Add qpic_common.c file which hold all the common qpic APIs which will be used by both qpic raw nand driver and qpic spi nand driver. Co-developed-by: Sricharan Ramabadhran <quic_srichara@xxxxxxxxxxx> Signed-off-by: Sricharan Ramabadhran <quic_srichara@xxxxxxxxxxx> Co-developed-by: Varadarajan Narayanan <quic_varada@xxxxxxxxxxx> Signed-off-by: Varadarajan Narayanan <quic_varada@xxxxxxxxxxx> Signed-off-by: Md Sadre Alam <quic_mdalam@xxxxxxxxxxx> --- Change in [v3] * Added original copy right * Removed all EXPORT_SYMBOL() * Made this common api file more generic * Added qcom_ prefix to all api in this file * Removed devm_kfree and added kfree * Moved to_qcom_nand_controller() to raw nand driver since it was only used by raw nand driver, so not needed as common * Added kernel doc for all api * made reverse tree of variable declaration in prep_adm_dma_desc() function * Added if(!ret) condition in prep_adm_dma_desc() function * Initialized slave_conf as 0 while declaration Change in [v2] * Posted initial support for common api file Change in [v1] * Posted as RFC patch for design review drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/qpic_common.c | 781 ++++++++++++++ drivers/mtd/nand/raw/qcom_nandc.c | 1440 +++----------------------- include/linux/mtd/nand-qpic-common.h | 486 +++++++++ 4 files changed, 1403 insertions(+), 1305 deletions(-) create mode 100644 drivers/mtd/nand/qpic_common.c create mode 100644 include/linux/mtd/nand-qpic-common.h diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 19e1291ac4d5..131707a41293 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o +obj-y += qpic_common.o diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c new file mode 100644 index 000000000000..11e322fdd706 --- /dev/null +++ b/drivers/mtd/nand/qpic_common.c @@ -0,0 +1,781 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2016, The Linux Foundation. All rights reserved. + */ +#include <linux/mtd/nand-qpic-common.h> + +/* + * qcom_free_bam_transaction: Frees the BAM transaction memory + */ +void qcom_free_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + kfree(bam_txn); +} + +/* + * qcom_clear_read_regs: reset the register read buffer + * for next NAND operation + */ +void qcom_clear_read_regs(struct qcom_nand_controller *nandc) +{ + nandc->reg_read_pos = 0; + qcom_nandc_read_buffer_sync(nandc, false); +} + +/* + * qcom_qpic_bam_dma_done: Callback for DMA descriptor completion + * + * @data: data + */ +void qcom_qpic_bam_dma_done(void *data) +{ + struct bam_transaction *bam_txn = data; + + /* + * In case of data transfer with NAND, 2 callbacks will be generated. + * One for command channel and another one for data channel. + * If current transaction has data descriptors + * (i.e. wait_second_completion is true), then set this to false + * and wait for second DMA descriptor completion. + */ + if (bam_txn->wait_second_completion) + bam_txn->wait_second_completion = false; + else + complete(&bam_txn->txn_done); +} + +/* + * qcom_nandc_read_buffer_sync: Check for dma sync for cpu or device + * + * @is_cpu: cpu or Device + */ +void qcom_nandc_read_buffer_sync(struct qcom_nand_controller *nandc, + bool is_cpu) +{ + if (!nandc->props->is_bam) + return; + + if (is_cpu) + dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + else + dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); +} + +/* + * qcom_offset_to_nandc_reg: Get the actual offset for qpic register + * @ offset: register offset + */ +__le32 *qcom_offset_to_nandc_reg(struct nandc_regs *regs, int offset) +{ + switch (offset) { + case NAND_FLASH_CMD: + return ®s->cmd; + case NAND_ADDR0: + return ®s->addr0; + case NAND_ADDR1: + return ®s->addr1; + case NAND_FLASH_CHIP_SELECT: + return ®s->chip_sel; + case NAND_EXEC_CMD: + return ®s->exec; + case NAND_FLASH_STATUS: + return ®s->clrflashstatus; + case NAND_DEV0_CFG0: + return ®s->cfg0; + case NAND_DEV0_CFG1: + return ®s->cfg1; + case NAND_DEV0_ECC_CFG: + return ®s->ecc_bch_cfg; + case NAND_READ_STATUS: + return ®s->clrreadstatus; + case NAND_DEV_CMD1: + return ®s->cmd1; + case NAND_DEV_CMD1_RESTORE: + return ®s->orig_cmd1; + case NAND_DEV_CMD_VLD: + return ®s->vld; + case NAND_DEV_CMD_VLD_RESTORE: + return ®s->orig_vld; + case NAND_EBI2_ECC_BUF_CFG: + return ®s->ecc_buf_cfg; + case NAND_READ_LOCATION_0: + return ®s->read_location0; + case NAND_READ_LOCATION_1: + return ®s->read_location1; + case NAND_READ_LOCATION_2: + return ®s->read_location2; + case NAND_READ_LOCATION_3: + return ®s->read_location3; + case NAND_READ_LOCATION_LAST_CW_0: + return ®s->read_location_last0; + case NAND_READ_LOCATION_LAST_CW_1: + return ®s->read_location_last1; + case NAND_READ_LOCATION_LAST_CW_2: + return ®s->read_location_last2; + case NAND_READ_LOCATION_LAST_CW_3: + return ®s->read_location_last3; + default: + return NULL; + } +} + +/* + * qcom_prep_adm_dma_desc: Prepare descriptor for adma + * @read: read or write + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to write to + * @size: adm dma transaction size in bytes + * @flow_control: flow controller + */ +int qcom_prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, int size, + bool flow_control) +{ + struct qcom_adm_peripheral_config periph_conf = {}; + struct dma_async_tx_descriptor *dma_desc; + struct dma_slave_config slave_conf = {0}; + enum dma_transfer_direction dir_eng; + struct scatterlist *sgl; + struct desc_info *desc; + int ret; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + sgl = &desc->adm_sgl; + + sg_init_one(sgl, vaddr, size); + + if (read) { + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } else { + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } + + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); + if (!ret) { + ret = -ENOMEM; + goto err; + } + + slave_conf.device_fc = flow_control; + if (read) { + slave_conf.src_maxburst = 16; + slave_conf.src_addr = nandc->base_dma + reg_off; + if (nandc->data_crci) { + periph_conf.crci = nandc->data_crci; + slave_conf.peripheral_config = &periph_conf; + slave_conf.peripheral_size = sizeof(periph_conf); + } + } else { + slave_conf.dst_maxburst = 16; + slave_conf.dst_addr = nandc->base_dma + reg_off; + if (nandc->cmd_crci) { + periph_conf.crci = nandc->cmd_crci; + slave_conf.peripheral_config = &periph_conf; + slave_conf.peripheral_size = sizeof(periph_conf); + } + } + + ret = dmaengine_slave_config(nandc->chan, &slave_conf); + if (ret) { + dev_err(nandc->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); + if (!dma_desc) { + dev_err(nandc->dev, "failed to prepare desc\n"); + ret = -EINVAL; + goto err; + } + + desc->dma_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +err: + kfree(desc); + + return ret; +} + +/* + * qcom_submit_descs: submit descriptor cmd/data + */ +int qcom_submit_descs(struct qcom_nand_controller *nandc) +{ + struct desc_info *desc, *n; + dma_cookie_t cookie = 0; + struct bam_transaction *bam_txn = nandc->bam_txn; + int ret = 0; + + if (nandc->props->is_bam) { + if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { + ret = qcom_prepare_bam_async_desc(nandc, nandc->rx_chan, 0); + if (ret) + goto err_unmap_free_desc; + } + + if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { + ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (ret) + goto err_unmap_free_desc; + } + + if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { + ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_CMD); + if (ret) + goto err_unmap_free_desc; + } + } + + list_for_each_entry(desc, &nandc->desc_list, node) + cookie = dmaengine_submit(desc->dma_desc); + + if (nandc->props->is_bam) { + bam_txn->last_cmd_desc->callback = qcom_qpic_bam_dma_done; + bam_txn->last_cmd_desc->callback_param = bam_txn; + if (bam_txn->last_data_desc) { + bam_txn->last_data_desc->callback = qcom_qpic_bam_dma_done; + bam_txn->last_data_desc->callback_param = bam_txn; + bam_txn->wait_second_completion = true; + } + + dma_async_issue_pending(nandc->tx_chan); + dma_async_issue_pending(nandc->rx_chan); + dma_async_issue_pending(nandc->cmd_chan); + + if (!wait_for_completion_timeout(&bam_txn->txn_done, + QPIC_NAND_COMPLETION_TIMEOUT)) + ret = -ETIMEDOUT; + } else { + if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) + ret = -ETIMEDOUT; + } + +err_unmap_free_desc: + /* + * Unmap the dma sg_list and free the desc allocated by both + * prepare_bam_async_desc() and prep_adm_dma_desc() functions. + */ + list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { + list_del(&desc->node); + + if (nandc->props->is_bam) + dma_unmap_sg(nandc->dev, desc->bam_sgl, + desc->sgl_cnt, desc->dir); + else + dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, + desc->dir); + + kfree(desc); + } + + return ret; +} + +/* + * qcom_prepare_bam_async_desc: Maps the scatter gather list for DMA transfer + * and forms the DMA descriptor for BAM.This + * descriptor will be added in the NAND DMA + * descriptor queue which will be submitted to DMA + * engine + * @chan: dma channel + * @flag: flags to control DMA descriptor preparation + */ +int qcom_prepare_bam_async_desc(struct qcom_nand_controller *nandc, + struct dma_chan *chan, + unsigned long flags) +{ + struct desc_info *desc; + struct scatterlist *sgl; + unsigned int sgl_cnt; + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + enum dma_transfer_direction dir_eng; + struct dma_async_tx_descriptor *dma_desc; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + if (chan == nandc->cmd_chan) { + sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; + sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; + bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else if (chan == nandc->tx_chan) { + sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; + sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; + bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else { + sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; + sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; + bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } + + sg_mark_end(sgl + sgl_cnt - 1); + ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + if (ret == 0) { + dev_err(nandc->dev, "failure in mapping desc\n"); + kfree(desc); + return -ENOMEM; + } + + desc->sgl_cnt = sgl_cnt; + desc->bam_sgl = sgl; + + dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, + flags); + + if (!dma_desc) { + dev_err(nandc->dev, "failure in prep desc\n"); + dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + kfree(desc); + return -EINVAL; + } + + desc->dma_desc = dma_desc; + + /* update