace_usbssp_ring_free(ring); + + if (ring->first_seg) { + if (ring->type == TYPE_STREAM) + usbssp_remove_stream_mapping(ring); + usbssp_free_segments_for_ring(usbssp_data, ring->first_seg); + } + + kfree(ring); +} + +static void usbssp_initialize_ring_info(struct usbssp_ring *ring, + unsigned int cycle_state) +{ + /* The ring is empty, so the enqueue pointer == dequeue pointer */ + ring->enqueue = ring->first_seg->trbs; + ring->enq_seg = ring->first_seg; + ring->dequeue = ring->enqueue; + ring->deq_seg = ring->first_seg; + /* The ring is initialized to 0. The producer must write 1 to the cycle + * bit to handover ownership of the TRB, so PCS = 1. The consumer must + * compare CCS to the cycle bit to check ownership, so CCS = 1. + * + * New rings are initialized with cycle state equal to 1; if we are + * handling ring expansion, set the cycle state equal to the old ring. + */ + ring->cycle_state = cycle_state; + + /* + * Each segment has a link TRB, and leave an extra TRB for SW + * accounting purpose + */ + ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; +} + +/* Allocate segments and link them for a ring */ +static int usbssp_alloc_segments_for_ring(struct usbssp_udc *usbssp_data, + struct usbssp_segment **first, + struct usbssp_segment **last, + unsigned int num_segs, + unsigned int cycle_state, + enum usbssp_ring_type type, + unsigned int max_packet, + gfp_t flags) +{ + struct usbssp_segment *prev; + + /*allocation first segment */ + prev = usbssp_segment_alloc(usbssp_data, cycle_state, + max_packet, flags); + if (!prev) + return -ENOMEM; + num_segs--; + + *first = prev; + /*allocation all other segments*/ + while (num_segs > 0) { + struct usbssp_segment *next; + + next = usbssp_segment_alloc(usbssp_data, cycle_state, + max_packet, flags); + if (!next) { + prev = *first; + /*Free all reserved segment*/ + while (prev) { + next = prev->next; + usbssp_segment_free(usbssp_data, prev); + prev = next; + } + return -ENOMEM; + } + usbssp_link_segments(usbssp_data, prev, next, type); + + prev = next; + num_segs--; + } + usbssp_link_segments(usbssp_data, prev, *first, type); + *last = prev; + + return 0; +} + +/** + * Create a new ring with zero or more segments. + * + * Link each segment together into a ring. + * Set the end flag and the cycle toggle bit on the last segment. + * See section 4.9.1 and figures 15 and 16. + */ +static struct usbssp_ring *usbssp_ring_alloc(struct usbssp_udc *usbssp_data, + unsigned int num_segs, + unsigned int cycle_state, + enum usbssp_ring_type type, + unsigned int max_packet, + gfp_t flags) +{ + struct usbssp_ring *ring; + int ret; + + ring = kzalloc(sizeof *(ring), flags); + if (!ring) + return NULL; + + ring->num_segs = num_segs; + ring->bounce_buf_len = max_packet; + INIT_LIST_HEAD(&ring->td_list); + ring->type = type; + if (num_segs == 0) + return ring; + + ret = usbssp_alloc_segments_for_ring(usbssp_data, &ring->first_seg, + &ring->last_seg, num_segs, cycle_state, type, + max_packet, flags); + if (ret) + goto fail; + + /* Only event ring does not use link TRB */ + if (type != TYPE_EVENT) { + /* See section 4.9.2.1 and 6.4.4.1 */ + ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= + cpu_to_le32(LINK_TOGGLE); + } + usbssp_initialize_ring_info(ring, cycle_state); + trace_usbssp_ring_alloc(ring); + return ring; +fail: + kfree(ring); + return NULL; +} + +void usbssp_free_endpoint_ring(struct usbssp_udc *usbssp_data, + struct usbssp_device *dev_priv, + unsigned int ep_index) +{ + usbssp_ring_free(usbssp_data, dev_priv->eps[ep_index].ring); + dev_priv->eps[ep_index].ring = NULL; +} + +/* + * Expand an existing ring. + * Allocate a new ring which has same segment numbers and link the two rings. + */ +int usbssp_ring_expansion(struct usbssp_udc *usbssp_data, + struct usbssp_ring *ring, + unsigned int num_trbs, gfp_t flags) +{ + struct usbssp_segment *first; + struct usbssp_segment *last; + unsigned int num_segs; + unsigned int num_segs_needed; + int ret; + + num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / + (TRBS_PER_SEGMENT - 1); + + /* Allocate number of segments we needed, or double the ring size */ + num_segs = ring->num_segs > num_segs_needed ? + ring->num_segs : num_segs_needed; + + ret = usbssp_alloc_segments_for_ring(usbssp_data, &first, &last, + num_segs, ring->cycle_state, ring->type, + ring->bounce_buf_len, flags); + if (ret) + return -ENOMEM; + + if (ring->type == TYPE_STREAM) + ret = usbssp_update_stream_segment_mapping( + ring->trb_address_map, ring, first, + last, flags); + if (ret) { + struct usbssp_segment *next; + + do { + next = first->next; + usbssp_segment_free(usbssp_data, first); + if (first == last) + break; + first = next; + } while (true); + return ret; + } + + usbssp_link_rings(usbssp_data, ring, first, last, num_segs); + trace_usbssp_ring_expansion(ring); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_ring_expansion, + "ring expansion succeed, now has %d segments", + ring->num_segs); + + return 0; +} + +struct usbssp_container_ctx *usbssp_alloc_container_ctx( + struct usbssp_udc *usbssp_data, + int type, gfp_t flags) +{ + struct usbssp_container_ctx *ctx; + + if ((type != USBSSP_CTX_TYPE_DEVICE) && (type != USBSSP_CTX_TYPE_INPUT)) + return NULL; + + ctx = kzalloc(sizeof(*ctx), flags); + if (!ctx) + return NULL; + + ctx->type = type; + ctx->size = HCC_64BYTE_CONTEXT(usbssp_data->hcc_params) ? 2048 : 1024; + if (type == USBSSP_CTX_TYPE_INPUT) + ctx->size += CTX_SIZE(usbssp_data->hcc_params); + + ctx->bytes = dma_pool_zalloc(usbssp_data->device_pool, + flags, &ctx->dma); + + if (!ctx->bytes) { + kfree(ctx); + return NULL; + } + return ctx; +} + +void usbssp_free_container_ctx(struct usbssp_udc *usbssp_data, + struct usbssp_container_ctx *ctx) +{ + if (!ctx) + return; + dma_pool_free(usbssp_data->device_pool, ctx->bytes, ctx->dma); + kfree(ctx); +} + +struct usbssp_input_control_ctx *usbssp_get_input_control_ctx( + struct usbssp_container_ctx *ctx) +{ + if (ctx->type != USBSSP_CTX_TYPE_INPUT) + return NULL; + + return (struct usbssp_input_control_ctx *)ctx->bytes; +} + +struct usbssp_slot_ctx *usbssp_get_slot_ctx(struct usbssp_udc *usbssp_data, + struct usbssp_container_ctx *ctx) +{ + if (ctx->type == USBSSP_CTX_TYPE_DEVICE) + return (struct usbssp_slot_ctx *)ctx->bytes; + + return (struct usbssp_slot_ctx *) (ctx->bytes + + CTX_SIZE(usbssp_data->hcc_params)); +} + +struct usbssp_ep_ctx *usbssp_get_ep_ctx(struct usbssp_udc *usbssp_data, + struct usbssp_container_ctx *ctx, + unsigned int ep_index) +{ + /* increment ep index by offset of start of ep ctx array */ + ep_index++; + if (ctx->type == USBSSP_CTX_TYPE_INPUT) + ep_index++; + + return (struct usbssp_ep_ctx *) (ctx->bytes + + (ep_index * CTX_SIZE(usbssp_data->hcc_params))); +} + + +/***************** Streams structures manipulation *************************/ +static void usbssp_free_stream_ctx(struct usbssp_udc *usbssp_data, + unsigned int num_stream_ctxs, + struct usbssp_stream_ctx *stream_ctx, + dma_addr_t dma) +{ + struct device *dev = usbssp_data->dev; + size_t size = sizeof(struct usbssp_stream_ctx) * num_stream_ctxs; + + if (size > MEDIUM_STREAM_ARRAY_SIZE) + dma_free_coherent(dev, size, stream_ctx, dma); + else if (size <= SMALL_STREAM_ARRAY_SIZE) + return dma_pool_free(usbssp_data->small_streams_pool, + stream_ctx, dma); + else + return dma_pool_free(usbssp_data->medium_streams_pool, + stream_ctx, dma); +} + + +/* + * The stream context array for each endpoint with bulk streams enabled