The example script plots the distribution (histogram) of the pulseaudio wake-up times and finds the biggest latency. The script also generates a KernelShark session descriptor file (JSON). The session descriptor file can be used by the KernelSherk GUI to open a session which will directly visualize the largest wake-up latency. Signed-off-by: Yordan Karadzhov <ykaradzhov@xxxxxxxxxx> --- kernel-shark/bin/sched_wakeup.py | 106 +++++++++++++++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100755 kernel-shark/bin/sched_wakeup.py diff --git a/kernel-shark/bin/sched_wakeup.py b/kernel-shark/bin/sched_wakeup.py new file mode 100755 index 0000000..8e2cfc1 --- /dev/null +++ b/kernel-shark/bin/sched_wakeup.py @@ -0,0 +1,106 @@ +#!/usr/bin/env python3 + +""" The license to be determined !!!! +""" + +import json +import sys + +import matplotlib.pyplot as plt +import scipy.stats as st +import numpy as np + +import ksharkpy as ks + +fname = str(sys.argv[1]) + +ks.open_file(fname) + +# We do not need the Process Ids of the records. +# Do not load the "pid" data. +data = ks.load_data(pid_data=False) + +tasks = ks.get_tasks() +task_pid = tasks['pulseaudio'] + +# Get the Event Ids of the sched_switch and sched_waking events. +ss_eid = ks.event_id('sched', 'sched_switch') +w_eid = ks.event_id('sched', 'sched_waking') + +# Gey the size of the data. +i = data['offset'].size + +dt = [] +delta_max = i_ss_max = i_sw_max = 0 + +while i > 0: + i = i - 1 + if data['event'][i] == ss_eid: + next_pid = ks.read_event_field(offset=data['offset'][i], + event_id=ss_eid, + field='next_pid') + + if next_pid == task_pid: + time_ss = data['time'][i] + index_ss = i + + while i > 0: + i = i - 1 + if (data['event'][i] == w_eid): + waking_pid = ks.read_event_field(offset=data['offset'][i], + event_id=w_eid, + field='pid') + + if waking_pid == task_pid: + delta = (time_ss - data['time'][i]) / 1000. + # print(delta) + dt.append(delta) + if delta > delta_max: + print('lat. max: ', delta) + i_ss_max = index_ss + i_sw_max = i + delta_max = delta + + break + +desc = st.describe(np.array(dt)) +print(desc) + +fig, ax = plt.subplots(nrows=1, ncols=1) +fig.set_figheight(6) +fig.set_figwidth(7) + +rect = fig.patch +rect.set_facecolor('white') + +ax.set_xlabel('latency [$\mu$s]') +plt.yscale('log') +ax.hist(dt, bins=(200), histtype='step') +plt.show() + +sname = 'sched.json' +ks.new_session(fname, sname) + +with open(sname, 'r+') as s: + session = json.load(s) + session['TaskPlots'] = [task_pid] + session['CPUPlots'] = [ + int(data['cpu'][i_sw_max]), + int(data['cpu'][i_ss_max])] + + delta = data['time'][i_ss_max] - data['time'][i_sw_max] + tmin = int(data['time'][i_sw_max] - delta) + tmax = int(data['time'][i_ss_max] + delta) + session['Model']['range'] = [tmin, tmax] + + session['Markers']['markA']['isSet'] = True + session['Markers']['markA']['row'] = int(i_sw_max) + + session['Markers']['markB']['isSet'] = True + session['Markers']['markB']['row'] = int(i_ss_max) + + session['ViewTop'] = int(i_sw_max) - 5 + + ks.save_session(session, s) + +ks.close() -- 2.19.1