last data/command descriptor */ + if (chan == nandc->cmd_chan) + bam_txn->last_cmd_desc = dma_desc; + else + bam_txn->last_data_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +} + +/* + * qcom_prep_bam_dma_desc_cmd: Prepares the command descriptor for BAM DMA + * which will be used for NAND register reads and + * writes. + * @read: read/write type + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to write to + * @size: DMA transaction size in bytes + * @flags: offset within the controller's data buffer + */ +int qcom_prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, + int size, unsigned int flags) +{ + int bam_ce_size; + int i, ret; + struct bam_cmd_element *bam_ce_buffer; + struct bam_transaction *bam_txn = nandc->bam_txn; + + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; + + /* fill the command desc */ + for (i = 0; i < size; i++) { + if (read) + bam_prep_ce(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_READ_COMMAND, + reg_buf_dma_addr(nandc, + (__le32 *)vaddr + i)); + else + bam_prep_ce_le32(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_WRITE_COMMAND, + *((__le32 *)vaddr + i)); + } + + bam_txn->bam_ce_pos += size; + + /* use the separate sgl after this command */ + if (flags & NAND_BAM_NEXT_SGL) { + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; + bam_ce_size = (bam_txn->bam_ce_pos - + bam_txn->bam_ce_start) * + sizeof(struct bam_cmd_element); + sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], + bam_ce_buffer, bam_ce_size); + bam_txn->cmd_sgl_pos++; + bam_txn->bam_ce_start = bam_txn->bam_ce_pos; + + if (flags & NAND_BAM_NWD) { + ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_FENCE | + DMA_PREP_CMD); + if (ret) + return ret; + } + } + + return 0; +} + +/* + * qcom_prep_bam_dma_desc_data: Prepares the data descriptor for BAM DMA which + * will be used for NAND data reads and writes. + * @read: read/write type + * @vaddr: virtual address of the buffer we want to write to + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +int qcom_prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, + const void *vaddr, + int size, unsigned int flags) +{ + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (read) { + sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], + vaddr, size); + bam_txn->rx_sgl_pos++; + } else { + sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], + vaddr, size); + bam_txn->tx_sgl_pos++; + + /* + * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag + * is not set, form the DMA descriptor + */ + if (!(flags & NAND_BAM_NO_EOT)) { + ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (ret) + return ret; + } + } + + return 0; +} + +/* + * qcom_read_reg_dma: prepares a descriptor to read a given number of + * contiguous registers to the reg_read_buf pointer + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to read + * @flags: flags to control DMA descriptor preparation + */ +int qcom_read_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + void *vaddr; + + vaddr = nandc->reg_read_buf + nandc->reg_read_pos; + nandc->reg_read_pos += num_regs; + + if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, first); + + if (nandc->props->is_bam) + return qcom_prep_bam_dma_desc_cmd(nandc, true, first, vaddr, + num_regs, flags); + + if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) + flow_control = true; + + return qcom_prep_adm_dma_desc(nandc, true, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * qcom_write_reg_dma: prepares a descriptor to write a given number of + * contiguous registers + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to write + * @flags: flags to control DMA descriptor preparation + */ +int qcom_write_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + struct nandc_regs *regs = nandc->regs; + void *vaddr; + + vaddr = qcom_offset_to_nandc_reg(regs, first); + + if (first == NAND_ERASED_CW_DETECT_CFG) { + if (flags & NAND_ERASED_CW_SET) + vaddr = ®s->erased_cw_detect_cfg_set; + else + vaddr = ®s->erased_cw_detect_cfg_clr; + } + + if (first == NAND_EXEC_CMD) + flags |= NAND_BAM_NWD; + + if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); + + if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); + + if (nandc->props->is_bam) + return qcom_prep_bam_dma_desc_cmd(nandc, false, first, vaddr, + num_regs, flags); + + if (first == NAND_FLASH_CMD) + flow_control = true; + + return qcom_prep_adm_dma_desc(nandc, false, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * qcom_read_data_dma: prepares a DMA descriptor to transfer data from the + * controller's internal buffer to the buffer 'vaddr' + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to write to + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +int qcom_read_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return qcom_prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); + + return qcom_prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); +} + +/* + * qcom_write_data_dma: prepares a DMA descriptor to transfer data from + * 'vaddr' to the controller's internal buffer + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to read from + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +int qcom_write_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return qcom_prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); + + return qcom_prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); +} + +/* + * qcom_alloc_bam_transaction: Allocates and Initializes the BAM transaction + */ +struct bam_transaction * +qcom_alloc_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn; + size_t bam_txn_size; + unsigned int num_cw = nandc->max_cwperpage; + void *bam_txn_buf; + + bam_txn_size = + sizeof(*bam_txn) + num_cw * + ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); + + bam_txn_buf = kzalloc(bam_txn_size, GFP_KERNEL); + if (!bam_txn_buf) + return NULL; + + bam_txn = bam_txn_buf; + bam_txn_buf += sizeof(*bam_txn); + + bam_txn->bam_ce = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; + + bam_txn->cmd_sgl = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; + + bam_txn->data_sgl = bam_txn_buf; + + init_completion(&bam_txn->txn_done); + + return bam_txn; +} + +/* + * qcom_clear_bam_transaction: Clears the BAM transaction indexes + */ +void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (!nandc->props->is_bam) + return; + + bam_txn->bam_ce_pos = 0; + bam_txn->bam_ce_start = 0; + bam_txn->cmd_sgl_pos = 0; + bam_txn->cmd_sgl_start = 0; + bam_txn->tx_sgl_pos = 0; + bam_txn->tx_sgl_start = 0; + bam_txn->rx_sgl_pos = 0; + bam_txn->rx_sgl_start = 0; + bam_txn->last_data_desc = NULL; + bam_txn->wait_second_completion = false; + + sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * + QPIC_PER_CW_CMD_SGL); + sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * + QPIC_PER_CW_DATA_SGL); + + reinit_completion(&bam_txn->txn_done); +} + +/* + * qcom_nandc_unalloc: unallocate memory allocated for controller + */ +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) +{ + if (nandc->props->is_bam) { + if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) + dma_unmap_single(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + + if (nandc->tx_chan) + dma_release_channel(nandc->tx_chan); + + if (nandc->rx_chan) + dma_release_channel(nandc->rx_chan); + + if (nandc->cmd_chan) + dma_release_channel(nandc->cmd_chan); + } else { + if (nandc->chan) + dma_release_channel(nandc->chan); + } +} + +/* + * qcom_nandc_alloc: Allocate memory for nand controller + */ +int qcom_nandc_alloc(struct qcom_nand_controller *nandc) +{ + int ret; + + ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(nandc->dev, "failed to set DMA mask\n"); + return ret; + } + + /* + * we use the internal buffer for reading ONFI params, reading small + * data like ID and status, and preforming read-copy-write operations + * when writing to a codeword partially. 532 is the maximum possible + * size of a codeword for our nand controller + */ + nandc->buf_size = 532; + + nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); + if (!nandc->data_buffer) + return -ENOMEM; + + nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); + if (!nandc->regs) + return -ENOMEM; + + nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD, + sizeof(*nandc->reg_read_buf), + GFP_KERNEL); + if (!nandc->reg_read_buf) + return -ENOMEM; + + if (nandc->props->is_bam) { + nandc->reg_read_dma = + dma_map_single(nandc->dev, nandc->reg_read_buf, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { + dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); + return -EIO; + } + + nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); + if (IS_ERR(nandc->tx_chan)) { + ret = PTR_ERR(nandc->tx_chan); + nandc->tx_chan = NULL; + dev_err_probe(nandc->dev, ret, + "tx DMA channel request failed\n"); + goto unalloc; + } + + nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); + if (IS_ERR(nandc->rx_chan)) { + ret = PTR_ERR(nandc->rx_chan); + nandc->rx_chan = NULL; + dev_err_probe(nandc->dev, ret, + "rx DMA channel request failed\n"); + goto unalloc; + } + + nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); + if (IS_ERR(nandc->cmd_chan)) { + ret = PTR_ERR(nandc->cmd_chan); + nandc->cmd_chan = NULL; + dev_err_probe(nandc->dev, ret, + "cmd DMA channel request failed\n"); + goto unalloc; + } + + /* + * Initially allocate BAM transaction to read ONFI param page. + * After detecting all the devices, this BAM transaction will + * be freed and the next BAM transaction will be allocated with + * maximum codeword size + */ + nandc->max_cwperpage = 1; + nandc->bam_txn = qcom_alloc_bam_transaction(nandc); + if (!nandc->bam_txn) { + dev_err(nandc->dev, + "failed to allocate bam transaction\n"); + ret = -ENOMEM; + goto unalloc; + } + } else { + nandc->chan = dma_request_chan(nandc->dev, "rxtx"); + if (IS_ERR(nandc->chan)) { + ret = PTR_ERR(nandc->chan); + nandc->chan = NULL; + dev_err_probe(nandc->dev, ret, + "rxtx DMA channel request failed\n"); + return ret; + } + } + + INIT_LIST_HEAD(&nandc->desc_list); + INIT_LIST_HEAD(&nandc->host_list); + + return 0; +unalloc: + qcom_nandc_unalloc(nandc); + return ret; +} diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c index b079605c84d3..d4faabc8244f 100644 --- a/drivers/mtd/nand/raw/qcom_nandc.c +++ b/drivers/mtd/nand/raw/qcom_nandc.c @@ -2,186 +2,7 @@ /* * Copyright (c) 2016, The Linux Foundation. All rights reserved. */ -#include <linux/bitops.h> -#include <linux/clk.h> -#include <linux/delay.h> -#include <linux/dmaengine.h> -#include <linux/dma-mapping.h> -#include <linux/dma/qcom_adm.h> -#include <linux/dma/qcom_bam_dma.h> -#include <linux/module.