can + * vary in size, based on: + * - how many streams the endpoint supports, + * - the maximum primary stream array size the host controller supports, + * - and how many streams the device driver asks for. + * + * The stream context array must be a power of 2, and can be as small as + * 64 bytes or as large as 1MB. + */ +static struct usbssp_stream_ctx *usbssp_alloc_stream_ctx( + struct usbssp_udc *usbssp_data, + unsigned int num_stream_ctxs, + dma_addr_t *dma, + gfp_t mem_flags) +{ + struct device *dev = usbssp_data->dev; + size_t size = sizeof(struct usbssp_stream_ctx) * num_stream_ctxs; + + if (size > MEDIUM_STREAM_ARRAY_SIZE) + return dma_alloc_coherent(dev, size, + dma, mem_flags); + else if (size <= SMALL_STREAM_ARRAY_SIZE) + return dma_pool_alloc(usbssp_data->small_streams_pool, + mem_flags, dma); + else + return dma_pool_alloc(usbssp_data->medium_streams_pool, + mem_flags, dma); +} + + +struct usbssp_ring *usbssp_dma_to_transfer_ring(struct usbssp_ep *ep, + u64 address) +{ + if (ep->ep_state & EP_HAS_STREAMS) + return radix_tree_lookup(&ep->stream_info->trb_address_map, + address >> TRB_SEGMENT_SHIFT); + return ep->ring; +} + +struct usbssp_ring *usbssp_stream_id_to_ring(struct usbssp_device *dev, + unsigned int ep_index, + unsigned int stream_id) +{ + struct usbssp_ep *ep = &dev->eps[ep_index]; + + if (stream_id == 0) + return ep->ring; + + if (!ep->stream_info) + return NULL; + + if (stream_id > ep->stream_info->num_streams) + return NULL; + return ep->stream_info->stream_rings[stream_id]; +} + +/* + * Change an endpoint's internal structure so it supports stream IDs. The + * number of requested streams includes stream 0, which cannot be used by device + * drivers. + * + * The number of stream contexts in the stream context array may be bigger than + * the number of streams the driver wants to use. This is because the number of + * stream context array entries must be a power of two. + */ +struct usbssp_stream_info *usbssp_alloc_stream_info( + struct usbssp_udc *usbssp_data, + unsigned int num_stream_ctxs, + unsigned int num_streams, + unsigned int max_packet, + gfp_t mem_flags) +{ + struct usbssp_stream_info *stream_info; + u32 cur_stream; + struct usbssp_ring *cur_ring; + u64 addr; + int ret; + + usbssp_dbg(usbssp_data, + "Allocating %u streams and %u stream context array entries.\n", + num_streams, num_stream_ctxs); + + if (usbssp_data->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { + usbssp_dbg(usbssp_data, + "Command ring has no reserved TRBs available\n"); + return NULL; + } + usbssp_data->cmd_ring_reserved_trbs++; + + stream_info = kzalloc(sizeof(struct usbssp_stream_info), mem_flags); + if (!stream_info) + goto cleanup_trbs; + + stream_info->num_streams = num_streams; + stream_info->num_stream_ctxs = num_stream_ctxs; + + /* Initialize the array of virtual pointers to stream rings. */ + stream_info->stream_rings = + kzalloc(sizeof(struct usbssp_ring *)*num_streams, + mem_flags); + if (!stream_info->stream_rings) + goto cleanup_info; + + /* Initialize the array of DMA addresses for stream rings for the HW. */ + stream_info->stream_ctx_array = usbssp_alloc_stream_ctx( + usbssp_data, num_stream_ctxs, + &stream_info->ctx_array_dma, mem_flags); + if (!stream_info->stream_ctx_array) + goto cleanup_ctx; + memset(stream_info->stream_ctx_array, 0, + sizeof(struct usbssp_stream_ctx)*num_stream_ctxs); + + /* Allocate everything needed to free the stream rings later */ + stream_info->free_streams_command = + usbssp_alloc_command(usbssp_data, true, mem_flags); + if (!stream_info->free_streams_command) + goto cleanup_ctx; + + INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); + + /* Allocate rings for all the streams that the driver will use, + * and add their segment DMA addresses to the radix tree. + * Stream 0 is reserved. + */ + + for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { + stream_info->stream_rings[cur_stream] = + usbssp_ring_alloc(usbssp_data, 2, 1, TYPE_STREAM, + max_packet, mem_flags); + cur_ring = stream_info->stream_rings[cur_stream]; + if (!cur_ring) + goto cleanup_rings; + cur_ring->stream_id = cur_stream; + cur_ring->trb_address_map = &stream_info->trb_address_map; + /* Set deq ptr, cycle bit, and stream context type */ + addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) | + cur_ring->cycle_state; + stream_info->stream_ctx_array[cur_stream].stream_ring = + cpu_to_le64(addr); + usbssp_dbg(usbssp_data, + "Setting stream %d ring ptr to 0x%08llx\n", + cur_stream, (unsigned long long) addr); + + ret = usbssp_update_stream_mapping(cur_ring, mem_flags); + if (ret) { + usbssp_ring_free(usbssp_data, cur_ring); + stream_info->stream_rings[cur_stream] = NULL; + goto cleanup_rings; + } + } + /* Leave the other unused stream ring pointers in the stream context + * array initialized to zero. This will cause the DC to give us an + * error if the host asks for a stream ID we don't have setup (if it + * was any other way, the device controller would assume the ring is + * "empty" and wait forever for data to be queued to that stream ID). + */ + + return stream_info; + +cleanup_rings: + for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { + cur_ring = stream_info->stream_rings[cur_stream]; + if (cur_ring) { + usbssp_ring_free(usbssp_data, cur_ring); + stream_info->stream_rings[cur_stream] = NULL; + } + } + usbssp_free_command(usbssp_data, stream_info->free_streams_command); +cleanup_ctx: + kfree(stream_info->stream_rings); +cleanup_info: + kfree(stream_info); +cleanup_trbs: + usbssp_data->cmd_ring_reserved_trbs--; + return NULL; +} + +/* + * Sets the MaxPStreams field and the Linear Stream Array field. + * Sets the dequeue pointer to the stream context array. + */ +void usbssp_setup_streams_ep_input_ctx(struct usbssp_udc *usbssp_data, + struct usbssp_ep_ctx *ep_ctx, + struct usbssp_stream_info *stream_info) +{ + u32 max_primary_streams; + /* MaxPStreams is the number of stream context array entries, not the + * number we're actually using. Must be in 2^(MaxPstreams + 1) format. + * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. + */ + max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_context_change, + "Setting number of stream ctx array entries to %u", + 1 << (max_primary_streams + 1)); + ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); + ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) + | EP_HAS_LSA); + ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); +} + +/* + * Sets the MaxPStreams field and the Linear Stream Array field to 0. + * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, + * not at the beginning of the ring). + */ +void usbssp_setup_no_streams_ep_input_ctx(struct usbssp_ep_ctx *ep_ctx, + struct usbssp_ep *ep) +{ + dma_addr_t addr; + + ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); + addr = usbssp_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); + ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); +} + +/* Frees all stream contexts associated with the endpoint, + * + * Caller should fix the endpoint context streams fields. + */ +void usbssp_free_stream_info(struct usbssp_udc *usbssp_data, + struct usbssp_stream_info *stream_info) +{ + int cur_stream; + struct usbssp_ring *cur_ring; + + if (!stream_info) + return; + + for (cur_stream = 1; cur_stream < stream_info->num_streams; + cur_stream++) { + cur_ring = stream_info->stream_rings[cur_stream]; + if (cur_ring) { + usbssp_ring_free(usbssp_data, cur_ring); + stream_info->stream_rings[cur_stream] = NULL; + } + } + usbssp_free_command(usbssp_data, stream_info->free_streams_command); + usbssp_data->cmd_ring_reserved_trbs--; + if (stream_info->stream_ctx_array) + usbssp_free_stream_ctx(usbssp_data, + stream_info->num_stream_ctxs, + stream_info->stream_ctx_array, + stream_info->ctx_array_dma); + + kfree(stream_info->stream_rings); + kfree(stream_info); +} + + +/***************** Device context manipulation *************************/ + +/* All the usbssp_tds in the ring's TD list should be freed at this point. + */ +void usbssp_free_priv_device(struct usbssp_udc *usbssp_data) +{ + struct usbssp_device *dev; + int i; + + /* if slot_id = 0 then no device slot is used */ + if (usbssp_data->slot_id == 0) + return; + + dev = &usbssp_data->devs; + trace_usbssp_free_priv_device(dev); + + usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id] = 0; + if (!dev) + return; + + for (i = 0; i < 31; ++i) { + if (dev->eps[i].ring) + usbssp_ring_free(usbssp_data, dev->eps[i].ring); + + if (dev->eps[i].stream_info) { + usbssp_free_stream_info(usbssp_data, + dev->eps[i].stream_info); + } + } + + if (dev->in_ctx) + usbssp_free_container_ctx(usbssp_data, dev->in_ctx); + if (dev->out_ctx) + usbssp_free_container_ctx(usbssp_data, dev->out_ctx); + + usbssp_data->slot_id = 0; +} + +int usbssp_alloc_priv_device(struct usbssp_udc *usbssp_data, gfp_t flags) +{ + struct usbssp_device *priv_dev; + + /* Slot ID 0 is reserved */ + if (usbssp_data->slot_id == 0) { + usbssp_warn(usbssp_data, "Bad Slot ID %d\n", + usbssp_data->slot_id); + return 0; + } + + priv_dev = &usbssp_data->devs; + + /* Allocate the (output) device context that will be + * used in the USBSSP. + */ + priv_dev->out_ctx = usbssp_alloc_container_ctx(usbssp_data, + USBSSP_CTX_TYPE_DEVICE, flags); + + if (!priv_dev->out_ctx) + goto fail; + + usbssp_dbg(usbssp_data, "Slot %d output ctx = 0x%llx (dma)\n", + usbssp_data->slot_id, + (unsigned long long)priv_dev->out_ctx->dma); + + /* Allocate the (input) device context for address device command */ + priv_dev->in_ctx = usbssp_alloc_container_ctx(usbssp_data, + USBSSP_CTX_TYPE_INPUT, flags); + + if (!priv_dev->in_ctx) + goto fail; + + usbssp_dbg(usbssp_data, "Slot %d input ctx = 0x%llx (dma)\n", + usbssp_data->slot_id, + (unsigned long long)priv_dev->in_ctx->dma); + + /* Allocate endpoint 0 ring */ + priv_dev->eps[0].ring = usbssp_ring_alloc(usbssp_data, 2, 1, + TYPE_CTRL, 0, flags); + if (!priv_dev->eps[0].ring) + goto fail; + + priv_dev->gadget = &usbssp_data->gadget; + + /* Point to output device context in dcbaa. */ + usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id] = + cpu_to_le64(priv_dev->out_ctx->dma); + usbssp_dbg(usbssp_data, "Set slot id %d dcbaa entry %p to 0x%llx\n", + usbssp_data->slot_id, + &usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id], + le64_to_cpu(usbssp_data->dcbaa->dev_context_ptrs[usbssp_data->slot_id])); + + trace_usbssp_alloc_priv_device(priv_dev); + return 1; +fail: + if (priv_dev->in_ctx) + usbssp_free_container_ctx(usbssp_data, priv_dev->in_ctx); + if (priv_dev->out_ctx) + usbssp_free_container_ctx(usbssp_data, priv_dev->out_ctx); + + return 0; +} + +void usbssp_copy_ep0_dequeue_into_input_ctx(struct usbssp_udc *usbssp_data) +{ + struct usbssp_device *priv_dev; + struct usbssp_ep_ctx *ep0_ctx; + struct usbssp_ring *ep_ring; + + priv_dev = &usbssp_data->devs; + ep0_ctx = usbssp_get_ep_ctx(usbssp_data, priv_dev->in_ctx, 0); + ep_ring = priv_dev->eps[0].ring; + /* + * We don't keep track of the dequeue pointer very well after a + * Set TR dequeue pointer, so we're setting the dequeue pointer of the + * device to our enqueue pointer. This should only be called after a + * configured device has reset, so all control transfers should have + * been completed or cancelled before the reset. + */ + ep0_ctx->deq = cpu_to_le64(usbssp_trb_virt_to_dma(ep_ring->enq_seg, + ep_ring->enqueue) | ep_ring->cycle_state); +} + +/* Setup an DC private device for a Set Address command */ +int usbssp_setup_addressable_priv_dev(struct usbssp_udc *usbssp_data) +{ + struct usbssp_device *dev_priv; + struct usbssp_ep_ctx *ep0_ctx; + struct usbssp_slot_ctx *slot_ctx; + u32 max_packets; + + dev_priv = &usbssp_data->devs; + /* Slot ID 0 is reserved */ + if (usbssp_data->slot_id == 0 || !dev_priv->gadget) { + usbssp_warn(usbssp_data, + "Slot ID %d is not assigned to this device\n", + usbssp_data->slot_id); + return -EINVAL; + } + + ep0_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, 0); + slot_ctx = usbssp_get_slot_ctx(usbssp_data, dev_priv->in_ctx); + + /* 3) Only the control endpoint is valid - one endpoint context */ + slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) /*| udev->route*/); + + switch (dev_priv->gadget->speed) { + case USB_SPEED_SUPER_PLUS: + slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); + max_packets = MAX_PACKET(512); + break; + case USB_SPEED_SUPER: + slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); + max_packets = MAX_PACKET(512); + break; + case USB_SPEED_HIGH: + slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); + max_packets = MAX_PACKET(64); + break; + case USB_SPEED_FULL: + slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); + max_packets = MAX_PACKET(64); + break; + case USB_SPEED_LOW: + slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); + max_packets = MAX_PACKET(8); + break; + case USB_SPEED_WIRELESS: + usbssp_dbg(usbssp_data, + "USBSSP doesn't support wireless speeds\n"); + return -EINVAL; + default: + /* Speed was not set , this shouldn't happen. */ + return -EINVAL; + } + + if (!usbssp_data->devs.port_num) + return -EINVAL; + + slot_ctx->dev_info2 |= + cpu_to_le32(ROOT_DEV_PORT(usbssp_data->devs.port_num)); + slot_ctx->dev_state |= (usbssp_data->device_address & DEV_ADDR_MASK); + + ep0_ctx->tx_info = EP_AVG_TRB_LENGTH(0x8); + /*cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |*/ + + /* Step 4 - ring already allocated */ + /* Step 5 */ + ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); + + /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ + ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | + max_packets); + + ep0_ctx->deq = cpu_to_le64(dev_priv->eps[0].ring->first_seg->dma | + dev_priv->eps[0].ring->cycle_state); + + trace_usbssp_setup_addressable_priv_device(dev_priv); + /* Steps 7 and 8 were done in usbssp_alloc_priv_device() */ + + return 0; +} + +/* + * Convert interval expressed as 2^(bInterval - 1) == interval into + * straight exponent value 2^n == interval. + * + */ +static unsigned int usbssp_parse_exponent_interval(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + unsigned int interval; + + interval = clamp_val(dep->endpoint.desc->bInterval, 1, 16) - 1; + if (interval != dep->endpoint.desc->bInterval - 1) + dev_warn(&g->dev, + "ep %#x - rounding interval to %d %sframes\n", + dep->endpoint.desc->bEndpointAddress, + 1 << interval, + g->speed == USB_SPEED_FULL ? "" : "micro"); + + if (g->speed == USB_SPEED_FULL) { + /* + * Full speed isoc endpoints specify interval in frames, + * not microframes. We are using microframes everywhere, + * so adjust accordingly. + */ + interval += 3; /* 1 frame = 2^3 uframes */ + } + + return interval; +} + +/* + * Convert bInterval expressed in microframes (in 1-255 range) to exponent of + * microframes, rounded down to nearest power of 2. + */ +static unsigned int usbssp_microframes_to_exponent(struct usb_gadget *g, + struct