The example script plots the distribution (histogram) of the pulseaudio wake-up times and finds the biggest latency. The script also generates a KernelShark session descriptor file (JSON). The session descriptor file can be used by the KernelSherk GUI to open a session which will directly visualize the largest wake-up latency. Signed-off-by: Yordan Karadzhov <ykaradzhov@xxxxxxxxxx> --- kernel-shark/bin/sched_wakeup.py | 96 ++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100755 kernel-shark/bin/sched_wakeup.py diff --git a/kernel-shark/bin/sched_wakeup.py b/kernel-shark/bin/sched_wakeup.py new file mode 100755 index 0000000..79dbedd --- /dev/null +++ b/kernel-shark/bin/sched_wakeup.py @@ -0,0 +1,96 @@ +#!/usr/bin/env python2 + +import matplotlib.pyplot as plt +import libkshark_wrapper as ks +import scipy.stats as st +import numpy as np +import array +import json +import sys + +fname = str(sys.argv[1]) + +ks.open_file(fname) +ofst, cpu, evt, pid, ts = ks.load_data() +tasks = ks.get_tasks() +task_pid = tasks["pulseaudio"] + +ss_eid = ks.event_id("sched", "sched_switch"); +w_eid = ks.event_id("sched", "sched_waking"); + +i = evt.size - 1 +dt = [] +delta_max = i_ss_max = i_sw_max = 0 + +while (i >= 0): + if (evt[i] == ss_eid): + next_pid = ks.read_event_field(offset=ofst[i], + sys="sched", + event="sched_switch", + field="next_pid") + + if (next_pid == task_pid): + time_ss = ts[i] + index_ss = i + + while(i >= 0): + i = i - 1 + if (evt[i] == w_eid): + waking_pid = ks.read_event_field(offset=ofst[i], + sys="sched", + event="sched_waking", + field="pid") + + if (waking_pid == task_pid): + delta = (time_ss - ts[i]) / 1000. + #print delta + dt.append(delta); + if (delta > delta_max): + print "lat. max: ", delta + i_ss_max = index_ss + i_sw_max = i + delta_max = delta + + break + + i = i - 1 + +desc = st.describe(np.array(dt)) +print desc + +fig, ax = plt.subplots(nrows=1, ncols=1) +fig.set_figheight(6) +fig.set_figwidth(7) + +rect = fig.patch +rect.set_facecolor('white') + +ax.set_xlabel('latency [$\mu$s]') +plt.yscale('log') +ax.hist(dt, bins=(200), histtype=u'step'); +plt.show() + +sname = 'sched.json' +ks.new_session(fname, sname) + +with open(sname, "r+") as s: + session = json.load(s) + session['TaskPlots'] = [task_pid] + session['CPUPlots'] = [int(cpu[i_sw_max]), int(cpu[i_ss_max])] + + delta = ts[i_ss_max] - ts[i_sw_max] + tmin = int(ts[i_sw_max] - delta) + tmax = int(ts[i_ss_max] + delta) + session['Model']['range'] = [tmin, tmax] + + session['Markers']['markA']['isSet'] = True + session['Markers']['markA']['row'] = int(i_sw_max) + + session['Markers']['markB']['isSet'] = True + session['Markers']['markB']['row'] = int(i_ss_max) + + session['ViewTop'] = int(i_sw_max) - 5 + + ks.save_session(session, s) + +ks.close() -- 2.19.1