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/rawnand.h> -#include <linux/of.h> -#include <linux/platform_device.h> -#include <linux/slab.h> - -/* NANDc reg offsets */ -#define NAND_FLASH_CMD 0x00 -#define NAND_ADDR0 0x04 -#define NAND_ADDR1 0x08 -#define NAND_FLASH_CHIP_SELECT 0x0c -#define NAND_EXEC_CMD 0x10 -#define NAND_FLASH_STATUS 0x14 -#define NAND_BUFFER_STATUS 0x18 -#define NAND_DEV0_CFG0 0x20 -#define NAND_DEV0_CFG1 0x24 -#define NAND_DEV0_ECC_CFG 0x28 -#define NAND_AUTO_STATUS_EN 0x2c -#define NAND_DEV1_CFG0 0x30 -#define NAND_DEV1_CFG1 0x34 -#define NAND_READ_ID 0x40 -#define NAND_READ_STATUS 0x44 -#define NAND_DEV_CMD0 0xa0 -#define NAND_DEV_CMD1 0xa4 -#define NAND_DEV_CMD2 0xa8 -#define NAND_DEV_CMD_VLD 0xac -#define SFLASHC_BURST_CFG 0xe0 -#define NAND_ERASED_CW_DETECT_CFG 0xe8 -#define NAND_ERASED_CW_DETECT_STATUS 0xec -#define NAND_EBI2_ECC_BUF_CFG 0xf0 -#define FLASH_BUF_ACC 0x100 - -#define NAND_CTRL 0xf00 -#define NAND_VERSION 0xf08 -#define NAND_READ_LOCATION_0 0xf20 -#define NAND_READ_LOCATION_1 0xf24 -#define NAND_READ_LOCATION_2 0xf28 -#define NAND_READ_LOCATION_3 0xf2c -#define NAND_READ_LOCATION_LAST_CW_0 0xf40 -#define NAND_READ_LOCATION_LAST_CW_1 0xf44 -#define NAND_READ_LOCATION_LAST_CW_2 0xf48 -#define NAND_READ_LOCATION_LAST_CW_3 0xf4c - -/* dummy register offsets, used by write_reg_dma */ -#define NAND_DEV_CMD1_RESTORE 0xdead -#define NAND_DEV_CMD_VLD_RESTORE 0xbeef - -/* NAND_FLASH_CMD bits */ -#define PAGE_ACC BIT(4) -#define LAST_PAGE BIT(5) - -/* NAND_FLASH_CHIP_SELECT bits */ -#define NAND_DEV_SEL 0 -#define DM_EN BIT(2) - -/* NAND_FLASH_STATUS bits */ -#define FS_OP_ERR BIT(4) -#define FS_READY_BSY_N BIT(5) -#define FS_MPU_ERR BIT(8) -#define FS_DEVICE_STS_ERR BIT(16) -#define FS_DEVICE_WP BIT(23) - -/* NAND_BUFFER_STATUS bits */ -#define BS_UNCORRECTABLE_BIT BIT(8) -#define BS_CORRECTABLE_ERR_MSK 0x1f - -/* NAND_DEVn_CFG0 bits */ -#define DISABLE_STATUS_AFTER_WRITE 4 -#define CW_PER_PAGE 6 -#define UD_SIZE_BYTES 9 -#define UD_SIZE_BYTES_MASK GENMASK(18, 9) -#define ECC_PARITY_SIZE_BYTES_RS 19 -#define SPARE_SIZE_BYTES 23 -#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23) -#define NUM_ADDR_CYCLES 27 -#define STATUS_BFR_READ 30 -#define SET_RD_MODE_AFTER_STATUS 31 - -/* NAND_DEVn_CFG0 bits */ -#define DEV0_CFG1_ECC_DISABLE 0 -#define WIDE_FLASH 1 -#define NAND_RECOVERY_CYCLES 2 -#define CS_ACTIVE_BSY 5 -#define BAD_BLOCK_BYTE_NUM 6 -#define BAD_BLOCK_IN_SPARE_AREA 16 -#define WR_RD_BSY_GAP 17 -#define ENABLE_BCH_ECC 27 - -/* NAND_DEV0_ECC_CFG bits */ -#define ECC_CFG_ECC_DISABLE 0 -#define ECC_SW_RESET 1 -#define ECC_MODE 4 -#define ECC_PARITY_SIZE_BYTES_BCH 8 -#define ECC_NUM_DATA_BYTES 16 -#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16) -#define ECC_FORCE_CLK_OPEN 30 - -/* NAND_DEV_CMD1 bits */ -#define READ_ADDR 0 - -/* NAND_DEV_CMD_VLD bits */ -#define READ_START_VLD BIT(0) -#define READ_STOP_VLD BIT(1) -#define WRITE_START_VLD BIT(2) -#define ERASE_START_VLD BIT(3) -#define SEQ_READ_START_VLD BIT(4) - -/* NAND_EBI2_ECC_BUF_CFG bits */ -#define NUM_STEPS 0 - -/* NAND_ERASED_CW_DETECT_CFG bits */ -#define ERASED_CW_ECC_MASK 1 -#define AUTO_DETECT_RES 0 -#define MASK_ECC BIT(ERASED_CW_ECC_MASK) -#define RESET_ERASED_DET BIT(AUTO_DETECT_RES) -#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) -#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) -#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) - -/* NAND_ERASED_CW_DETECT_STATUS bits */ -#define PAGE_ALL_ERASED BIT(7) -#define CODEWORD_ALL_ERASED BIT(6) -#define PAGE_ERASED BIT(5) -#define CODEWORD_ERASED BIT(4) -#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) -#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) - -/* NAND_READ_LOCATION_n bits */ -#define READ_LOCATION_OFFSET 0 -#define READ_LOCATION_SIZE 16 -#define READ_LOCATION_LAST 31 - -/* Version Mask */ -#define NAND_VERSION_MAJOR_MASK 0xf0000000 -#define NAND_VERSION_MAJOR_SHIFT 28 -#define NAND_VERSION_MINOR_MASK 0x0fff0000 -#define NAND_VERSION_MINOR_SHIFT 16 - -/* NAND OP_CMDs */ -#define OP_PAGE_READ 0x2 -#define OP_PAGE_READ_WITH_ECC 0x3 -#define OP_PAGE_READ_WITH_ECC_SPARE 0x4 -#define OP_PAGE_READ_ONFI_READ 0x5 -#define OP_PROGRAM_PAGE 0x6 -#define OP_PAGE_PROGRAM_WITH_ECC 0x7 -#define OP_PROGRAM_PAGE_SPARE 0x9 -#define OP_BLOCK_ERASE 0xa -#define OP_CHECK_STATUS 0xc -#define OP_FETCH_ID 0xb -#define OP_RESET_DEVICE 0xd - -/* Default Value for NAND_DEV_CMD_VLD */ -#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ - ERASE_START_VLD | SEQ_READ_START_VLD) - -/* NAND_CTRL bits */ -#define BAM_MODE_EN BIT(0) - -/* - * the NAND controller performs reads/writes with ECC in 516 byte chunks. - * the driver calls the chunks 'step' or 'codeword' interchangeably - */ -#define NANDC_STEP_SIZE 512 - -/* - * the largest page size we support is 8K, this will have 16 steps/codewords - * of 512 bytes each - */ -#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) - -/* we read at most 3 registers per codeword scan */ -#define MAX_REG_RD (3 * MAX_NUM_STEPS) +#include <linux/mtd/nand-qpic-common.h> /* ECC modes supported by the controller */ #define ECC_NONE BIT(0) @@ -200,247 +21,6 @@ nandc_set_reg(chip, reg, \ ((cw_offset) << READ_LOCATION_OFFSET) | \ ((read_size) << READ_LOCATION_SIZE) | \ ((is_last_read_loc) << READ_LOCATION_LAST)) -/* - * Returns the actual register address for all NAND_DEV_ registers - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) - */ -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) - -/* Returns the NAND register physical address */ -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) - -/* Returns the dma address for reg read buffer */ -#define reg_buf_dma_addr(chip, vaddr) \ - ((chip)->reg_read_dma + \ - ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf)) - -#define QPIC_PER_CW_CMD_ELEMENTS 32 -#define QPIC_PER_CW_CMD_SGL 32 -#define QPIC_PER_CW_DATA_SGL 8 - -#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) - -/* - * Flags used in DMA descriptor preparation helper functions - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) - */ -/* Don't set the EOT in current tx BAM sgl */ -#define NAND_BAM_NO_EOT BIT(0) -/* Set the NWD flag in current BAM sgl */ -#define NAND_BAM_NWD BIT(1) -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */ -#define NAND_BAM_NEXT_SGL BIT(2) -/* - * Erased codeword status is being used two times in single transfer so this - * flag will determine the current value of erased codeword status register - */ -#define NAND_ERASED_CW_SET BIT(4) - -#define MAX_ADDRESS_CYCLE 5 - -/* - * This data type corresponds to the BAM transaction which will be used for all - * NAND transfers. - * @bam_ce - the array of BAM command elements - * @cmd_sgl - sgl for NAND BAM command pipe - * @data_sgl - sgl for NAND BAM consumer/producer pipe - * @last_data_desc - last DMA desc in data channel (tx/rx). - * @last_cmd_desc - last DMA desc in command channel. - * @txn_done - completion for NAND transfer. - * @bam_ce_pos - the index in bam_ce which is available for next sgl - * @bam_ce_start - the index in bam_ce which marks the start position ce - * for current sgl. It will be used for size calculation - * for current sgl - * @cmd_sgl_pos - current index in command sgl. - * @cmd_sgl_start - start index in command sgl. - * @tx_sgl_pos - current index in data sgl for tx. - * @tx_sgl_start - start index in data sgl for tx. - * @rx_sgl_pos - current index in data sgl for rx. - * @rx_sgl_start - start index in data sgl for rx. - * @wait_second_completion - wait for second DMA desc completion before making - * the NAND transfer completion. - */ -struct bam_transaction { - struct bam_cmd_element *bam_ce; - struct scatterlist *cmd_sgl; - struct scatterlist *data_sgl; - struct dma_async_tx_descriptor *last_data_desc; - struct dma_async_tx_descriptor *last_cmd_desc; - struct completion txn_done; - u32 bam_ce_pos; - u32 bam_ce_start; - u32 cmd_sgl_pos; - u32 cmd_sgl_start; - u32 tx_sgl_pos; - u32 tx_sgl_start; - u32 rx_sgl_pos; - u32 rx_sgl_start; - bool wait_second_completion; -}; - -/* - * This data type corresponds to the nand dma descriptor - * @dma_desc - low level DMA engine descriptor - * @list - list for desc_info - * - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by - * ADM - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM - * @dir - DMA transfer direction - */ -struct desc_info { - struct dma_async_tx_descriptor *dma_desc; - struct list_head node; - - union { - struct scatterlist adm_sgl; - struct { - struct scatterlist *bam_sgl; - int sgl_cnt; - }; - }; - enum dma_data_direction dir; -}; - -/* - * holds the current register values that we want to write. acts as a contiguous - * chunk of memory which we use to write the controller registers through DMA. - */ -struct nandc_regs { - __le32 cmd; - __le32 addr0; - __le32 addr1; - __le32 chip_sel; - __le32 exec; - - __le32 cfg0; - __le32 cfg1; - __le32 ecc_bch_cfg; - - __le32 clrflashstatus; - __le32 clrreadstatus; - - __le32 cmd1; - __le32 vld; - - __le32 orig_cmd1; - __le32 orig_vld; - - __le32 ecc_buf_cfg; - __le32 read_location0; - __le32 read_location1; - __le32 read_location2; - __le32 read_location3; - __le32 read_location_last0; - __le32 read_location_last1; - __le32 read_location_last2; - __le32 read_location_last3; - - __le32 erased_cw_detect_cfg_clr; - __le32 erased_cw_detect_cfg_set; -}; - -/* - * NAND controller data struct - * - * @dev: parent device - * - * @base: MMIO base - * - * @core_clk: controller clock - * @aon_clk: another controller clock - * - * @regs: a contiguous chunk of memory for DMA register - * writes. contains the register values to be - * written to controller - * - * @props: properties of current NAND controller, - * initialized via DT match data - * - * @controller: base controller structure - * @host_list: list containing all the chips attached to the - * controller - * - * @chan: dma channel - * @cmd_crci: ADM DMA CRCI for command flow control - * @data_crci: ADM DMA CRCI for data flow control - * - * @desc_list: DMA descriptor list (list of desc_infos) - * - * @data_buffer: our local DMA buffer for page read/writes, - * used when we can't use the buffer provided - * by upper layers directly - * @reg_read_buf: local buffer for reading back registers via DMA - * - * @base_phys: physical base address of controller registers - * @base_dma: dma base