usbssp_ep *dep, + unsigned int desc_interval, + unsigned int min_exponent, + unsigned int max_exponent) +{ + unsigned int interval; + + interval = fls(desc_interval) - 1; + interval = clamp_val(interval, min_exponent, max_exponent); + if ((1 << interval) != desc_interval) + dev_dbg(&g->dev, + "ep %#x - rounding interval to %d microframes," + "ep desc says %d microframes\n", + dep->endpoint.desc->bEndpointAddress, + 1 << interval, + desc_interval); + + return interval; +} + +static unsigned int usbssp_parse_microframe_interval(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + if (dep->endpoint.desc->bInterval == 0) + return 0; + return usbssp_microframes_to_exponent(g, dep, + dep->endpoint.desc->bInterval, 0, 15); +} + + +static unsigned int usbssp_parse_frame_interval(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + + return usbssp_microframes_to_exponent(g, dep, + dep->endpoint.desc->bInterval * 8, 3, 10); +} + +/* Return the polling or NAK interval. + * + * The polling interval is expressed in "microframes". If DC's Interval field + * is set to N, it will service the endpoint every 2^(Interval)*125us. + * + * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval + * is set to 0. + */ +static unsigned int usbssp_get_endpoint_interval(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + unsigned int interval = 0; + + switch (g->speed) { + case USB_SPEED_HIGH: + /* Max NAK rate */ + if (usb_endpoint_xfer_control(dep->endpoint.desc) || + usb_endpoint_xfer_bulk(dep->endpoint.desc)) { + interval = usbssp_parse_microframe_interval(g, dep); + break; + } + /* Fall through - SS and HS isoc/int have same decoding */ + + case USB_SPEED_SUPER_PLUS: + case USB_SPEED_SUPER: + if (usb_endpoint_xfer_int(dep->endpoint.desc) || + usb_endpoint_xfer_isoc(dep->endpoint.desc)) { + interval = usbssp_parse_exponent_interval(g, dep); + } + break; + + case USB_SPEED_FULL: + if (usb_endpoint_xfer_isoc(dep->endpoint.desc)) { + interval = usbssp_parse_exponent_interval(g, dep); + break; + } + /* + * Fall through for interrupt endpoint interval decoding + * since it uses the same rules as low speed interrupt + * endpoints. + */ + + case USB_SPEED_LOW: + if (usb_endpoint_xfer_int(dep->endpoint.desc) || + usb_endpoint_xfer_isoc(dep->endpoint.desc)) { + + interval = usbssp_parse_frame_interval(g, dep); + } + break; + + default: + BUG(); + } + return interval; +} + +/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. + * High speed endpoint descriptors can define "the number of additional + * transaction opportunities per microframe", but that goes in the Max Burst + * endpoint context field. + */ +static u32 usbssp_get_endpoint_mult(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + if (g->speed < USB_SPEED_SUPER || + !usb_endpoint_xfer_isoc(dep->endpoint.desc)) + return 0; + + return dep->endpoint.comp_desc->bmAttributes; +} + +static u32 usbssp_get_endpoint_max_burst(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + /* Super speed and Plus have max burst in ep companion desc */ + if (g->speed >= USB_SPEED_SUPER) + return dep->endpoint.comp_desc->bMaxBurst; + + if (g->speed == USB_SPEED_HIGH && + (usb_endpoint_xfer_isoc(dep->endpoint.desc) || + usb_endpoint_xfer_int(dep->endpoint.desc))) + return (usb_endpoint_maxp(dep->endpoint.desc) & 0x1800) >> 11; + + return 0; +} + +static u32 usbssp_get_endpoint_type(const struct usb_endpoint_descriptor *desc) +{ + int in; + + in = usb_endpoint_dir_in(desc); + + switch (usb_endpoint_type(desc)) { + case USB_ENDPOINT_XFER_CONTROL: + return CTRL_EP; + case USB_ENDPOINT_XFER_BULK: + return in ? BULK_IN_EP : BULK_OUT_EP; + case USB_ENDPOINT_XFER_ISOC: + return in ? ISOC_IN_EP : ISOC_OUT_EP; + case USB_ENDPOINT_XFER_INT: + return in ? INT_IN_EP : INT_OUT_EP; + } + return 0; +} + +/* Return the maximum endpoint service interval time (ESIT) payload. + * Basically, this is the maxpacket size, multiplied by the burst size + * and mult size. + */ +static u32 usbssp_get_max_esit_payload(struct usb_gadget *g, + struct usbssp_ep *dep) +{ + int max_burst; + int max_packet; + + /* Only applies for interrupt or isochronous endpoints*/ + if (usb_endpoint_xfer_control(dep->endpoint.desc) || + usb_endpoint_xfer_bulk(dep->endpoint.desc)) + return 0; + + /* SuperSpeedPlus Isoc ep sending over 48k per esit*/ + + if ((g->speed >= USB_SPEED_SUPER_PLUS) && + USB_SS_SSP_ISOC_COMP(dep->endpoint.desc->bmAttributes)) + return le32_to_cpu(dep->endpoint.comp_desc->wBytesPerInterval); + /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ + else if (g->speed >= USB_SPEED_SUPER) + return le16_to_cpu(dep->endpoint.comp_desc->wBytesPerInterval); + + max_packet = usb_endpoint_maxp(dep->endpoint.desc); + max_burst = usb_endpoint_maxp_mult(dep->endpoint.desc); + /* A 0 in max burst means 1 transfer per ESIT */ + return max_packet * max_burst; +} + +/* Set up an endpoint with one ring segment. Do not allocate stream rings. + * Drivers will have to call usb_alloc_streams() to do that. + */ +int usbssp_endpoint_init(struct usbssp_udc *usbssp_data, + struct usbssp_device *dev_priv, + struct usbssp_ep *dep, + gfp_t mem_flags) +{ + unsigned int ep_index; + struct usbssp_ep_ctx *ep_ctx; + struct usbssp_ring *ep_ring; + unsigned int max_packet; + enum usbssp_ring_type ring_type; + u32 max_esit_payload; + u32 endpoint_type; + unsigned int max_burst; + unsigned int interval; + unsigned int mult; + unsigned int avg_trb_len; + unsigned int err_count = 0; + + ep_index = usbssp_get_endpoint_index(dep->endpoint.desc); + ep_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, ep_index); + + endpoint_type = usbssp_get_endpoint_type(dep->endpoint.desc); + if (!endpoint_type) + return -EINVAL; + + ring_type = usb_endpoint_type(dep->endpoint.desc); + + /* + * Get values to fill the endpoint context, mostly from ep descriptor. + * The average TRB buffer lengt for bulk endpoints is unclear as we + * have no clue on scatter gather list entry size. For Isoc and Int, + * set it to max available. + */ + max_esit_payload = + usbssp_get_max_esit_payload(&usbssp_data->gadget, dep); + interval = usbssp_get_endpoint_interval(&usbssp_data->gadget, dep); + mult = usbssp_get_endpoint_mult(&usbssp_data->gadget, dep); + max_packet = GET_MAX_PACKET(usb_endpoint_maxp(dep->endpoint.desc)); + max_burst = usbssp_get_endpoint_max_burst(&usbssp_data->gadget, dep); + avg_trb_len = max_esit_payload; + + /* Allow 3 retries for everything but isoc, set CErr = 3 */ + if (!usb_endpoint_xfer_isoc(dep->endpoint.desc)) + err_count = 3; + if (usb_endpoint_xfer_bulk(dep->endpoint.desc) && + usbssp_data->gadget.speed == USB_SPEED_HIGH) + max_packet = 512; + /* DC spec indicates that ctrl ep avg TRB Length should be 8 */ + if (usb_endpoint_xfer_control(dep->endpoint.desc)) + avg_trb_len = 8; + + /* Set up the endpoint ring */ + dev_priv->eps[ep_index].new_ring = usbssp_ring_alloc(usbssp_data, 2, 1, + ring_type, max_packet, mem_flags); + + dev_priv->eps[ep_index].skip = false; + ep_ring = dev_priv->eps[ep_index].new_ring; + + /* Fill the endpoint context */ + ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | + EP_INTERVAL(interval) | EP_MULT(mult)); + ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | + MAX_PACKET(max_packet) | MAX_BURST(max_burst) | + ERROR_COUNT(err_count)); + ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | + ep_ring->cycle_state); + + ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | + EP_AVG_TRB_LENGTH(avg_trb_len)); + + return 