This patch includes "gsi.c", which implements the generic software interface (GSI) for IPA. The generic software interface abstracts channels, which provide a means of transferring data either from the AP to the IPA, or from the IPA to the AP. A ring buffer of "transfer elements" (TREs) is used to describe data transfers to perform. The AP writes a doorbell register associated with a channel to let it know it has added new entries (for an AP->IPA channel) or has finished processing entries (for an IPA->AP channel). Each channel also has an event ring buffer, used by the IPA to communicate information about events related to a channel (for example, the completion of TREs). The IPA writes its own doorbell register, which triggers an interrupt on the AP, to signal that new event information has arrived. Signed-off-by: Alex Elder <elder@xxxxxxxxxx> --- drivers/net/ipa/gsi.c | 2055 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2055 insertions(+) create mode 100644 drivers/net/ipa/gsi.c diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c new file mode 100644 index 000000000000..845478a19a4f --- /dev/null +++ b/drivers/net/ipa/gsi.c @@ -0,0 +1,2055 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. + * Copyright (C) 2018-2020 Linaro Ltd. + */ + +#include <linux/types.h> +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/mutex.h> +#include <linux/completion.h> +#include <linux/io.h> +#include <linux/bug.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/netdevice.h> + +#include "gsi.h" +#include "gsi_reg.h" +#include "gsi_private.h" +#include "gsi_trans.h" +#include "ipa_gsi.h" +#include "ipa_data.h" + +/** + * DOC: The IPA Generic Software Interface + * + * The generic software interface (GSI) is an integral component of the IPA, + * providing a well-defined communication layer between the AP subsystem + * and the IPA core. The modem uses the GSI layer as well. + * + * -------- --------- + * | | | | + * | AP +<---. .----+ Modem | + * | +--. | | .->+ | + * | | | | | | | | + * -------- | | | | --------- + * v | v | + * --+-+---+-+-- + * | GSI | + * |-----------| + * | | + * | IPA | + * | | + * ------------- + * + * In the above diagram, the AP and Modem represent "execution environments" + * (EEs), which are independent operating environments that use the IPA for + * data transfer. + * + * Each EE uses a set of unidirectional GSI "channels," which allow transfer + * of data to or from the IPA. A channel is implemented as a ring buffer, + * with a DRAM-resident array of "transfer elements" (TREs) available to + * describe transfers to or from other EEs through the IPA. A transfer + * element can also contain an immediate command, requesting the IPA perform + * actions other than data transfer. + * + * Each TRE refers to a block of data--also located DRAM. After writing one + * or more TREs to a channel, the writer (either the IPA or an EE) writes a + * doorbell register to inform the receiving side how many elements have + * been written. + * + * Each channel has a GSI "event ring" associated with it. An event ring + * is implemented very much like a channel ring, but is always directed from + * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel + * events by adding an entry to the event ring associated with the channel. + * The GSI then writes its doorbell for the event ring, causing the target + * EE to be interrupted. Each entry in an event ring contains a pointer + * to the channel TRE whose completion the event represents. + * + * Each TRE in a channel ring has a set of flags. One flag indicates whether + * the completion of the transfer operation generates an entry (and possibly + * an interrupt) in the channel's event ring. Other flags allow transfer + * elements to be chained together, forming a single logical transaction. + * TRE flags are used to control whether and when interrupts are generated + * to signal completion of channel transfers. + * + * Elements in channel and event rings are completed (or consumed) strictly + * in order. Completion of one entry implies the completion of all preceding + * entries. A single completion interrupt can therefore communicate the + * completion of many transfers. + * + * Note that all GSI registers are little-endian, which is the assumed + * endianness of I/O space accesses. The accessor functions perform byte + * swapping if needed (i.e., for a big endian CPU). + */ + +/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ +#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ + +#define GSI_CMD_TIMEOUT 5 /* seconds */ + +#define GSI_CHANNEL_STOP_RX_RETRIES 10 + +#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ +#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ + +#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ + +/* An entry in an event ring */ +struct gsi_event { + __le64 xfer_ptr; + __le16 len; + u8 reserved1; + u8 code; + __le16 reserved2; + u8 type; + u8 chid; +}; + +/* Hardware values from the error log register error code field */ +enum gsi_err_code { + GSI_INVALID_TRE_ERR = 0x1, + GSI_OUT_OF_BUFFERS_ERR = 0x2, + GSI_OUT_OF_RESOURCES_ERR = 0x3, + GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, + GSI_EVT_RING_EMPTY_ERR = 0x5, + GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, + GSI_HWO_1_ERR = 0x8, +}; + +/* Hardware values from the error log register error type field */ +enum gsi_err_type { + GSI_ERR_TYPE_GLOB = 0x1, + GSI_ERR_TYPE_CHAN = 0x2, + GSI_ERR_TYPE_EVT = 0x3, +}; + +/* Hardware values used when programming an event ring */ +enum gsi_evt_chtype { + GSI_EVT_CHTYPE_MHI_EV = 0x0, + GSI_EVT_CHTYPE_XHCI_EV = 0x1, + GSI_EVT_CHTYPE_GPI_EV = 0x2, + GSI_EVT_CHTYPE_XDCI_EV = 0x3, +}; + +/* Hardware values used when programming a channel */ +enum gsi_channel_protocol { + GSI_CHANNEL_PROTOCOL_MHI = 0x0, + GSI_CHANNEL_PROTOCOL_XHCI = 0x1, + GSI_CHANNEL_PROTOCOL_GPI = 0x2, + GSI_CHANNEL_PROTOCOL_XDCI = 0x3, +}; + +/* Hardware values representing an event ring immediate command opcode */ +enum gsi_evt_cmd_opcode { + GSI_EVT_ALLOCATE = 0x0, + GSI_EVT_RESET = 0x9, + GSI_EVT_DE_ALLOC = 0xa, +}; + +/* Hardware values representing a generic immediate command opcode */ +enum gsi_generic_cmd_opcode { + GSI_GENERIC_HALT_CHANNEL = 0x1, + GSI_GENERIC_ALLOCATE_CHANNEL = 0x2, +}; + +/* Hardware