address of controller registers - * @reg_read_dma: contains dma address for register read buffer - * - * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf - * functions - * @max_cwperpage: maximum QPIC codewords required. calculated - * from all connected NAND devices pagesize - * - * @reg_read_pos: marker for data read in reg_read_buf - * - * @cmd1/vld: some fixed controller register values - * - * @exec_opwrite: flag to select correct number of code word - * while reading status - */ -struct qcom_nand_controller { - struct device *dev; - - void __iomem *base; - - struct clk *core_clk; - struct clk *aon_clk; - - struct nandc_regs *regs; - struct bam_transaction *bam_txn; - - const struct qcom_nandc_props *props; - - struct nand_controller controller; - struct list_head host_list; - - union { - /* will be used only by QPIC for BAM DMA */ - struct { - struct dma_chan *tx_chan; - struct dma_chan *rx_chan; - struct dma_chan *cmd_chan; - }; - - /* will be used only by EBI2 for ADM DMA */ - struct { - struct dma_chan *chan; - unsigned int cmd_crci; - unsigned int data_crci; - }; - }; - - struct list_head desc_list; - - u8 *data_buffer; - __le32 *reg_read_buf; - - phys_addr_t base_phys; - dma_addr_t base_dma; - dma_addr_t reg_read_dma; - - int buf_size; - int buf_count; - int buf_start; - unsigned int max_cwperpage; - - int reg_read_pos; - - u32 cmd1, vld; - bool exec_opwrite; -}; - /* * NAND special boot partitions * @@ -544,113 +124,24 @@ struct qcom_nand_host { bool bch_enabled; }; -/* - * This data type corresponds to the NAND controller properties which varies - * among different NAND controllers. - * @ecc_modes - ecc mode for NAND - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset - * @is_bam - whether NAND controller is using BAM - * @is_qpic - whether NAND CTRL is part of qpic IP - * @qpic_v2 - flag to indicate QPIC IP version 2 - * @use_codeword_fixup - whether NAND has different layout for boot partitions - */ -struct qcom_nandc_props { - u32 ecc_modes; - u32 dev_cmd_reg_start; - bool is_bam; - bool is_qpic; - bool qpic_v2; - bool use_codeword_fixup; -}; - -/* Frees the BAM transaction memory */ -static void free_bam_transaction(struct qcom_nand_controller *nandc) -{ - struct bam_transaction *bam_txn = nandc->bam_txn; - - devm_kfree(nandc->dev, bam_txn); -} - -/* Allocates and Initializes the BAM transaction */ -static struct bam_transaction * -alloc_bam_transaction(struct qcom_nand_controller *nandc) +struct qcom_nand_controller * +get_qcom_nand_controller(struct nand_chip *chip) { - struct bam_transaction *bam_txn; - size_t bam_txn_size; - unsigned int num_cw = nandc->max_cwperpage; - void *bam_txn_buf; - - bam_txn_size = - sizeof(*bam_txn) + num_cw * - ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + - (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + - (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); - - bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); - if (!bam_txn_buf) - return NULL; - - bam_txn = bam_txn_buf; - bam_txn_buf += sizeof(*bam_txn); - - bam_txn->bam_ce = bam_txn_buf; - bam_txn_buf += - sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; - - bam_txn->cmd_sgl = bam_txn_buf; - bam_txn_buf += - sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; - - bam_txn->data_sgl = bam_txn_buf; - - init_completion(&bam_txn->txn_done); - - return bam_txn; + return container_of(chip->controller, struct qcom_nand_controller, + controller); } -/* Clears the BAM transaction indexes */ -static void clear_bam_transaction(struct qcom_nand_controller *nandc) +static void nandc_set_reg(struct nand_chip *chip, int offset, + u32 val) { - struct bam_transaction *bam_txn = nandc->bam_txn; - - if (!nandc->props->is_bam) - return; - - bam_txn->bam_ce_pos = 0; - bam_txn->bam_ce_start = 0; - bam_txn->cmd_sgl_pos = 0; - bam_txn->cmd_sgl_start = 0; - bam_txn->tx_sgl_pos = 0; - bam_txn->tx_sgl_start = 0; - bam_txn->rx_sgl_pos = 0; - bam_txn->rx_sgl_start = 0; - bam_txn->last_data_desc = NULL; - bam_txn->wait_second_completion = false; - - sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * - QPIC_PER_CW_CMD_SGL); - sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * - QPIC_PER_CW_DATA_SGL); - - reinit_completion(&bam_txn->txn_done); -} + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nandc_regs *regs = nandc->regs; + __le32 *reg; -/* Callback for DMA descriptor completion */ -static void qpic_bam_dma_done(void *data) -{ - struct bam_transaction *bam_txn = data; + reg = qcom_offset_to_nandc_reg(regs, offset); - /* - * In case of data transfer with NAND, 2 callbacks will be generated. - * One for command channel and another one for data channel. - * If current transaction has data descriptors - * (i.e. wait_second_completion is true), then set this to false - * and wait for second DMA descriptor completion. - */ - if (bam_txn->wait_second_completion) - bam_txn->wait_second_completion = false; - else - complete(&bam_txn->txn_done); + if (reg) + *reg = cpu_to_le32(val); } static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) @@ -658,13 +149,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) return container_of(chip, struct qcom_nand_host, chip); } -static inline struct qcom_nand_controller * -get_qcom_nand_controller(struct nand_chip *chip) -{ - return container_of(chip->controller, struct qcom_nand_controller, - controller); -} - static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) { return ioread32(nandc->base + offset); @@ -676,91 +160,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, iowrite32(val, nandc->base + offset); } -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, - bool is_cpu) -{ - if (!nandc->props->is_bam) - return; - - if (is_cpu) - dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - else - dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); -} - -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) -{ - switch (offset) { - case NAND_FLASH_CMD: - return ®s->cmd; - case NAND_ADDR0: - return ®s->addr0; - case NAND_ADDR1: - return ®s->addr1; - case NAND_FLASH_CHIP_SELECT: - return ®s->chip_sel; - case NAND_EXEC_CMD: - return ®s->exec; - case NAND_FLASH_STATUS: - return ®s->clrflashstatus; - case NAND_DEV0_CFG0: - return ®s->cfg0; - case NAND_DEV0_CFG1: - return ®s->cfg1; - case NAND_DEV0_ECC_CFG: - return ®s->ecc_bch_cfg; - case NAND_READ_STATUS: - return ®s->clrreadstatus; - case NAND_DEV_CMD1: - return ®s->cmd1; - case NAND_DEV_CMD1_RESTORE: - return ®s->orig_cmd1; - case NAND_DEV_CMD_VLD: - return ®s->vld; - case NAND_DEV_CMD_VLD_RESTORE: - return ®s->orig_vld; - case NAND_EBI2_ECC_BUF_CFG: - return ®s->ecc_buf_cfg; - case NAND_READ_LOCATION_0: - return ®s->read_location0; - case NAND_READ_LOCATION_1: - return ®s->read_location1; - case NAND_READ_LOCATION_2: - return ®s->read_location2; - case NAND_READ_LOCATION_3: - return ®s->read_location3; - case NAND_READ_LOCATION_LAST_CW_0: - return ®s->read_location_last0; - case NAND_READ_LOCATION_LAST_CW_1: - return ®s->read_location_last1; - case NAND_READ_LOCATION_LAST_CW_2: - return ®s->read_location_last2; - case NAND_READ_LOCATION_LAST_CW_3: - return ®s->read_location_last3; - default: - return NULL; - } -} - -static void nandc_set_reg(struct nand_chip *chip, int offset, - u32 val) -{ - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nandc_regs *regs = nandc->regs; - __le32 *reg; - - reg = offset_to_nandc_reg(regs, offset); - - if (reg) - *reg = cpu_to_le32(val); -} - /* Helper to check the code word, whether it is last cw or not */ static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) { @@ -852,383 +251,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i host->cw_data : host->cw_size, 1); } -/* - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor - * for BAM. This descriptor will be added in the NAND DMA descriptor queue - * which will be submitted to DMA engine. - */ -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, - struct dma_chan *chan, - unsigned long flags) -{ - struct desc_info *desc; - struct scatterlist *sgl; - unsigned int sgl_cnt; - int ret; - struct bam_transaction *bam_txn = nandc->bam_txn; - enum dma_transfer_direction dir_eng; - struct dma_async_tx_descriptor *dma_desc; - - desc = kzalloc(sizeof(*desc), GFP_KERNEL); - if (!desc) - return -ENOMEM; - - if (chan == nandc->cmd_chan) { - sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; - sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; - bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } else if (chan == nandc->tx_chan) { - sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; - sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; - bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } else { - sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; - sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; - bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; - dir_eng = DMA_DEV_TO_MEM; - desc->dir = DMA_FROM_DEVICE; - } - - sg_mark_end(sgl + sgl_cnt - 1); - ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); - if (ret == 0) { - dev_err(nandc->dev, "failure in mapping desc\n"); - kfree(desc); - return -ENOMEM; - } - - desc->sgl_cnt = sgl_cnt; - desc->bam_sgl = sgl; - - dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, - flags); - - if (!dma_desc) { - dev_err(nandc->dev, "failure in prep desc\n"); - dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); - kfree(desc); - return -EINVAL; - } - - desc->dma_desc = dma_desc; - - /* update last data/command descriptor */ - if (chan == nandc->cmd_chan) - bam_txn->last_cmd_desc = dma_desc; - else - bam_txn->last_data_desc = dma_desc; - - list_add_tail(&desc->node, &nandc->desc_list); - - return 0; -} - -/* - * Prepares the command descriptor for BAM DMA which will be used for NAND - * register reads and writes. The command descriptor requires the command - * to be formed in command element type so this function uses the command - * element from bam transaction ce array and fills the same with required - * data. A single SGL can contain multiple command elements so - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL - * after the current command element. - */ -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, - int reg_off, const void *vaddr, - int size, unsigned int flags) -{ - int bam_ce_size; - int i, ret; - struct bam_cmd_element *bam_ce_buffer; - struct bam_transaction *bam_txn = nandc->bam_txn; - - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; - - /* fill the command desc */ - for (i = 0; i < size; i++) { - if (read) - bam_prep_ce(&bam_ce_buffer[i], - nandc_reg_phys(nandc, reg_off + 4 * i), - BAM_READ_COMMAND, - reg_buf_dma_addr(nandc, - (__le32 *)vaddr + i)); - else - bam_prep_ce_le32(&bam_ce_buffer[i], - nandc_reg_phys(nandc, reg_off + 4 * i), - BAM_WRITE_COMMAND, - *((__le32 *)vaddr + i)); - } - - bam_txn->bam_ce_pos += size; - - /* use the separate sgl after this command */ - if (flags & NAND_BAM_NEXT_SGL) { - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; - bam_ce_size = (bam_txn->bam_ce_pos - - bam_txn->bam_ce_start) * - sizeof(struct bam_cmd_element); - sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], - bam_ce_buffer, bam_ce_size); - bam_txn->cmd_sgl_pos++; - bam_txn->bam_ce_start = bam_txn->bam_ce_pos; - - if (flags & NAND_BAM_NWD) { - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, - DMA_PREP_FENCE | - DMA_PREP_CMD); - if (ret) - return ret; - } - } - - return 0; -} - -/* - * Prepares the data descriptor for BAM DMA which will be used for NAND - * data reads and writes. - */ -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, - const void *vaddr, - int size, unsigned int flags) -{ - int ret; - struct bam_transaction *bam_txn = nandc->bam_txn; - - if (read) { - sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], - vaddr, size); - bam_txn->rx_sgl_pos++; - } else { - sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], - vaddr, size); - bam_txn->tx_sgl_pos++; - - /* - * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag - * is not set, form the DMA descriptor - */ - if (!