0; +} + +void usbssp_endpoint_zero(struct usbssp_udc *usbssp_data, + struct usbssp_device *dev_priv, + struct usbssp_ep *ep) +{ + unsigned int ep_index; + struct usbssp_ep_ctx *ep_ctx; + + ep_index = usbssp_get_endpoint_index(ep->endpoint.desc); + ep_ctx = usbssp_get_ep_ctx(usbssp_data, dev_priv->in_ctx, ep_index); + + ep_ctx->ep_info = 0; + ep_ctx->ep_info2 = 0; + ep_ctx->deq = 0; + ep_ctx->tx_info = 0; + /* Don't free the endpoint ring until the set interface or configuration + * request succeeds. + */ +} + +/* Copy output usbssp_ep_ctx to the input usbssp_ep_ctx copy. + * Useful when you want to change one particular aspect of the endpoint and then + * issue a configure endpoint command. + */ +void usbssp_endpoint_copy(struct usbssp_udc *usbssp_data, + struct usbssp_container_ctx *in_ctx, + struct usbssp_container_ctx *out_ctx, + unsigned int ep_index) +{ + struct usbssp_ep_ctx *out_ep_ctx; + struct usbssp_ep_ctx *in_ep_ctx; + + out_ep_ctx = usbssp_get_ep_ctx(usbssp_data, out_ctx, ep_index); + in_ep_ctx = usbssp_get_ep_ctx(usbssp_data, in_ctx, ep_index); + + in_ep_ctx->ep_info = out_ep_ctx->ep_info; + in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; + in_ep_ctx->deq = out_ep_ctx->deq; + in_ep_ctx->tx_info = out_ep_ctx->tx_info; +} + +/* Copy output usbssp_slot_ctx to the input usbssp_slot_ctx. + * Useful when you want to change one particular aspect of the endpoint and then + * issue a configure endpoint command. Only the context entries field matters, + * but we'll copy the whole thing anyway. + */ +void usbssp_slot_copy(struct usbssp_udc *usbssp_data, + struct usbssp_container_ctx *in_ctx, + struct usbssp_container_ctx *out_ctx) +{ + struct usbssp_slot_ctx *in_slot_ctx; + struct usbssp_slot_ctx *out_slot_ctx; + + in_slot_ctx = usbssp_get_slot_ctx(usbssp_data, in_ctx); + out_slot_ctx = usbssp_get_slot_ctx(usbssp_data, out_ctx); + + in_slot_ctx->dev_info = out_slot_ctx->dev_info; + in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; + in_slot_ctx->int_target = out_slot_ctx->int_target; + in_slot_ctx->dev_state = out_slot_ctx->dev_state; +} + +/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ +static int scratchpad_alloc(struct usbssp_udc *usbssp_data, gfp_t flags) +{ + int i; + struct device *dev = usbssp_data->dev; + int num_sp = HCS_MAX_SCRATCHPAD(usbssp_data->hcs_params2); + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Allocating %d scratchpad buffers", num_sp); + + if (!num_sp) + return 0; + + usbssp_data->scratchpad = kzalloc(sizeof(*usbssp_data->scratchpad), + flags); + if (!usbssp_data->scratchpad) + goto fail_sp; + + usbssp_data->scratchpad->sp_array = + dma_alloc_coherent(dev, num_sp * sizeof(u64), + &usbssp_data->scratchpad->sp_dma, + flags); + + if (!usbssp_data->scratchpad->sp_array) + goto fail_sp2; + + usbssp_data->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, + flags); + if (!usbssp_data->scratchpad->sp_buffers) + goto fail_sp3; + + usbssp_data->dcbaa->dev_context_ptrs[0] = + cpu_to_le64(usbssp_data->scratchpad->sp_dma); + for (i = 0; i < num_sp; i++) { + dma_addr_t dma; + + void *buf = dma_zalloc_coherent(dev, usbssp_data->page_size, + &dma, flags); + + if (!buf) + goto fail_sp4; + + usbssp_data->scratchpad->sp_array[i] = dma; + usbssp_data->scratchpad->sp_buffers[i] = buf; + } + + return 0; + +fail_sp4: + for (i = i - 1; i >= 0; i--) { + dma_free_coherent(dev, usbssp_data->page_size, + usbssp_data->scratchpad->sp_buffers[i], + usbssp_data->scratchpad->sp_array[i]); + } + + kfree(usbssp_data->scratchpad->sp_buffers); + +fail_sp3: + dma_free_coherent(dev, num_sp * sizeof(u64), + usbssp_data->scratchpad->sp_array, + usbssp_data->scratchpad->sp_dma); + +fail_sp2: + kfree(usbssp_data->scratchpad); + usbssp_data->scratchpad = NULL; + +fail_sp: + return -ENOMEM; +} + +static void scratchpad_free(struct usbssp_udc *usbssp_data) +{ + int num_sp; + int i; + struct device *dev = usbssp_data->dev; + + if (!usbssp_data->scratchpad) + return; + + num_sp = HCS_MAX_SCRATCHPAD(usbssp_data->hcs_params2); + + for (i = 0; i < num_sp; i++) { + dma_free_coherent(dev, usbssp_data->page_size, + usbssp_data->scratchpad->sp_buffers[i], + usbssp_data->scratchpad->sp_array[i]); + } + + kfree(usbssp_data->scratchpad->sp_buffers); + dma_free_coherent(dev, num_sp * sizeof(u64), + usbssp_data->scratchpad->sp_array, + usbssp_data->scratchpad->sp_dma); + kfree(usbssp_data->scratchpad); + usbssp_data->scratchpad = NULL; +} + +struct usbssp_command *usbssp_alloc_command(struct usbssp_udc *usbssp_data, + bool allocate_completion, + gfp_t mem_flags) +{ + struct usbssp_command *command; + + command = kzalloc(sizeof(*command), mem_flags); + if (!command) + return NULL; + + if (allocate_completion) { + command->completion = + kzalloc(sizeof(struct completion), mem_flags); + if (!command->completion) { + kfree(command); + return NULL; + } + init_completion(command->completion); + } + + command->status = 0; + INIT_LIST_HEAD(&command->cmd_list); + + return command; +} + +struct usbssp_command *usbssp_alloc_command_with_ctx( + struct usbssp_udc *usbssp_data, + bool allocate_completion, + gfp_t mem_flags) +{ + struct usbssp_command *command; + + command = usbssp_alloc_command(usbssp_data, + allocate_completion, mem_flags); + if (!command) + return NULL; + + command->in_ctx = usbssp_alloc_container_ctx(usbssp_data, + USBSSP_CTX_TYPE_INPUT, mem_flags); + if (!command->in_ctx) { + kfree(command->completion); + kfree(command); + return NULL; + } + return command; +} + +void usbssp_request_free_priv(struct usbssp_request *priv_req) +{ + if (priv_req) + kfree(priv_req->td); +} + +void usbssp_free_command(struct usbssp_udc *usbssp_data, + struct usbssp_command *command) +{ + usbssp_free_container_ctx(usbssp_data, command->in_ctx); + kfree(command->completion); + kfree(command); +} + +int usbssp_alloc_erst(struct usbssp_udc *usbssp_data, + struct usbssp_ring *evt_ring, + struct usbssp_erst *erst, + gfp_t flags) +{ + size_t size; + unsigned int val; + struct usbssp_segment *seg; + struct usbssp_erst_entry *entry; + + size = sizeof(struct usbssp_erst_entry) * evt_ring->num_segs; + erst->entries = dma_zalloc_coherent(usbssp_data->dev, + size, &erst->erst_dma_addr, flags); + if (!erst->entries) + return -ENOMEM; + + erst->num_entries = evt_ring->num_segs; + + seg = evt_ring->first_seg; + for (val = 0; val < evt_ring->num_segs; val++) { + entry = &erst->entries[val]; + entry->seg_addr = cpu_to_le64(seg->dma); + entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); + entry->rsvd = 0; + seg = seg->next; + } + + return 0; +} + +void usbssp_free_erst(struct usbssp_udc *usbssp_data, struct usbssp_erst *erst) +{ + size_t size; + struct device *dev = usbssp_data->dev; + + size = sizeof(struct usbssp_erst_entry) * (erst->num_entries); + if (erst->entries) + dma_free_coherent(dev, size, erst->entries, + erst->erst_dma_addr); + erst->entries = NULL; +} + +void usbssp_mem_cleanup(struct usbssp_udc *usbssp_data) +{ + struct device *dev = usbssp_data->dev; + int num_ports; + + cancel_delayed_work_sync(&usbssp_data->cmd_timer); + cancel_work_sync(&usbssp_data->bottom_irq); + destroy_workqueue(usbssp_data->bottom_irq_wq); + + /* Free the Event Ring Segment Table and the actual Event Ring */ + usbssp_free_erst(usbssp_data, &usbssp_data->erst); + + if (usbssp_data->event_ring) + usbssp_ring_free(usbssp_data, usbssp_data->event_ring); + usbssp_data->event_ring = NULL; + usbssp_dbg_trace(usbssp_data, + trace_usbssp_dbg_init, "Freed