[tip:x86/mm] x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Commit-ID:  77ef56e4f0fbb350d93289aa025c7d605af012d4
Gitweb:     http://git.kernel.org/tip/77ef56e4f0fbb350d93289aa025c7d605af012d4
Author:     Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx>
AuthorDate: Mon, 17 Jul 2017 01:59:54 +0300
Committer:  Ingo Molnar <mingo@xxxxxxxxxx>
CommitDate: Fri, 21 Jul 2017 10:05:19 +0200

x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y

Most of things are in place and we can enable support for 5-level paging.

The patch makes XEN_PV and XEN_PVH dependent on !X86_5LEVEL. Both are
not ready to work with 5-level paging.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@xxxxxxxxxxxxxxx>
Reviewed-by: Juergen Gross <jgross@xxxxxxxx>
Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx>
Cc: Andy Lutomirski <luto@xxxxxxxxxxxxxx>
Cc: Dave Hansen <dave.hansen@xxxxxxxxx>
Cc: Linus Torvalds <torvalds@xxxxxxxxxxxxxxxxxxxx>
Cc: Peter Zijlstra <peterz@xxxxxxxxxxxxx>
Cc: Thomas Gleixner <tglx@xxxxxxxxxxxxx>
Cc: linux-arch@xxxxxxxxxxxxxxx
Cc: linux-mm@xxxxxxxxx
Link: http://lkml.kernel.org/r/20170716225954.74185-9-kirill.shutemov@xxxxxxxxxxxxxxx
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@xxxxxxxxxx>
---
 Documentation/x86/x86_64/5level-paging.txt | 64 ++++++++++++++++++++++++++++++
 arch/x86/Kconfig                           | 19 +++++++++
 arch/x86/xen/Kconfig                       |  5 +++
 3 files changed, 88 insertions(+)

diff --git a/Documentation/x86/x86_64/5level-paging.txt b/Documentation/x86/x86_64/5level-paging.txt
new file mode 100644
index 0000000..087251a
--- /dev/null
+++ b/Documentation/x86/x86_64/5level-paging.txt
@@ -0,0 +1,64 @@
+== Overview ==
+
+Original x86-64 was limited by 4-level paing to 256 TiB of virtual address
+space and 64 TiB of physical address space. We are already bumping into
+this limit: some vendors offers servers with 64 TiB of memory today.
+
+To overcome the limitation upcoming hardware will introduce support for
+5-level paging. It is a straight-forward extension of the current page
+table structure adding one more layer of translation.
+
+It bumps the limits to 128 PiB of virtual address space and 4 PiB of
+physical address space. This "ought to be enough for anybody" ©.
+
+QEMU 2.9 and later support 5-level paging.
+
+Virtual memory layout for 5-level paging is described in
+Documentation/x86/x86_64/mm.txt
+
+== Enabling 5-level paging ==
+
+CONFIG_X86_5LEVEL=y enables the feature.
+
+So far, a kernel compiled with the option enabled will be able to boot
+only on machines that supports the feature -- see for 'la57' flag in
+/proc/cpuinfo.
+
+The plan is to implement boot-time switching between 4- and 5-level paging
+in the future.
+
+== User-space and large virtual address space ==
+
+On x86, 5-level paging enables 56-bit userspace virtual address space.
+Not all user space is ready to handle wide addresses. It's known that
+at least some JIT compilers use higher bits in pointers to encode their
+information. It collides with valid pointers with 5-level paging and
+leads to crashes.
+
+To mitigate this, we are not going to allocate virtual address space
+above 47-bit by default.
+
+But userspace can ask for allocation from full address space by
+specifying hint address (with or without MAP_FIXED) above 47-bits.
+
+If hint address set above 47-bit, but MAP_FIXED is not specified, we try
+to look for unmapped area by specified address. If it's already
+occupied, we look for unmapped area in *full* address space, rather than
+from 47-bit window.
+
+A high hint address would only affect the allocation in question, but not
+any future mmap()s.
+
+Specifying high hint address on older kernel or on machine without 5-level
+paging support is safe. The hint will be ignored and kernel will fall back
+to allocation from 47-bit address space.
+
+This approach helps to easily make application's memory allocator aware
+about large address space without manually tracking allocated virtual
+address space.
+
+One important case we need to handle here is interaction with MPX.
+MPX (without MAWA extension) cannot handle addresses above 47-bit, so we
+need to make sure that MPX cannot be enabled we already have VMA above
+the boundary and forbid creating such VMAs once MPX is enabled.
+
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 8328bcb..ff637de 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -326,6 +326,7 @@ config FIX_EARLYCON_MEM
 
 config PGTABLE_LEVELS
 	int
+	default 5 if X86_5LEVEL
 	default 4 if X86_64
 	default 3 if X86_PAE
 	default 2
@@ -1398,6 +1399,24 @@ config X86_PAE
 	  has the cost of more pagetable lookup overhead, and also
 	  consumes more pagetable space per process.
 
+config X86_5LEVEL
+	bool "Enable 5-level page tables support"
+	depends on X86_64
+	---help---
+	  5-level paging enables access to larger address space:
+	  upto 128 PiB of virtual address space and 4 PiB of
+	  physical address space.
+
+	  It will be supported by future Intel CPUs.
+
+	  Note: a kernel with this option enabled can only be booted
+	  on machines that support the feature.
+
+	  See Documentation/x86/x86_64/5level-paging.txt for more
+	  information.
+
+	  Say N if unsure.
+
 config ARCH_PHYS_ADDR_T_64BIT
 	def_bool y
 	depends on X86_64 || X86_PAE
diff --git a/arch/x86/xen/Kconfig b/arch/x86/xen/Kconfig
index 0279876..1ecd419 100644
--- a/arch/x86/xen/Kconfig
+++ b/arch/x86/xen/Kconfig
@@ -17,6 +17,9 @@ config XEN_PV
 	bool "Xen PV guest support"
 	default y
 	depends on XEN
+	# XEN_PV is not ready to work with 5-level paging.
+	# Changes to hypervisor are also required.
+	depends on !X86_5LEVEL
 	select XEN_HAVE_PVMMU
 	select XEN_HAVE_VPMU
 	help
@@ -75,4 +78,6 @@ config XEN_DEBUG_FS
 config XEN_PVH
 	bool "Support for running as a PVH guest"
 	depends on XEN && XEN_PVHVM && ACPI
+	# Pre-built page tables are not ready to handle 5-level paging.
+	depends on !X86_5LEVEL
 	def_bool n
--
To unsubscribe from this list: send the line "unsubscribe linux-tip-commits" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html



[Index of Archives]     [Linux Stable Commits]     [Linux Stable Kernel]     [Linux Kernel]     [Linux USB Devel]     [Linux Video &Media]     [Linux Audio Users]     [Yosemite News]     [Linux SCSI]

  Powered by Linux