(flags & NAND_BAM_NO_EOT)) { - ret = prepare_bam_async_desc(nandc, nandc->tx_chan, - DMA_PREP_INTERRUPT); - if (ret) - return ret; - } - } - - return 0; -} - -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, - int reg_off, const void *vaddr, int size, - bool flow_control) -{ - struct desc_info *desc; - struct dma_async_tx_descriptor *dma_desc; - struct scatterlist *sgl; - struct dma_slave_config slave_conf; - struct qcom_adm_peripheral_config periph_conf = {}; - enum dma_transfer_direction dir_eng; - int ret; - - desc = kzalloc(sizeof(*desc), GFP_KERNEL); - if (!desc) - return -ENOMEM; - - sgl = &desc->adm_sgl; - - sg_init_one(sgl, vaddr, size); - - if (read) { - dir_eng = DMA_DEV_TO_MEM; - desc->dir = DMA_FROM_DEVICE; - } else { - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } - - ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); - if (ret == 0) { - ret = -ENOMEM; - goto err; - } - - memset(&slave_conf, 0x00, sizeof(slave_conf)); - - slave_conf.device_fc = flow_control; - if (read) { - slave_conf.src_maxburst = 16; - slave_conf.src_addr = nandc->base_dma + reg_off; - if (nandc->data_crci) { - periph_conf.crci = nandc->data_crci; - slave_conf.peripheral_config = &periph_conf; - slave_conf.peripheral_size = sizeof(periph_conf); - } - } else { - slave_conf.dst_maxburst = 16; - slave_conf.dst_addr = nandc->base_dma + reg_off; - if (nandc->cmd_crci) { - periph_conf.crci = nandc->cmd_crci; - slave_conf.peripheral_config = &periph_conf; - slave_conf.peripheral_size = sizeof(periph_conf); - } - } - - ret = dmaengine_slave_config(nandc->chan, &slave_conf); - if (ret) { - dev_err(nandc->dev, "failed to configure dma channel\n"); - goto err; - } - - dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); - if (!dma_desc) { - dev_err(nandc->dev, "failed to prepare desc\n"); - ret = -EINVAL; - goto err; - } - - desc->dma_desc = dma_desc; - - list_add_tail(&desc->node, &nandc->desc_list); - - return 0; -err: - kfree(desc); - - return ret; -} - -/* - * read_reg_dma: prepares a descriptor to read a given number of - * contiguous registers to the reg_read_buf pointer - * - * @first: offset of the first register in the contiguous block - * @num_regs: number of registers to read - * @flags: flags to control DMA descriptor preparation - */ -static int read_reg_dma(struct qcom_nand_controller *nandc, int first, - int num_regs, unsigned int flags) -{ - bool flow_control = false; - void *vaddr; - - vaddr = nandc->reg_read_buf + nandc->reg_read_pos; - nandc->reg_read_pos += num_regs; - - if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) - first = dev_cmd_reg_addr(nandc, first); - - if (nandc->props->is_bam) - return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, - num_regs, flags); - - if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) - flow_control = true; - - return prep_adm_dma_desc(nandc, true, first, vaddr, - num_regs * sizeof(u32), flow_control); -} - -/* - * write_reg_dma: prepares a descriptor to write a given number of - * contiguous registers - * - * @first: offset of the first register in the contiguous block - * @num_regs: number of registers to write - * @flags: flags to control DMA descriptor preparation - */ -static int write_reg_dma(struct qcom_nand_controller *nandc, int first, - int num_regs, unsigned int flags) -{ - bool flow_control = false; - struct nandc_regs *regs = nandc->regs; - void *vaddr; - - vaddr = offset_to_nandc_reg(regs, first); - - if (first == NAND_ERASED_CW_DETECT_CFG) { - if (flags & NAND_ERASED_CW_SET) - vaddr = ®s->erased_cw_detect_cfg_set; - else - vaddr = ®s->erased_cw_detect_cfg_clr; - } - - if (first == NAND_EXEC_CMD) - flags |= NAND_BAM_NWD; - - if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); - - if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); - - if (nandc->props->is_bam) - return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, - num_regs, flags); - - if (first == NAND_FLASH_CMD) - flow_control = true; - - return prep_adm_dma_desc(nandc, false, first, vaddr, - num_regs * sizeof(u32), flow_control); -} - -/* - * read_data_dma: prepares a DMA descriptor to transfer data from the - * controller's internal buffer to the buffer 'vaddr' - * - * @reg_off: offset within the controller's data buffer - * @vaddr: virtual address of the buffer we want to write to - * @size: DMA transaction size in bytes - * @flags: flags to control DMA descriptor preparation - */ -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, - const u8 *vaddr, int size, unsigned int flags) -{ - if (nandc->props->is_bam) - return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); - - return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); -} - -/* - * write_data_dma: prepares a DMA descriptor to transfer data from - * 'vaddr' to the controller's internal buffer - * - * @reg_off: offset within the controller's data buffer - * @vaddr: virtual address of the buffer we want to read from - * @size: DMA transaction size in bytes - * @flags: flags to control DMA descriptor preparation - */ -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, - const u8 *vaddr, int size, unsigned int flags) -{ - if (nandc->props->is_bam) - return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); - - return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); -} - -/* - * Helper to prepare DMA descriptors for configuring registers - * before reading a NAND page. - */ -static void config_nand_page_read(struct nand_chip *chip) -{ - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - write_reg_dma(nandc, NAND_ADDR0, 2, 0); - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); - if (!nandc->props->qpic_v2) - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, - NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); -} - /* * Helper to prepare DMA descriptors for configuring registers * before reading each codeword in NAND page. @@ -1245,20 +267,37 @@ config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) reg = NAND_READ_LOCATION_LAST_CW_0; if (nandc->props->is_bam) - write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); if (use_ecc) { - read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); - read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, - NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); + qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, + NAND_BAM_NEXT_SGL); } else { - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); } } +/* + * Helper to prepare DMA descriptors for configuring registers + * before reading a NAND page. + */ +void config_nand_page_read(struct nand_chip *chip) +{ + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + qcom_write_reg_dma(nandc, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + if (!nandc->props->qpic_v2) + qcom_write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); + qcom_write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); + qcom_write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); +} + /* * Helper to prepare dma descriptors to configure registers needed for reading a * single codeword in page @@ -1279,11 +318,11 @@ static void config_nand_page_write(struct nand_chip *chip) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - write_reg_dma(nandc, NAND_ADDR0, 2, 0); - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + qcom_write_reg_dma(nandc, NAND_ADDR0, 2, 0); + qcom_write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); if (!nandc->props->qpic_v2) - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, - NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, + NAND_BAM_NEXT_SGL); } /* @@ -1294,95 +333,13 @@ static void config_nand_cw_write(struct nand_chip *chip) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); - write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); -} - -/* helpers to submit/free our list of dma descriptors */ -static int submit_descs(struct qcom_nand_controller *nandc) -{ - struct desc_info *desc, *n; - dma_cookie_t cookie = 0; - struct bam_transaction *bam_txn = nandc->bam_txn; - int ret = 0; - - if (nandc->props->is_bam) { - if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { - ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); - if (ret) - goto err_unmap_free_desc; - } - - if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { - ret = prepare_bam_async_desc(nandc, nandc->tx_chan, - DMA_PREP_INTERRUPT); - if (ret) - goto err_unmap_free_desc; - } - - if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, - DMA_PREP_CMD); - if (ret) - goto err_unmap_free_desc; - } - } - - list_for_each_entry(desc, &nandc->desc_list, node) - cookie = dmaengine_submit(desc->dma_desc); - - if (nandc->props->is_bam) { - bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; - bam_txn->last_cmd_desc->callback_param = bam_txn; - if (bam_txn->last_data_desc) { - bam_txn->last_data_desc->callback = qpic_bam_dma_done; - bam_txn->last_data_desc->callback_param = bam_txn; - bam_txn->wait_second_completion = true; - } - - dma_async_issue_pending(nandc->tx_chan); - dma_async_issue_pending(nandc->rx_chan); - dma_async_issue_pending(nandc->cmd_chan); - - if (!wait_for_completion_timeout(&bam_txn->txn_done, - QPIC_NAND_COMPLETION_TIMEOUT)) - ret = -ETIMEDOUT; - } else { - if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) - ret = -ETIMEDOUT; - } - -err_unmap_free_desc: - /* - * Unmap the dma sg_list and free the desc allocated by both - * prepare_bam_async_desc() and prep_adm_dma_desc() functions. - */ - list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { - list_del(&desc->node); - - if (nandc->props->is_bam) - dma_unmap_sg(nandc->dev, desc->bam_sgl, - desc->sgl_cnt, desc->dir); - else - dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, - desc->dir); - - kfree(desc); - } - - return ret; -} - -/* reset the register read buffer for next NAND operation */ -static void clear_read_regs(struct qcom_nand_controller *nandc) -{ - nandc->reg_read_pos = 0; - nandc_read_buffer_sync(nandc, false); + qcom_write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); + qcom_write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); } /* @@ -1446,7 +403,7 @@ static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int i; - nandc_read_buffer_sync(nandc, true); + qcom_nandc_read_buffer_sync(nandc, true); for (i = 0; i < cw_cnt; i++) { u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); @@ -1473,13 +430,13 @@ qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, nand_read_page_op(chip, page, 0, NULL, 0); nandc->buf_count = 0; nandc->buf_start = 0; - clear_read_regs(nandc); + qcom_clear_read_regs(nandc); host->use_ecc = false; if (nandc->props->qpic_v2) raw_cw = ecc->steps - 1; - clear_bam_transaction(nandc); + qcom_clear_bam_transaction(nandc); set_address(host, host->cw_size * cw, page); update_rw_regs(host, 1, true, raw_cw); config_nand_page_read(chip); @@ -1512,18 +469,18 @@ qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, config_nand_cw_read(chip, false, raw_cw); - read_data_dma(nandc, reg_off, data_buf, data_size1, 0); + qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0); reg_off += data_size1; - read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); + qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); reg_off += oob_size1; - read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); + qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); reg_off += data_size2; - read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); + qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to read raw cw %d\n", cw); return ret; @@ -1621,7 +578,7 @@ static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; buf = (struct read_stats *)nandc->reg_read_buf; - nandc_read_buffer_sync(nandc, true); + qcom_nandc_read_buffer_sync(nandc, true); for (i = 0; i < ecc->steps; i++, buf++) { u32 flash, buffer, erased_cw; @@ -1750,8 +707,8 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, config_nand_cw_read(chip, true, i); if (data_buf) - read_data_dma(nandc, FLASH_BUF_ACC, data_buf, - data_size, 0); + qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf, + data_size, 0); /* * when ecc is enabled, the controller doesn't read the real @@ -1766,8 +723,8 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, for (j = 0; j < host->bbm_size; j++) *oob_buf++ = 0xff; - read_data_dma(nandc, FLASH_BUF_ACC + data_size, - oob_buf, oob_size, 0); + qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); } if (data_buf) @@ -1776,7 +733,7 @@ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, oob_buf += oob_size; } - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to read page/oob\n"); return ret; @@ -1797,7 +754,7 @@ static int copy_last_cw(struct qcom_nand_host *host, int page) int size; int ret; - clear_read_regs(nandc); + qcom_clear_read_regs(nandc); size = host->use_ecc ? host->cw_data : host->cw_size; @@ -1809,9 +766,9 @@ static int copy_last_cw(struct qcom_nand_host *host, int page) config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); - read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); + qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) dev_err(nandc->dev, "failed to copy last codeword\n"); @@ -1897,14 +854,14 @@ static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = true; - clear_read_regs(nandc); + qcom_clear_read_regs(nandc); set_address(host, 0, page); update_rw_regs(host, ecc->steps, true, 0); data_buf = buf; oob_buf = oob_required ? chip->oob_poi : NULL; - clear_bam_transaction(nandc); + qcom_clear_bam_transaction(nandc); return read_page_ecc(host, data_buf, oob_buf, page); } @@ -1945,8 +902,8 @@ static int qcom_nandc_read_oob(struct nand_chip *chip, int page) if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); host->use_ecc = true; set_address(host, 0, page); @@ -1973,8 +930,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, set_address(host, 0, page); nandc->buf_count = 0; nandc->buf_start = 0; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; @@ -1995,8 +952,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, oob_size = ecc->bytes; } - write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, - i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); + qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, + i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); /* * when ECC is enabled, we don't really need to write anything @@ -2008,8 +965,8 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, if (qcom_nandc_is_last_cw(ecc, i)) { oob_buf += host->bbm_size; - write_data_dma(nandc, FLASH_BUF_ACC + data_size, - oob_buf, oob_size, 0); + qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); } config_nand_cw_write(chip); @@ -2018,7 +975,7 @@ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, oob_buf += oob_size; } - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write page\n"); return ret; @@ -2043,8 +1000,8 @@ static int qcom_nandc_write_page_raw(struct nand_chip *chip, qcom_nandc_codeword_fixup(host, page); nand_prog_page_begin_op(chip, page, 0, NULL, 0); - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; @@ -2070,28 +1027,28 @@ static int qcom_nandc_write_page_raw(struct nand_chip *chip, oob_size2 = host->ecc_bytes_hw + host->spare_bytes; } - write_data_dma(nandc, reg_off, data_buf, data_size1, - NAND_BAM_NO_EOT); + qcom_write_data_dma(nandc, reg_off, data_buf, data_size1, + NAND_BAM_NO_EOT); reg_off += data_size1; data_buf += data_size1; - write_data_dma(nandc, reg_off, oob_buf, oob_size1, - NAND_BAM_NO_EOT); + qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1, + NAND_BAM_NO_EOT); reg_off += oob_size1; oob_buf += oob_size1; - write_data_dma(nandc, reg_off, data_buf, data_size2, - NAND_BAM_NO_EOT); + qcom_write_data_dma(nandc, reg_off, data_buf, data_size2, + NAND_BAM_NO_EOT); reg_off += data_size2; data_buf += data_size2; - write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); + qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); oob_buf += oob_size2; config_nand_cw_write(chip); } - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write raw page\n"); return ret; @@ -2121,7 +1078,7 @@ static int qcom_nandc_write_oob(struct nand_chip *chip, int page) qcom_nandc_codeword_fixup(host, page); host->use_ecc = true; - clear_bam_transaction(nandc); + qcom_clear_bam_transaction(nandc); /* calculate the data and oob size for the last codeword/step */ data_size = ecc->size - ((ecc->steps - 1) << 2); @@ -2136,11 +1093,11 @@ static int qcom_nandc_write_oob(struct nand_chip *chip, int page) update_rw_regs(host, 1, false, 0); config_nand_page_write(chip); - write_data_dma(nandc, FLASH_BUF_ACC, - nandc->data_buffer, data_size + oob_size, 0); + qcom_write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, data_size + oob_size, 0); config_nand_cw_write(chip); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write oob\n"); return ret; @@ -2167,7 +1124,7 @@ static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) */ host->use_ecc = false; - clear_bam_transaction(nandc); + qcom_clear_bam_transaction(nandc); ret = copy_last_cw(host, page); if (ret) goto err; @@ -2194,8 +1151,8 @@ static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) struct nand_ecc_ctrl *ecc = &chip->ecc; int page, ret; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); /* * to mark the BBM as bad, we flash the entire last codeword with 0s. @@ -2212,11 +1169,11 @@ static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) update_rw_regs(host, 1, false, ecc->steps - 1); config_nand_page_write(chip); - write_data_dma(nandc, FLASH_BUF_ACC, - nandc->data_buffer, host->cw_size, 0); + qcom_write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, host->cw_size, 0); config_nand_cw_write(chip); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to update BBM\n"); return ret; @@ -2456,14 +1413,14 @@ static int qcom_nand_attach_chip(struct nand_chip *chip) mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); /* Free the initially allocated BAM transaction for reading the ONFI params */ if (nandc->props->is_bam) - free_bam_transaction(nandc); + qcom_free_bam_transaction(nandc); nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, cwperpage); /* Now allocate the BAM transaction based on updated max_cwperpage */ if (nandc->props->is_bam) { - nandc->bam_txn = alloc_bam_transaction(nandc); + nandc->bam_txn = qcom_alloc_bam_transaction(nandc); if (!nandc->bam_txn) { dev_err(nandc->dev, "failed to allocate bam transaction\n"); @@ -2663,7 +1620,7 @@ static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) unsigned long start = jiffies + msecs_to_jiffies(time_ms); u32 flash; - nandc_read_buffer_sync(nandc, true); + qcom_nandc_read_buffer_sync(nandc, true); do { flash = le32_to_cpu(nandc->reg_read_buf[0]); @@ -2703,23 +1660,23 @@ static int qcom_read_status_exec(struct nand_chip *chip, nandc->buf_start = 0; host->use_ecc = false; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_EXEC_CMD, 1); - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting status descriptor\n"); goto err_out; } - nandc_read_buffer_sync(nandc, true); + qcom_nandc_read_buffer_sync(nandc, true); for (i = 0; i < num_cw; i++) { flash_status = le32_to_cpu(nandc->reg_read_buf[i]); @@ -2760,8 +1717,8 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo nandc->buf_start = 0; host->use_ecc = false; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); @@ -2771,12 +1728,12 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo nandc_set_reg(chip, NAND_EXEC_CMD, 