event ring"); + + if (usbssp_data->cmd_ring) + usbssp_ring_free(usbssp_data, usbssp_data->cmd_ring); + usbssp_data->cmd_ring = NULL; + usbssp_dbg_trace(usbssp_data, + trace_usbssp_dbg_init, "Freed command ring"); + usbssp_cleanup_command_queue(usbssp_data); + + num_ports = HCS_MAX_PORTS(usbssp_data->hcs_params1); + + usbssp_free_priv_device(usbssp_data); + + dma_pool_destroy(usbssp_data->segment_pool); + usbssp_data->segment_pool = NULL; + usbssp_dbg_trace(usbssp_data, + trace_usbssp_dbg_init, "Freed segment pool"); + dma_pool_destroy(usbssp_data->device_pool); + usbssp_data->device_pool = NULL; + usbssp_dbg_trace(usbssp_data, + trace_usbssp_dbg_init, "Freed device context pool"); + dma_pool_destroy(usbssp_data->small_streams_pool); + usbssp_data->small_streams_pool = NULL; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Freed small stream array pool"); + + dma_pool_destroy(usbssp_data->medium_streams_pool); + usbssp_data->medium_streams_pool = NULL; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Freed medium stream array pool"); + + if (usbssp_data->dcbaa) + dma_free_coherent(dev, sizeof(*usbssp_data->dcbaa), + usbssp_data->dcbaa, usbssp_data->dcbaa->dma); + + usbssp_data->dcbaa = NULL; + + scratchpad_free(usbssp_data); + + usbssp_data->cmd_ring_reserved_trbs = 0; + usbssp_data->num_usb2_ports = 0; + usbssp_data->num_usb3_ports = 0; + usbssp_data->num_active_eps = 0; + kfree(usbssp_data->port_array); + kfree(usbssp_data->ext_caps); + usbssp_data->usb2_ports = NULL; + usbssp_data->usb3_ports = NULL; + usbssp_data->port_array = NULL; + usbssp_data->ext_caps = NULL; + + usbssp_data->page_size = 0; + usbssp_data->page_shift = 0; +} + +static int usbssp_test_trb_in_td(struct usbssp_udc *usbssp_data, + struct usbssp_segment *input_seg, + union usbssp_trb *start_trb, + union usbssp_trb *end_trb, + dma_addr_t input_dma, + struct usbssp_segment *result_seg, + char *test_name, int test_number) +{ + unsigned long long start_dma; + unsigned long long end_dma; + struct usbssp_segment *seg; + + start_dma = usbssp_trb_virt_to_dma(input_seg, start_trb); + end_dma = usbssp_trb_virt_to_dma(input_seg, end_trb); + + seg = usbssp_trb_in_td(usbssp_data, input_seg, start_trb, + end_trb, input_dma, false); + if (seg != result_seg) { + usbssp_warn(usbssp_data, "WARN: %s TRB math test %d failed!\n", + test_name, test_number); + usbssp_warn(usbssp_data, "Tested TRB math w/ seg %p and " + "input DMA 0x%llx\n", + input_seg, + (unsigned long long) input_dma); + usbssp_warn(usbssp_data, "starting TRB %p (0x%llx DMA), " + "ending TRB %p (0x%llx DMA)\n", + start_trb, start_dma, + end_trb, end_dma); + usbssp_warn(usbssp_data, "Expected seg %p, got seg %p\n", + result_seg, seg); + usbssp_trb_in_td(usbssp_data, input_seg, start_trb, + end_trb, input_dma, true); + return -1; + } + return 0; +} + +/* TRB math checks for usbssp_trb_in_td(), using the command and event rings. */ +static int usbssp_check_trb_in_td_math(struct usbssp_udc *usbssp_data) +{ + struct { + dma_addr_t input_dma; + struct usbssp_segment *result_seg; + } simple_test_vector[] = { + /* A zeroed DMA field should fail */ + { 0, NULL }, + /* One TRB before the ring start should fail */ + { usbssp_data->event_ring->first_seg->dma - 16, NULL }, + /* One byte before the ring start should fail */ + { usbssp_data->event_ring->first_seg->dma - 1, NULL }, + /* Starting TRB should succeed */ + { usbssp_data->event_ring->first_seg->dma, + usbssp_data->event_ring->first_seg }, + /* Ending TRB should succeed */ + { usbssp_data->event_ring->first_seg->dma + + (TRBS_PER_SEGMENT - 1)*16, + usbssp_data->event_ring->first_seg }, + /* One byte after the ring end should fail */ + { usbssp_data->event_ring->first_seg->dma + + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, + /* One TRB after the ring end should fail */ + { usbssp_data->event_ring->first_seg->dma + + (TRBS_PER_SEGMENT)*16, NULL }, + /* An address of all ones should fail */ + { (dma_addr_t) (~0), NULL }, + }; + struct { + struct usbssp_segment *input_seg; + union usbssp_trb *start_trb; + union usbssp_trb *end_trb; + dma_addr_t input_dma; + struct usbssp_segment *result_seg; + } complex_test_vector[] = { + /* Test feeding a valid DMA address from a different ring */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = usbssp_data->event_ring->first_seg->trbs, + .end_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], + .input_dma = usbssp_data->cmd_ring->first_seg->dma, + .result_seg = NULL, + }, + /* Test feeding a valid end TRB from a different ring */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = usbssp_data->event_ring->first_seg->trbs, + .end_trb = &usbssp_data->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], + .input_dma = usbssp_data->cmd_ring->first_seg->dma, + .result_seg = NULL, + }, + /* Test feeding a valid start and end TRB from a different ring */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = usbssp_data->cmd_ring->first_seg->trbs, + .end_trb = &usbssp_data->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], + .input_dma = usbssp_data->cmd_ring->first_seg->dma, + .result_seg = NULL, + }, + /* TRB in this ring, but after this TD */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = &usbssp_data->event_ring->first_seg->trbs[0], + .end_trb = &usbssp_data->event_ring->first_seg->trbs[3], + .input_dma = usbssp_data->event_ring->first_seg->dma + 4*16, + .result_seg = NULL, + }, + /* TRB in this ring, but before this TD */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = &usbssp_data->event_ring->first_seg->trbs[3], + .end_trb = &usbssp_data->event_ring->first_seg->trbs[6], + .input_dma = usbssp_data->event_ring->first_seg->dma + 2*16, + .result_seg = NULL, + }, + /* TRB in this ring, but after this wrapped TD */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], + .end_trb = &usbssp_data->event_ring->first_seg->trbs[1], + .input_dma = usbssp_data->event_ring->first_seg->dma + 2*16, + .result_seg = NULL, + }, + /* TRB in this ring, but before this wrapped TD */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], + .end_trb = &usbssp_data->event_ring->first_seg->trbs[1], + .input_dma = usbssp_data->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, + .result_seg = NULL, + }, + /* TRB not in this ring, and we have a wrapped TD */ + { .input_seg = usbssp_data->event_ring->first_seg, + .start_trb = &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], + .end_trb = &usbssp_data->event_ring->first_seg->trbs[1], + .input_dma = usbssp_data->cmd_ring->first_seg->dma + 2*16, + .result_seg = NULL, + }, + }; + + unsigned int num_tests; + int i, ret; + + num_tests = ARRAY_SIZE(simple_test_vector); + for (i = 0; i < num_tests; i++) { + ret = usbssp_test_trb_in_td(usbssp_data, + usbssp_data->event_ring->first_seg, + usbssp_data->event_ring->first_seg->trbs, + &usbssp_data->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], + simple_test_vector[i].input_dma, + simple_test_vector[i].result_seg, + "Simple", i); + if (ret < 0) + return ret; + } + + num_tests = ARRAY_SIZE(complex_test_vector); + for (i = 0; i < num_tests; i++) { + ret = usbssp_test_trb_in_td(usbssp_data, + complex_test_vector[i].input_seg, + complex_test_vector[i].start_trb, + complex_test_vector[i].end_trb, + complex_test_vector[i].input_dma, + complex_test_vector[i].result_seg, + "Complex", i); + if (ret < 0) + return ret; + } + usbssp_dbg(usbssp_data, "TRB math tests passed.