The following commit has been merged into the locking/kcsan branch of tip: Commit-ID: bbfa112b46bdbbdfc2f5bfb9c2dcbef780ff6417 Gitweb: https://git.kernel.org/tip/bbfa112b46bdbbdfc2f5bfb9c2dcbef780ff6417 Author: Will Deacon <will@xxxxxxxxxx> AuthorDate: Mon, 11 May 2020 21:41:42 +01:00 Committer: Thomas Gleixner <tglx@xxxxxxxxxxxxx> CommitterDate: Tue, 12 May 2020 11:04:13 +02:00 READ_ONCE: Simplify implementations of {READ,WRITE}_ONCE() The implementations of {READ,WRITE}_ONCE() suffer from a significant amount of indirection and complexity due to a historic GCC bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145 which was originally worked around by 230fa253df63 ("kernel: Provide READ_ONCE and ASSIGN_ONCE"). Since GCC 4.8 is fairly vintage at this point and we emit a warning if we detect it during the build, return {READ,WRITE}_ONCE() to their former glory with an implementation that is easier to understand and, crucially, more amenable to optimisation. A side effect of this simplification is that WRITE_ONCE() no longer returns a value, but nobody seems to be relying on that and the new behaviour is aligned with smp_store_release(). Suggested-by: Linus Torvalds <torvalds@xxxxxxxxxxxxxxxxxxxx> Signed-off-by: Will Deacon <will@xxxxxxxxxx> Signed-off-by: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Acked-by: Peter Zijlstra (Intel) <peterz@xxxxxxxxxxxxx> Acked-by: Mark Rutland <mark.rutland@xxxxxxx> Cc: Michael Ellerman <mpe@xxxxxxxxxxxxxx> Cc: Arnd Bergmann <arnd@xxxxxxxx> Cc: Christian Borntraeger <borntraeger@xxxxxxxxxx> Link: https://lkml.kernel.org/r/20200511204150.27858-11-will@xxxxxxxxxx --- include/linux/compiler.h | 141 ++++++++++++++------------------------ 1 file changed, 55 insertions(+), 86 deletions(-) diff --git a/include/linux/compiler.h b/include/linux/compiler.h index 9bd0f76..1b4e64d 100644 --- a/include/linux/compiler.h +++ b/include/linux/compiler.h @@ -177,28 +177,57 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) #endif -#include <uapi/linux/types.h> +/* + * Prevent the compiler from merging or refetching reads or writes. The + * compiler is also forbidden from reordering successive instances of + * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some + * particular ordering. One way to make the compiler aware of ordering is to + * put the two invocations of READ_ONCE or WRITE_ONCE in different C + * statements. + * + * These two macros will also work on aggregate data types like structs or + * unions. + * + * Their two major use cases are: (1) Mediating communication between + * process-level code and irq/NMI handlers, all running on the same CPU, + * and (2) Ensuring that the compiler does not fold, spindle, or otherwise + * mutilate accesses that either do not require ordering or that interact + * with an explicit memory barrier or atomic instruction that provides the + * required ordering. + */ +#include <asm/barrier.h> +#include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> -#define __READ_ONCE_SIZE \ +#define __READ_ONCE(x) (*(volatile typeof(x) *)&(x)) + +#define READ_ONCE(x) \ ({ \ - switch (size) { \ - case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ - case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ - case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ - case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ - default: \ - barrier(); \ - __builtin_memcpy((void *)res, (const void *)p, size); \ - barrier(); \ - } \ + typeof(x) *__xp = &(x); \ + kcsan_check_atomic_read(__xp, sizeof(*__xp)); \ + __kcsan_disable_current(); \ + ({ \ + typeof(x) __x = __READ_ONCE(*__xp); \ + __kcsan_enable_current(); \ + smp_read_barrier_depends(); \ + __x; \ + }); \ }) +#define WRITE_ONCE(x, val) \ +do { \ + typeof(x) *__xp = &(x); \ + kcsan_check_atomic_write(__xp, sizeof(*__xp)); \ + __kcsan_disable_current(); \ + *(volatile typeof(x) *)__xp = (val); \ + __kcsan_enable_current(); \ +} while (0) + #ifdef CONFIG_KASAN /* - * We can't declare function 'inline' because __no_sanitize_address confilcts + * We can't declare function 'inline' because __no_sanitize_address conflicts * with inlining. Attempt to inline it may cause a build failure. - * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 + * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. */ # define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused @@ -225,78 +254,26 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, #define __no_sanitize_or_inline __always_inline #endif -static __no_kcsan_or_inline -void __read_once_size(const volatile void *p, void *res, int size) -{ - kcsan_check_atomic_read(p, size); - __READ_ONCE_SIZE; -} - static __no_sanitize_or_inline -void __read_once_size_nocheck(const volatile void *p, void *res, int size) +unsigned long __read_once_word_nocheck(const void *addr) { - __READ_ONCE_SIZE; -} - -static __no_kcsan_or_inline -void __write_once_size(volatile void *p, void *res, int size) -{ - kcsan_check_atomic_write(p, size); - - switch (size) { - case 1: *(volatile __u8 *)p = *(__u8 *)res; break; - case 2: *(volatile __u16 *)p = *(__u16 *)res; break; - case 4: *(volatile __u32 *)p = *(__u32 *)res; break; - case 8: *(volatile __u64 *)p = *(__u64 *)res; break; - default: - barrier(); - __builtin_memcpy((void *)p, (const void *)res, size); - barrier(); - } + return __READ_ONCE(*(unsigned long *)addr); } /* - * Prevent the compiler from merging or refetching reads or writes. The - * compiler is also forbidden from reordering successive instances of - * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some - * particular ordering. One way to make the compiler aware of ordering is to - * put the two invocations of READ_ONCE or WRITE_ONCE in different C - * statements. - * - * These two macros will also work on aggregate data types like structs or - * unions. If the size of the accessed data type exceeds the word size of - * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will - * fall back to memcpy(). There's at least two memcpy()s: one for the - * __builtin_memcpy() and then one for the macro doing the copy of variable - * - '__u' allocated on the stack. - * - * Their two major use cases are: (1) Mediating communication between - * process-level code and irq/NMI handlers, all running on the same CPU, - * and (2) Ensuring that the compiler does not fold, spindle, or otherwise - * mutilate accesses that either do not require ordering or that interact - * with an explicit memory barrier or atomic instruction that provides the - * required ordering. + * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a + * word from memory atomically but without telling KASAN/KCSAN. This is + * usually used by unwinding code when walking the stack of a running process. */ -#include <asm/barrier.h> -#include <linux/kasan-checks.h> - -#define __READ_ONCE(x, check) \ +#define READ_ONCE_NOCHECK(x) \ ({ \ - union { typeof(x) __val; char __c[1]; } __u; \ - if (check) \ - __read_once_size(&(x), __u.__c, sizeof(x)); \ - else \ - __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ - smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \ - __u.__val; \ + unsigned long __x; \ + compiletime_assert(sizeof(x) == sizeof(__x), \ + "Unsupported access size for READ_ONCE_NOCHECK()."); \ + __x = __read_once_word_nocheck(&(x)); \ + smp_read_barrier_depends(); \ + __x; \ }) -#define READ_ONCE(x) __READ_ONCE(x, 1) - -/* - * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need - * to hide memory access from KASAN. - */ -#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) static __no_kasan_or_inline unsigned long read_word_at_a_time(const void *addr) @@ -305,14 +282,6 @@ unsigned long read_word_at_a_time(const void *addr) return *(unsigned long *)addr; } -#define WRITE_ONCE(x, val) \ -({ \ - union { typeof(x) __val; char __c[1]; } __u = \ - { .__val = (__force typeof(x)) (val) }; \ - __write_once_size(&(x), __u.__c, sizeof(x)); \ - __u.__val; \ -}) - /** * data_race - mark an expression as containing intentional data races *