1); - write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting read id descriptor\n"); goto err_out; @@ -2786,7 +1743,7 @@ static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subo op_id = q_op.data_instr_idx; len = nand_subop_get_data_len(subop, op_id); - nandc_read_buffer_sync(nandc, true); + qcom_nandc_read_buffer_sync(nandc, true); memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); err_out: @@ -2823,21 +1780,21 @@ static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_sub nandc->buf_start = 0; host->use_ecc = false; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_EXEC_CMD, 1); - write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); - (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0, - 2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc, + qcom_write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); + (q_op.cmd_reg == OP_BLOCK_ERASE) ? qcom_write_reg_dma(nandc, NAND_DEV0_CFG0, + 2, NAND_BAM_NEXT_SGL) : qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting misc descriptor\n"); goto err_out; @@ -2870,8 +1827,8 @@ static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_ nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; - clear_read_regs(nandc); - clear_bam_transaction(nandc); + qcom_clear_read_regs(nandc); + qcom_clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); @@ -2914,8 +1871,8 @@ static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_ nandc_set_read_loc(chip, 0, 0, 0, len, 1); if (!nandc->props->qpic_v2) { - write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); - write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); + qcom_write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); } nandc->buf_count = len; @@ -2923,16 +1880,16 @@ static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_ config_nand_single_cw_page_read(chip, false, 0); - read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, - nandc->buf_count, 0); + qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, + nandc->buf_count, 0); /* restore CMD1 and VLD regs */ if (!nandc->props->qpic_v2) { - write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); - write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); + qcom_write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); + qcom_write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); } - ret = submit_descs(nandc); + ret = qcom_submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting param page descriptor\n"); goto err_out; @@ -3016,136 +1973,6 @@ static const struct nand_controller_ops qcom_nandc_ops = { .exec_op = qcom_nand_exec_op, }; -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) -{ - if (nandc->props->is_bam) { - if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) - dma_unmap_single(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - - if (nandc->tx_chan) - dma_release_channel(nandc->tx_chan); - - if (nandc->rx_chan) - dma_release_channel(nandc->rx_chan); - - if (nandc->cmd_chan) - dma_release_channel(nandc->cmd_chan); - } else { - if (nandc->chan) - dma_release_channel(nandc->chan); - } -} - -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) -{ - int ret; - - ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); - if (ret) { - dev_err(nandc->dev, "failed to set DMA mask\n"); - return ret; - } - - /* - * we use the internal buffer for reading ONFI params, reading small - * data like ID and status, and preforming read-copy-write operations - * when writing to a codeword partially. 532 is the maximum possible - * size of a codeword for our nand controller - */ - nandc->buf_size = 532; - - nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); - if (!nandc->data_buffer) - return -ENOMEM; - - nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); - if (!nandc->regs) - return -ENOMEM; - - nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD, - sizeof(*nandc->reg_read_buf), - GFP_KERNEL); - if (!nandc->reg_read_buf) - return -ENOMEM; - - if (nandc->props->is_bam) { - nandc->reg_read_dma = - dma_map_single(nandc->dev, nandc->reg_read_buf, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { - dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); - return -EIO; - } - - nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); - if (IS_ERR(nandc->tx_chan)) { - ret = PTR_ERR(nandc->tx_chan); - nandc->tx_chan = NULL; - dev_err_probe(nandc->dev, ret, - "tx DMA channel request failed\n"); - goto unalloc; - } - - nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); - if (IS_ERR(nandc->rx_chan)) { - ret = PTR_ERR(nandc->rx_chan); - nandc->rx_chan = NULL; - dev_err_probe(nandc->dev, ret, - "rx DMA channel request failed\n"); - goto unalloc; - } - - nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); - if (IS_ERR(nandc->cmd_chan)) { - ret = PTR_ERR(nandc->cmd_chan); - nandc->cmd_chan = NULL; - dev_err_probe(nandc->dev, ret, - "cmd DMA channel request failed\n"); - goto unalloc; - } - - /* - * Initially allocate BAM transaction to read ONFI param page. - * After detecting all the devices, this BAM transaction will - * be freed and the next BAM transaction will be allocated with - * maximum codeword size - */ - nandc->max_cwperpage = 1; - nandc->bam_txn = alloc_bam_transaction(nandc); - if (!nandc->bam_txn) { - dev_err(nandc->dev, - "failed to allocate bam transaction\n"); - ret = -ENOMEM; - goto unalloc; - } - } else { - nandc->chan = dma_request_chan(nandc->dev, "rxtx"); - if (IS_ERR(nandc->chan)) { - ret = PTR_ERR(nandc->chan); - nandc->chan = NULL; - dev_err_probe(nandc->dev, ret, - "rxtx DMA channel request failed\n"); - return ret; - } - } - - INIT_LIST_HEAD(&nandc->desc_list); - INIT_LIST_HEAD(&nandc->host_list); - - nand_controller_init(&nandc->controller); - nandc->controller.ops = &qcom_nandc_ops; - - return 0; -unalloc: - qcom_nandc_unalloc(nandc); - return ret; -} - /* one time setup of a few nand controller registers */ static int qcom_nandc_setup(struct qcom_nand_controller *nandc) { @@ -3427,6 +2254,9 @@ static int qcom_nandc_probe(struct platform_device *pdev) if (ret) goto err_nandc_alloc; + nand_controller_init(&nandc->controller); + nandc->controller.ops = &qcom_nandc_ops; + ret = qcom_nandc_setup(nandc); if (ret) goto err_setup; @@ -3473,28 +2303,28 @@ static void qcom_nandc_remove(struct platform_device *pdev) DMA_BIDIRECTIONAL, 0); } -static const struct qcom_nandc_props ipq806x_nandc_props = { +static struct qcom_nandc_props ipq806x_nandc_props = { .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), .is_bam = false, .use_codeword_fixup = true, .dev_cmd_reg_start = 0x0, }; -static const struct qcom_nandc_props ipq4019_nandc_props = { +static struct qcom_nandc_props ipq4019_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, .dev_cmd_reg_start = 0x0, }; -static const struct qcom_nandc_props ipq8074_nandc_props = { +static struct qcom_nandc_props ipq8074_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, .dev_cmd_reg_start = 0x7000, }; -static const struct qcom_nandc_props sdx55_nandc_props = { +static struct qcom_nandc_props sdx55_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h new file mode 100644 index 000000000000..aced15866627 --- /dev/null +++ b/include/linux/mtd/nand-qpic-common.h @@ -0,0 +1,486 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * QCOM QPIC common APIs header file + * + * Copyright (c) 2023 Qualcomm Inc. + * Authors: Md sadre Alam <quic_mdalam@xxxxxxxxxxx> + * Sricharan R <quic_srichara@xxxxxxxxxxx> + * Varadarajan Narayanan <quic_varada@xxxxxxxxxxx> + * + */ +#ifndef __MTD_NAND_QPIC_COMMON_H__ +#define __MTD_NAND_QPIC_COMMON_H__ + +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/dma/qcom_adm.h> +#include <linux/dma/qcom_bam_dma.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +/* NANDc reg offsets */ +#define NAND_FLASH_CMD 0x00 +#define NAND_ADDR0 0x04 +#define NAND_ADDR1 0x08 +#define NAND_FLASH_CHIP_SELECT 0x0c +#define NAND_EXEC_CMD 0x10 +#define NAND_FLASH_STATUS 0x14 +#define NAND_BUFFER_STATUS 0x18 +#define NAND_DEV0_CFG0 0x20 +#define NAND_DEV0_CFG1 0x24 +#define NAND_DEV0_ECC_CFG 0x28 +#define NAND_AUTO_STATUS_EN 0x2c +#define NAND_DEV1_CFG0 0x30 +#define NAND_DEV1_CFG1 0x34 +#define NAND_READ_ID 0x40 +#define NAND_READ_STATUS 0x44 +#define NAND_DEV_CMD0 0xa0 +#define NAND_DEV_CMD1 0xa4 +#define NAND_DEV_CMD2 0xa8 +#define NAND_DEV_CMD_VLD 0xac +#define SFLASHC_BURST_CFG 0xe0 +#define NAND_ERASED_CW_DETECT_CFG 0xe8 +#define NAND_ERASED_CW_DETECT_STATUS 0xec +#define NAND_EBI2_ECC_BUF_CFG 0xf0 +#define FLASH_BUF_ACC 0x100 + +#define NAND_CTRL 0xf00 +#define NAND_VERSION 0xf08 +#define NAND_READ_LOCATION_0 0xf20 +#define NAND_READ_LOCATION_1 0xf24 +#define NAND_READ_LOCATION_2 0xf28 +#define NAND_READ_LOCATION_3 0xf2c +#define NAND_READ_LOCATION_LAST_CW_0 0xf40 +#define NAND_READ_LOCATION_LAST_CW_1 0xf44 +#define NAND_READ_LOCATION_LAST_CW_2 0xf48 +#define NAND_READ_LOCATION_LAST_CW_3 0xf4c + +/* dummy register offsets, used by write_reg_dma */ +#define NAND_DEV_CMD1_RESTORE 0xdead +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef + +/* NAND_FLASH_CMD bits */ +#define PAGE_ACC BIT(4) +#define LAST_PAGE BIT(5) + +/* NAND_FLASH_CHIP_SELECT bits */ +#define NAND_DEV_SEL 0 +#define DM_EN BIT(2) + +/* NAND_FLASH_STATUS bits */ +#define FS_OP_ERR BIT(4) +#define FS_READY_BSY_N BIT(5) +#define FS_MPU_ERR BIT(8) +#define FS_DEVICE_STS_ERR BIT(16) +#define FS_DEVICE_WP BIT(23) + +/* NAND_BUFFER_STATUS bits */ +#define BS_UNCORRECTABLE_BIT BIT(8) +#define BS_CORRECTABLE_ERR_MSK 0x1f + +/* NAND_DEVn_CFG0 bits */ +#define DISABLE_STATUS_AFTER_WRITE 4 +#define CW_PER_PAGE 6 +#define UD_SIZE_BYTES 9 +#define UD_SIZE_BYTES_MASK GENMASK(18, 9) +#define ECC_PARITY_SIZE_BYTES_RS 19 +#define SPARE_SIZE_BYTES 23 +#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23) +#define NUM_ADDR_CYCLES 27 +#define STATUS_BFR_READ 30 +#define SET_RD_MODE_AFTER_STATUS 31 + +/* NAND_DEVn_CFG0 bits */ +#define DEV0_CFG1_ECC_DISABLE 0 +#define WIDE_FLASH 1 +#define NAND_RECOVERY_CYCLES 2 +#define CS_ACTIVE_BSY 5 +#define BAD_BLOCK_BYTE_NUM 6 +#define BAD_BLOCK_IN_SPARE_AREA 16 +#define WR_RD_BSY_GAP 17 +#define ENABLE_BCH_ECC 27 + +/* NAND_DEV0_ECC_CFG bits */ +#define ECC_CFG_ECC_DISABLE 0 +#define ECC_SW_RESET 1 +#define ECC_MODE 4 +#define ECC_PARITY_SIZE_BYTES_BCH 8 +#define ECC_NUM_DATA_BYTES 16 +#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16) +#define ECC_FORCE_CLK_OPEN 30 + +/* NAND_DEV_CMD1 bits */ +#define READ_ADDR 0 + +/* NAND_DEV_CMD_VLD bits */ +#define