The following commit has been merged into the x86/sev branch of tip: Commit-ID: 21fc6178e92070523e70fc5db59ac83806d269d6 Gitweb: https://git.kernel.org/tip/21fc6178e92070523e70fc5db59ac83806d269d6 Author: Tom Lendacky <thomas.lendacky@xxxxxxx> AuthorDate: Mon, 02 Dec 2024 14:50:53 -06:00 Committer: Borislav Petkov (AMD) <bp@xxxxxxxxx> CommitterDate: Sat, 14 Dec 2024 12:12:51 +01:00 x86/sev/docs: Document the SNP Reverse Map Table (RMP) Update the AMD memory encryption documentation to include information on the Reverse Map Table (RMP) and the two table formats. Signed-off-by: Tom Lendacky <thomas.lendacky@xxxxxxx> Signed-off-by: Borislav Petkov (AMD) <bp@xxxxxxxxx> Reviewed-by: Nikunj A Dadhania <nikunj@xxxxxxx> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@xxxxxxx> Link: https://lore.kernel.org/r/d3feea54912ad9ff2fc261223db691ca11fc547f.1733172653.git.thomas.lendacky@xxxxxxx --- Documentation/arch/x86/amd-memory-encryption.rst | 118 ++++++++++++++- 1 file changed, 118 insertions(+) diff --git a/Documentation/arch/x86/amd-memory-encryption.rst b/Documentation/arch/x86/amd-memory-encryption.rst index 6df3264..bd840df 100644 --- a/Documentation/arch/x86/amd-memory-encryption.rst +++ b/Documentation/arch/x86/amd-memory-encryption.rst @@ -130,8 +130,126 @@ SNP feature support. More details in AMD64 APM[1] Vol 2: 15.34.10 SEV_STATUS MSR +Reverse Map Table (RMP) +======================= + +The RMP is a structure in system memory that is used to ensure a one-to-one +mapping between system physical addresses and guest physical addresses. Each +page of memory that is potentially assignable to guests has one entry within +the RMP. + +The RMP table can be either contiguous in memory or a collection of segments +in memory. + +Contiguous RMP +-------------- + +Support for this form of the RMP is present when support for SEV-SNP is +present, which can be determined using the CPUID instruction:: + + 0x8000001f[eax]: + Bit[4] indicates support for SEV-SNP + +The location of the RMP is identified to the hardware through two MSRs:: + + 0xc0010132 (RMP_BASE): + System physical address of the first byte of the RMP + + 0xc0010133 (RMP_END): + System physical address of the last byte of the RMP + +Hardware requires that RMP_BASE and (RPM_END + 1) be 8KB aligned, but SEV +firmware increases the alignment requirement to require a 1MB alignment. + +The RMP consists of a 16KB region used for processor bookkeeping followed +by the RMP entries, which are 16 bytes in size. The size of the RMP +determines the range of physical memory that the hypervisor can assign to +SEV-SNP guests. The RMP covers the system physical address from:: + + 0 to ((RMP_END + 1 - RMP_BASE - 16KB) / 16B) x 4KB. + +The current Linux support relies on BIOS to allocate/reserve the memory for +the RMP and to set RMP_BASE and RMP_END appropriately. Linux uses the MSR +values to locate the RMP and determine the size of the RMP. The RMP must +cover all of system memory in order for Linux to enable SEV-SNP. + +Segmented RMP +------------- + +Segmented RMP support is a new way of representing the layout of an RMP. +Initial RMP support required the RMP table to be contiguous in memory. +RMP accesses from a NUMA node on which the RMP doesn't reside +can take longer than accesses from a NUMA node on which the RMP resides. +Segmented RMP support allows the RMP entries to be located on the same +node as the memory the RMP is covering, potentially reducing latency +associated with accessing an RMP entry associated with the memory. Each +RMP segment covers a specific range of system physical addresses. + +Support for this form of the RMP can be determined using the CPUID +instruction:: + + 0x8000001f[eax]: + Bit[23] indicates support for segmented RMP + +If supported, segmented RMP attributes can be found using the CPUID +instruction:: + + 0x80000025[eax]: + Bits[5:0] minimum supported RMP segment size + Bits[11:6] maximum supported RMP segment size + + 0x80000025[ebx]: + Bits[9:0] number of cacheable RMP segment definitions + Bit[10] indicates if the number of cacheable RMP segments + is a hard limit + +To enable a segmented RMP, a new MSR is available:: + + 0xc0010136 (RMP_CFG): + Bit[0] indicates if segmented RMP is enabled + Bits[13:8] contains the size of memory covered by an RMP + segment (expressed as a power of 2) + +The RMP segment size defined in the RMP_CFG MSR applies to all segments +of the RMP. Therefore each RMP segment covers a specific range of system +physical addresses. For example, if the RMP_CFG MSR value is 0x2401, then +the RMP segment coverage value is 0x24 => 36, meaning the size of memory +covered by an RMP segment is 64GB (1 << 36). So the first RMP segment +covers physical addresses from 0 to 0xF_FFFF_FFFF, the second RMP segment +covers physical addresses from 0x10_0000_0000 to 0x1F_FFFF_FFFF, etc. + +When a segmented RMP is enabled, RMP_BASE points to the RMP bookkeeping +area as it does today (16K in size). However, instead of RMP entries +beginning immediately after the bookkeeping area, there is a 4K RMP +segment table (RST). Each entry in the RST is 8-bytes in size and represents +an RMP segment:: + + Bits[19:0] mapped size (in GB) + The mapped size can be less than the defined segment size. + A value of zero, indicates that no RMP exists for the range + of system physical addresses associated with this segment. + Bits[51:20] segment physical address + This address is left shift 20-bits (or just masked when + read) to form the physical address of the segment (1MB + alignment). + +The RST can hold 512 segment entries but can be limited in size to the number +of cacheable RMP segments (CPUID 0x80000025_EBX[9:0]) if the number of cacheable +RMP segments is a hard limit (CPUID 0x80000025_EBX[10]). + +The current Linux support relies on BIOS to allocate/reserve the memory for +the segmented RMP (the bookkeeping area, RST, and all segments), build the RST +and to set RMP_BASE, RMP_END, and RMP_CFG appropriately. Linux uses the MSR +values to locate the RMP and determine the size and location of the RMP +segments. The RMP must cover all of system memory in order for Linux to enable +SEV-SNP. + +More details in the AMD64 APM Vol 2, section "15.36.3 Reverse Map Table", +docID: 24593. + Secure VM Service Module (SVSM) =============================== + SNP provides a feature called Virtual Machine Privilege Levels (VMPL) which defines four privilege levels at which guest software can run. The most privileged level is 0 and numerically higher numbers have lesser privileges.