\n"); + return 0; +} + +static void usbssp_set_event_deq(struct usbssp_udc *usbssp_data) +{ + u64 temp; + dma_addr_t deq; + + deq = usbssp_trb_virt_to_dma(usbssp_data->event_ring->deq_seg, + usbssp_data->event_ring->dequeue); + if (deq == 0 && !in_interrupt()) + usbssp_warn(usbssp_data, + "WARN something wrong with SW event ring dequeue ptr.\n"); + /* Update USBSSP event ring dequeue pointer */ + temp = usbssp_read_64(usbssp_data, &usbssp_data->ir_set->erst_dequeue); + temp &= ERST_PTR_MASK; + /* Don't clear the EHB bit (which is RW1C) because + * there might be more events to service. + */ + temp &= ~ERST_EHB; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Write event ring dequeue pointer, preserving EHB bit"); + usbssp_write_64(usbssp_data, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, + &usbssp_data->ir_set->erst_dequeue); +} + +static void usbssp_add_in_port(struct usbssp_udc *usbssp_data, + unsigned int num_ports, + __le32 __iomem *addr, + int max_caps) +{ + u32 temp, port_offset, port_count; + int i; + u8 major_revision; + struct usbssp_ports *rport; + + temp = readl(addr); + major_revision = USBSSP_EXT_PORT_MAJOR(temp); + + if (major_revision == 0x03) { + rport = &usbssp_data->usb3_rhub; + } else if (major_revision <= 0x02) { + rport = &usbssp_data->usb2_rhub; + } else { + usbssp_warn(usbssp_data, "Ignoring unknown port speed, " + "Ext Cap %p, revision = 0x%x\n", + addr, major_revision); + /* Ignoring port protocol we can't understand. */ + return; + } + + rport->maj_rev = USBSSP_EXT_PORT_MAJOR(temp); + rport->min_rev = USBSSP_EXT_PORT_MINOR(temp); + + /* Port offset and count in the third dword, see section 7.2 */ + temp = readl(addr + 2); + port_offset = USBSSP_EXT_PORT_OFF(temp); + port_count = USBSSP_EXT_PORT_COUNT(temp); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", + addr, port_offset, port_count, major_revision); + + if (port_count > 1) { + usbssp_warn(usbssp_data, + "DC support only single port but it detect %d ports", + port_count); + port_count = 1; + } + /* Port count includes the current port offset */ + if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) + return; + + rport->psi_count = USBSSP_EXT_PORT_PSIC(temp); + if (rport->psi_count) { + rport->psi = kcalloc(rport->psi_count, sizeof(*rport->psi), + GFP_KERNEL); + if (!rport->psi) + rport->psi_count = 0; + + rport->psi_uid_count++; + for (i = 0; i < rport->psi_count; i++) { + rport->psi[i] = readl(addr + 4 + i); + + /* count unique ID values, two consecutive entries can + * have the same ID if link is assymetric + */ + if (i && (USBSSP_EXT_PORT_PSIV(rport->psi[i]) != + USBSSP_EXT_PORT_PSIV(rport->psi[i - 1]))) + rport->psi_uid_count++; + + usbssp_dbg(usbssp_data, + "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", + USBSSP_EXT_PORT_PSIV(rport->psi[i]), + USBSSP_EXT_PORT_PSIE(rport->psi[i]), + USBSSP_EXT_PORT_PLT(rport->psi[i]), + USBSSP_EXT_PORT_PFD(rport->psi[i]), + USBSSP_EXT_PORT_LP(rport->psi[i]), + USBSSP_EXT_PORT_PSIM(rport->psi[i])); + } + } + + /* cache usb2 port capabilities */ + if (major_revision < 0x03 && usbssp_data->num_ext_caps < max_caps) + usbssp_data->ext_caps[usbssp_data->num_ext_caps++] = temp; + + if (major_revision != 0x03) { + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "USBSSP: support USB2 software lpm"); + usbssp_data->sw_lpm_support = 1; + if (temp & USBSSP_HLC) { + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "USBSSP: support USB2 hardware lpm"); + usbssp_data->hw_lpm_support = 1; + } + } + + usbssp_data->port_array[port_offset-1] = major_revision; + if (major_revision == 0x03) + usbssp_data->num_usb3_ports++; + else + usbssp_data->num_usb2_ports++; +} + +/* + * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that + * specify what speeds each port is supposed to be. + */ +static int usbssp_setup_port_arrays(struct usbssp_udc *usbssp_data, gfp_t flags) +{ + void __iomem *base; + u32 offset; + u32 port3offset = 0; + u32 port2offset = 0; + unsigned int num_ports; + int i; + int cap_count = 0; + u32 cap_start; + + num_ports = HCS_MAX_PORTS(usbssp_data->hcs_params1); + + /*USBSSP can support only two ports - one for USB2.0 and + * second for USB3.0 + */ + if (num_ports > MAX_USBSSP_PORTS) { + usbssp_err(usbssp_data, + "USBSSP-Dev can't support more then %d ports\n", + MAX_USBSSP_PORTS); + return -EINVAL; + } + + usbssp_data->port_array = + kzalloc(sizeof(*usbssp_data->port_array)*num_ports, flags); + if (!usbssp_data->port_array) + return -ENOMEM; + + base = &usbssp_data->cap_regs->hc_capbase; + + cap_start = usbssp_find_next_ext_cap(base, 0, USBSSP_EXT_CAPS_PROTOCOL); + if (!cap_start) { + usbssp_err(usbssp_data, + "No Ext. Cap. registers, unable to set up ports\n"); + return -ENODEV; + } + + offset = cap_start; + + /* count extended protocol capability entries for later caching */ + while (offset) { + u32 temp; + u8 major_revision; + + temp = readl(base + offset); + major_revision = USBSSP_EXT_PORT_MAJOR(temp); + + if (major_revision == 0x03 && port3offset == 0) + port3offset = offset; + else if (major_revision <= 0x02 && port2offset == 0) + port2offset = offset; + + cap_count++; + + offset = usbssp_find_next_ext_cap(base, offset, + USBSSP_EXT_CAPS_PROTOCOL); + } + + if (cap_count > MAX_USBSSP_PORTS) { + usbssp_err(usbssp_data, "Too many Ext. Cap. registers\n"); + return -EINVAL; + } + + if (!port3offset && !port2offset) { + usbssp_warn(usbssp_data, "No ports on the USBSSP?\n"); + return -ENODEV; + } + + usbssp_data->ext_caps = + kzalloc(sizeof(*usbssp_data->ext_caps) * cap_count, flags); + if (!usbssp_data->ext_caps) + return -ENOMEM; + + /** if exist add USB3 port*/ + if (port3offset) + usbssp_add_in_port(usbssp_data, num_ports, + base + port3offset, cap_count); + + /** add USB2 port*/ + if (port2offset) + usbssp_add_in_port(usbssp_data, num_ports, + base + port2offset, cap_count); + + if (usbssp_data->num_usb2_ports == 0 && + usbssp_data->num_usb3_ports == 0) { + usbssp_warn(usbssp_data, "No ports on the USBSSP?\n"); + return -ENODEV; + } + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Found %u USB 2.0 ports and %u USB 3.0 ports.", + usbssp_data->num_usb2_ports, + usbssp_data->num_usb3_ports); + + //Only one port USB3.0 and USB2.0 can be supported by USBSSP_DEV + if (usbssp_data->num_usb3_ports > 1) { + usbssp_err(usbssp_data, "Limiting USB 3.0 ports to 1\n"); + return -EINVAL; + } + + if (usbssp_data->num_usb2_ports > 1) { + usbssp_err(usbssp_data, "Limiting USB 2.0 ports to 1\n"); + return -EINVAL; + } + + /* + * Note we could have only USB 3.0 ports, or USB 2.0 ports. + */ + if (usbssp_data->num_usb2_ports) { + for (i = 0; i < num_ports; i++) { + + if (usbssp_data->port_array[i] == 0x03) + continue; + usbssp_data->usb2_ports = + &usbssp_data->op_regs->port_status_base + + NUM_PORT_REGS*i; + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "USB 2.0 port at index %u, addr = %p", + i, usbssp_data->usb2_ports); + } + } + + if (usbssp_data->num_usb3_ports) { + + for (i = 0; i < num_ports; i++) + if (usbssp_data->port_array[i] == 0x03) { + usbssp_data->usb3_ports = + &usbssp_data->op_regs->port_status_base + + NUM_PORT_REGS*i; + + usbssp_dbg_trace(usbssp_data, + trace_usbssp_dbg_init, + "USB 3.0 port at index %u, addr = %p", + i, usbssp_data->usb3_ports); + } + } + + return 0; +} + +void usbssp_force_fs_mode(struct usbssp_udc *usbssp_data) +{ + #define D_XEC_CFG_DEV_20PORT_REG6 0x2130 + #define D_XEC_CFG_DEV_20PORT_REG6_FORCE_FS 1 + + writel(D_XEC_CFG_DEV_20PORT_REG6_FORCE_FS, + usbssp_data->regs + D_XEC_CFG_DEV_20PORT_REG6); +} + +int usbssp_mem_init(struct usbssp_udc *usbssp_data, gfp_t flags) +{ + dma_addr_t dma; + struct device *dev = usbssp_data->dev; + unsigned int val, val2; + u64 val_64; + u32 page_size; + int i, ret; + + INIT_LIST_HEAD(&usbssp_data->cmd_list); + + /* init command timeout work */ + INIT_DELAYED_WORK(&usbssp_data->cmd_timer, + usbssp_handle_command_timeout); + init_completion(&usbssp_data->cmd_ring_stop_completion); + + usbssp_data->bottom_irq_wq = + create_singlethread_workqueue(dev_name(usbssp_data->dev)); + + if (!usbssp_data->bottom_irq_wq) + goto fail; + + INIT_WORK(&usbssp_data->bottom_irq, usbssp_bottom_irq); + + page_size = readl(&usbssp_data->op_regs->page_size); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Supported page size register = 0x%x", page_size); + for (i = 0; i < 16; i++) { + if ((0x1 & page_size) != 0) + break; + page_size = page_size >> 1; + } + if (i < 16) + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Supported page size of %iK", (1 << (i+12)) / 1024); + else + usbssp_warn(usbssp_data, "WARN: no supported page size\n"); + + /* Use 4K pages, since that's common and the minimum the + * USBSSP supports + */ + usbssp_data->page_shift = 12; + usbssp_data->page_size = 1 << usbssp_data->page_shift; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "USBSSP page size set to %iK", + usbssp_data->page_size / 1024); + + /* In device mode this value should be equal 1*/ + val = DEV_HCS_MAX_SLOTS(readl(&usbssp_data->cap_regs->hcs_params1)); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// USBSSP can handle at most %d device slots.", val); + + /*device should have only 1 slot*/ + if (val > DEV_MAX_SLOTS) + pr_err("Invalid number of supported slots"); + + val2 = readl(&usbssp_data->op_regs->config_reg); + val |= (val2 & ~DEV_HCS_SLOTS_MASK); + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Setting Max device slots reg = 0x%x.", val); + writel(val, &usbssp_data->op_regs->config_reg); + + /* + * Doorbell array must be physically contiguous + * and 64-byte (cache line) aligned. + */ + usbssp_data->dcbaa = dma_alloc_coherent(dev, + sizeof(*usbssp_data->dcbaa), &dma, GFP_KERNEL); + if (!usbssp_data->dcbaa) + goto fail; + memset(usbssp_data->dcbaa, 0, sizeof *(usbssp_data->dcbaa)); + usbssp_data->dcbaa->dma = dma; + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// DCBA array address = 0x%llx (DMA), %p (virt)", + (unsigned long long)usbssp_data->dcbaa->dma, + usbssp_data->dcbaa); + usbssp_write_64(usbssp_data, dma, &usbssp_data->op_regs->dcbaa_ptr); + + /* + * Initialize the ring segment pool. The ring must be a contiguous + * structure comprised of TRBs. The TRBs must be 16 byte aligned, + * however, the command ring segment needs 64-byte aligned segments + * and our use of dma addresses in the trb_address_map radix tree needs + * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. + */ + usbssp_data->segment_pool = dma_pool_create("USBSSP ring segments", dev, + TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, + usbssp_data->page_size); + + /* See Table 46 and Note on Figure 55 */ + usbssp_data->device_pool = + dma_pool_create("USBSSP input/output contexts", dev, + 2112, 64, usbssp_data->page_size); + if (!usbssp_data->segment_pool || !usbssp_data->device_pool) + goto fail; + + /* Linear stream context arrays don't have any boundary restrictions, + * and only need to be 16-byte aligned. + */ + usbssp_data->small_streams_pool = + dma_pool_create("USBSSP 256 byte stream ctx arrays", + dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); + usbssp_data->medium_streams_pool = + dma_pool_create("USBSSP 1KB stream ctx arrays", + dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); + + /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE + * will be allocated with dma_alloc_coherent() + */ + if (!usbssp_data->small_streams_pool || + !usbssp_data->medium_streams_pool) + goto fail; + + /* Set up the command ring to have one segments for now. */ + usbssp_data->cmd_ring = usbssp_ring_alloc(usbssp_data, 1, 1, + TYPE_COMMAND, 0, flags); + if (!usbssp_data->cmd_ring) + goto fail; + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Allocated command ring at %p", usbssp_data->cmd_ring); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "First segment DMA is 0x%llx", + (unsigned long long)usbssp_data->cmd_ring->first_seg->dma); + + /* Set the address in the Command Ring Control register */ + val_64 = usbssp_read_64(usbssp_data, &usbssp_data->op_regs->cmd_ring); + val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | + (usbssp_data->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | + usbssp_data->cmd_ring->cycle_state; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Setting command ring address to 0x%x", val_64); + usbssp_write_64(usbssp_data, val_64, &usbssp_data->op_regs->cmd_ring); + usbssp_dbg_cmd_ptrs(usbssp_data); + + val = readl(&usbssp_data->cap_regs->db_off); + val &= DBOFF_MASK; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Doorbell array is located at offset 0x%x" + " from cap regs base addr", val); + usbssp_data->dba = (void __iomem *) usbssp_data->cap_regs + val; + usbssp_dbg_regs(usbssp_data); + usbssp_print_run_regs(usbssp_data); + /* Set ir_set to interrupt register set 0 */ + usbssp_data->ir_set = &usbssp_data->run_regs->ir_set[0]; + + /* + * Event ring setup: Allocate a normal ring, but also setup + * the event ring segment table (ERST). + */ + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Allocating event ring"); + usbssp_data->event_ring = usbssp_ring_alloc(usbssp_data, + ERST_NUM_SEGS, 1, TYPE_EVENT, 0, flags); + if (!usbssp_data->event_ring) + goto fail; + + /*invoke check procedure for usbssp_trb_in_td function*/ + if (usbssp_check_trb_in_td_math(usbssp_data) < 0) + goto fail; + + ret = usbssp_alloc_erst(usbssp_data, usbssp_data->event_ring, + &usbssp_data->erst, flags); + if (ret) + goto fail; + + /* set ERST count with the number of entries in the segment table */ + val = readl(&usbssp_data->ir_set->erst_size); + val &= ERST_SIZE_MASK; + val |= ERST_NUM_SEGS; + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Write ERST size = %i to ir_set 0 (some bits preserved)", + val); + writel(val, &usbssp_data->ir_set->erst_size); + + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Set ERST entries to point to event ring."); + + /* set the segment table base address */ + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "// Set ERST base address for ir_set 0 = 0x%llx", + (unsigned long long)usbssp_data->erst.erst_dma_addr); + val_64 = usbssp_read_64(usbssp_data, &usbssp_data->ir_set->erst_base); + val_64 &= ERST_PTR_MASK; + val_64 |= (usbssp_data->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); + usbssp_write_64(usbssp_data, val_64, &usbssp_data->ir_set->erst_base); + + /* Set the event ring dequeue address */ + usbssp_set_event_deq(usbssp_data); + usbssp_dbg_trace(usbssp_data, trace_usbssp_dbg_init, + "Wrote ERST address to ir_set 0."); + + if (scratchpad_alloc(usbssp_data, flags)) + goto fail; + + if (usbssp_setup_port_arrays(usbssp_data, flags)) + goto fail; + + return 0; + +fail: + usbssp_warn(usbssp_data, "Couldn't initialize memory\n"); + usbssp_halt(usbssp_data); + usbssp_reset(usbssp_data); + usbssp_mem_cleanup(usbssp_data); + return -ENOMEM; +} + -- 2.17.1 -- To unsubscribe from this list: send the line "unsubscribe linux-usb" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html