READ_START_VLD BIT(0) +#define READ_STOP_VLD BIT(1) +#define WRITE_START_VLD BIT(2) +#define ERASE_START_VLD BIT(3) +#define SEQ_READ_START_VLD BIT(4) + +/* NAND_EBI2_ECC_BUF_CFG bits */ +#define NUM_STEPS 0 + +/* NAND_ERASED_CW_DETECT_CFG bits */ +#define ERASED_CW_ECC_MASK 1 +#define AUTO_DETECT_RES 0 +#define MASK_ECC BIT(ERASED_CW_ECC_MASK) +#define RESET_ERASED_DET BIT(AUTO_DETECT_RES) +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) + +/* NAND_ERASED_CW_DETECT_STATUS bits */ +#define PAGE_ALL_ERASED BIT(7) +#define CODEWORD_ALL_ERASED BIT(6) +#define PAGE_ERASED BIT(5) +#define CODEWORD_ERASED BIT(4) +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) + +/* NAND_READ_LOCATION_n bits */ +#define READ_LOCATION_OFFSET 0 +#define READ_LOCATION_SIZE 16 +#define READ_LOCATION_LAST 31 + +/* Version Mask */ +#define NAND_VERSION_MAJOR_MASK 0xf0000000 +#define NAND_VERSION_MAJOR_SHIFT 28 +#define NAND_VERSION_MINOR_MASK 0x0fff0000 +#define NAND_VERSION_MINOR_SHIFT 16 + +/* NAND OP_CMDs */ +#define OP_PAGE_READ 0x2 +#define OP_PAGE_READ_WITH_ECC 0x3 +#define OP_PAGE_READ_WITH_ECC_SPARE 0x4 +#define OP_PAGE_READ_ONFI_READ 0x5 +#define OP_PROGRAM_PAGE 0x6 +#define OP_PAGE_PROGRAM_WITH_ECC 0x7 +#define OP_PROGRAM_PAGE_SPARE 0x9 +#define OP_BLOCK_ERASE 0xa +#define OP_CHECK_STATUS 0xc +#define OP_FETCH_ID 0xb +#define OP_RESET_DEVICE 0xd + +/* Default Value for NAND_DEV_CMD_VLD */ +#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ + ERASE_START_VLD | SEQ_READ_START_VLD) + +/* NAND_CTRL bits */ +#define BAM_MODE_EN BIT(0) + +/* + * the NAND controller performs reads/writes with ECC in 516 byte chunks. + * the driver calls the chunks 'step' or 'codeword' interchangeably + */ +#define NANDC_STEP_SIZE 512 + +/* + * the largest page size we support is 8K, this will have 16 steps/codewords + * of 512 bytes each + */ +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) + +/* we read at most 3 registers per codeword scan */ +#define MAX_REG_RD (3 * MAX_NUM_STEPS) + +#define QPIC_PER_CW_CMD_ELEMENTS 32 +#define QPIC_PER_CW_CMD_SGL 32 +#define QPIC_PER_CW_DATA_SGL 8 + +#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) + +/* + * Flags used in DMA descriptor preparation helper functions + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) + */ +/* Don't set the EOT in current tx BAM sgl */ +#define NAND_BAM_NO_EOT BIT(0) +/* Set the NWD flag in current BAM sgl */ +#define NAND_BAM_NWD BIT(1) +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */ +#define NAND_BAM_NEXT_SGL BIT(2) + +/* + * Returns the actual register address for all NAND_DEV_ registers + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) + */ +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) + +/* Returns the NAND register physical address */ +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) + +/* Returns the dma address for reg read buffer */ +#define reg_buf_dma_addr(chip, vaddr) \ + ((chip)->reg_read_dma + \ + ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf)) + +/* + * Erased codeword status is being used two times in single transfer so this + * flag will determine the current value of erased codeword status register + */ +#define NAND_ERASED_CW_SET BIT(4) + +#define MAX_ADDRESS_CYCLE 5 + +/* + * This data type corresponds to the BAM transaction which will be used for all + * NAND transfers. + * @bam_ce - the array of BAM command elements + * @cmd_sgl - sgl for NAND BAM command pipe + * @data_sgl - sgl for NAND BAM consumer/producer pipe + * @last_data_desc - last DMA desc in data channel (tx/rx). + * @last_cmd_desc - last DMA desc in command channel. + * @txn_done - completion for NAND transfer. + * @bam_ce_pos - the index in bam_ce which is available for next sgl + * @bam_ce_start - the index in bam_ce which marks the start position ce + * for current sgl. It will be used for size calculation + * for current sgl + * @cmd_sgl_pos - current index in command sgl. + * @cmd_sgl_start - start index in command sgl. + * @tx_sgl_pos - current index in data sgl for tx. + * @tx_sgl_start - start index in data sgl for tx. + * @rx_sgl_pos - current index in data sgl for rx. + * @rx_sgl_start - start index in data sgl for rx. + * @wait_second_completion - wait for second DMA desc completion before making + * the NAND transfer completion. + */ +struct bam_transaction { + struct bam_cmd_element *bam_ce; + struct scatterlist *cmd_sgl; + struct scatterlist *data_sgl; + struct dma_async_tx_descriptor *last_data_desc; + struct dma_async_tx_descriptor *last_cmd_desc; + struct completion txn_done; + u32 bam_ce_pos; + u32 bam_ce_start; + u32 cmd_sgl_pos; + u32 cmd_sgl_start; + u32 tx_sgl_pos; + u32 tx_sgl_start; + u32 rx_sgl_pos; + u32 rx_sgl_start; + bool wait_second_completion; +}; + +/* + * This data type corresponds to the nand dma descriptor + * @dma_desc - low level DMA engine descriptor + * @list - list for desc_info + * + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by + * ADM + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM + * @dir - DMA transfer direction + */ +struct desc_info { + struct dma_async_tx_descriptor *dma_desc; + struct list_head node; + + union { + struct scatterlist adm_sgl; + struct { + struct scatterlist *bam_sgl; + int sgl_cnt; + }; + }; + enum dma_data_direction dir; +}; + +/* + * holds the current register values that we want to write. acts as a contiguous + * chunk of memory which we use to write the controller registers through DMA. + */ +struct nandc_regs { + __le32 cmd; + __le32 addr0; + __le32 addr1; + __le32 chip_sel; + __le32 exec; + + __le32 cfg0; + __le32 cfg1; + __le32 ecc_bch_cfg; + + __le32 clrflashstatus; + __le32 clrreadstatus; + + __le32 cmd1; + __le32 vld; + + __le32 orig_cmd1; + __le32 orig_vld; + + __le32 ecc_buf_cfg; + __le32 read_location0; + __le32 read_location1; + __le32 read_location2; + __le32 read_location3; + __le32 read_location_last0; + __le32 read_location_last1; + __le32 read_location_last2; + __le32 read_location_last3; + + __le32 erased_cw_detect_cfg_clr; + __le32 erased_cw_detect_cfg_set; +}; + +/* + * NAND controller data struct + * + * @dev: parent device + * + * @base: MMIO base + * + * @core_clk: controller clock + * @aon_clk: another controller clock + * + * @regs: a contiguous chunk of memory for DMA register + * writes. contains the register values to be + * written to controller + * + * @props: properties of current NAND controller, + * initialized via DT match data + * + * @controller: base controller structure + * @host_list: list containing all the chips attached to the + * controller + * + * @chan: dma channel + * @cmd_crci: ADM DMA CRCI for command flow control + * @data_crci: ADM DMA CRCI for data flow control + * + * @desc_list: DMA descriptor list (list of desc_infos) + * + * @data_buffer: our local DMA buffer for page read/writes, + * used when we can't use the buffer provided + * by upper layers directly + * @reg_read_buf: local buffer for reading back registers via DMA + * + * @base_phys: physical base address of controller registers + * @base_dma: dma base address of controller registers + * @reg_read_dma: contains dma address for register read buffer + * + * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf + * functions + * @max_cwperpage: maximum QPIC codewords required. calculated + * from all connected NAND devices pagesize + * + * @reg_read_pos: marker for data read in reg_read_buf + * + * @cmd1/vld: some fixed controller register values + * + * @exec_opwrite: flag to select correct number of code word + * while reading status + */ +struct qcom_nand_controller { + struct device *dev; + + void __iomem *base; + + struct clk *core_clk; + struct clk *aon_clk; + + struct nandc_regs *regs; + struct bam_transaction *bam_txn; + + const struct qcom_nandc_props *props; + + struct nand_controller controller; + struct list_head host_list; + + union { + /* will be used only by QPIC for BAM DMA */ + struct { + struct dma_chan *tx_chan; + struct dma_chan *rx_chan; + struct dma_chan *cmd_chan; + }; + + /* will be used only by EBI2 for ADM DMA */ + struct { + struct dma_chan *chan; + unsigned int cmd_crci; + unsigned int data_crci; + }; + }; + + struct list_head desc_list; + + u8 *data_buffer; + __le32 *reg_read_buf; + + phys_addr_t base_phys; + dma_addr_t base_dma; + dma_addr_t reg_read_dma; + + int buf_size; + int buf_count; + int buf_start; + unsigned int max_cwperpage; + + int reg_read_pos; + + u32 cmd1, vld; + bool exec_opwrite; +}; + +/* + * This data type corresponds to the NAND controller properties which varies + * among different NAND controllers. + * @ecc_modes - ecc mode for NAND + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset + * @is_bam - whether NAND controller is using BAM + * @is_qpic - whether NAND CTRL is part of qpic IP + * @qpic_v2 - flag to indicate QPIC IP version 2 + * @use_codeword_fixup - whether NAND has different layout for boot partitions + */ +struct qcom_nandc_props { + u32 ecc_modes; + u32 dev_cmd_reg_start; + bool is_bam; + bool is_qpic; + bool qpic_v2; + bool use_codeword_fixup; +}; + +void config_nand_page_read(struct nand_chip *chip); +void qcom_qpic_bam_dma_done(void *data); +void qcom_nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu); +__le32 *qcom_offset_to_nandc_reg(struct nandc_regs *regs, int offset); +int qcom_prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, int size, + bool flow_control); +int qcom_submit_descs(struct qcom_nand_controller *nandc); +int qcom_prepare_bam_async_desc(struct qcom_nand_controller *nandc, + struct dma_chan *chan, unsigned long flags); +int qcom_prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, + int size, unsigned int flags); +int qcom_prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, + const void *vaddr, + int size, unsigned int flags); +int qcom_read_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags); +int qcom_write_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags); +int qcom_read_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags); +int qcom_write_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags); +struct bam_transaction *qcom_alloc_bam_transaction(struct qcom_nand_controller *nandc); +void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc); +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc); +int qcom_nandc_alloc(struct qcom_nand_controller *nandc); +void qcom_clear_read_regs(struct qcom_nand_controller *nandc); +void qcom_free_bam_transaction(struct qcom_nand_controller *nandc); +#endif -- 2.34.1