values representing a channel immediate command opcode */ +enum gsi_ch_cmd_opcode { + GSI_CH_ALLOCATE = 0x0, + GSI_CH_START = 0x1, + GSI_CH_STOP = 0x2, + GSI_CH_RESET = 0x9, + GSI_CH_DE_ALLOC = 0xa, +}; + +/** gsi_channel_scratch_gpi - GPI protocol scratch register + * @max_outstanding_tre: + * Defines the maximum number of TREs allowed in a single transaction + * on a channel (in bytes). This determines the amount of prefetch + * performed by the hardware. We configure this to equal the size of + * the TLV FIFO for the channel. + * @outstanding_threshold: + * Defines the threshold (in bytes) determining when the sequencer + * should update the channel doorbell. We configure this to equal + * the size of two TREs. + */ +struct gsi_channel_scratch_gpi { + u64 reserved1; + u16 reserved2; + u16 max_outstanding_tre; + u16 reserved3; + u16 outstanding_threshold; +}; + +/** gsi_channel_scratch - channel scratch configuration area + * + * The exact interpretation of this register is protocol-specific. + * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. + */ +union gsi_channel_scratch { + struct gsi_channel_scratch_gpi gpi; + struct { + u32 word1; + u32 word2; + u32 word3; + u32 word4; + } data; +}; + +/* Check things that can be validated at build time. */ +static void gsi_validate_build(void) +{ + /* This is used as a divisor */ + BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); + + /* Code assumes the size of channel and event ring element are + * the same (and fixed). Make sure the size of an event ring + * element is what's expected. + */ + BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); + + /* Hardware requires a 2^n ring size. We ensure the number of + * elements in an event ring is a power of 2 elsewhere; this + * ensure the elements themselves meet the requirement. + */ + BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); + + /* The channel element size must fit in this field */ + BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); + + /* The event ring element size must fit in this field */ + BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); +} + +/* Return the channel id associated with a given channel */ +static u32 gsi_channel_id(struct gsi_channel *channel) +{ + return channel - &channel->gsi->channel[0]; +} + +static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + gsi->event_enable_bitmap |= BIT(evt_ring_id); + val = gsi->event_enable_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); +} + +static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask) +{ + iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); +} + +static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + gsi->event_enable_bitmap &= ~BIT(evt_ring_id); + val = gsi->event_enable_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); +} + +/* Enable all GSI_interrupt types */ +static void gsi_irq_enable(struct gsi *gsi) +{ + u32 val; + + /* We don't use inter-EE channel or event interrupts */ + val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; + val &= ~MSK_INTER_EE_CH_CTRL_FMASK; + val &= ~MSK_INTER_EE_EV_CTRL_FMASK; + iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); + + val = GENMASK(gsi->channel_count - 1, 0); + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + + val = GENMASK(gsi->evt_ring_count - 1, 0); + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + + /* Each IEOB interrupt is enabled (later) as needed by channels */ + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + + val = GSI_CNTXT_GLOB_IRQ_ALL; + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + + /* Never enable GSI_BREAK_POINT */ + val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK; + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); +} + +/* Disable all GSI_interrupt types */ +static void gsi_irq_disable(struct gsi *gsi) +{ + iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); +} + +/* Return the virtual address associated with a ring index */ +void *gsi_ring_virt(struct gsi_ring *ring, u32 index) +{ + /* Note: index *must* be used modulo the ring count here */ + return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; +} + +/* Return the 32-bit DMA address associated with a ring index */ +static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) +{ + return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; +} + +/* Return the ring index of a 32-bit ring offset */ +static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) +{ + return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; +} + +/* Issue a GSI command by writing a value to a register, then wait for + * completion to be signaled. Returns true if the command completes + * or false if it times out. + */ +static bool +gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) +{ + reinit_completion(completion); + + iowrite32(val, gsi->virt + reg); + + return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); +} + +/* Return the hardware's notion of the current state of an event ring */ +static enum gsi_evt_ring_state +gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + return u32_get_bits(val, EV_CHSTATE_FMASK); +} + +/* Issue an event ring command and wait for it to complete */ +static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id, + enum gsi_evt_cmd_opcode opcode) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + struct completion *completion = &evt_ring->completion; + u32 val; + + val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); + val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); + + if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion)) + return 0; /* Success! */ + + dev_err(gsi->dev, "GSI command %u to event ring %u timed out " + "(state is %u)\n", opcode, evt_ring_id, evt_ring->state); + + return -ETIMEDOUT; +} + +/* Allocate an event ring in NOT_ALLOCATED state */ +static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + int ret; + + /* Get initial event ring state */ + evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); + + if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) + return -EINVAL; + + ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); + if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { + dev_err(gsi->dev, "bad event ring state (%u) after alloc\n", + evt_ring->state); + ret = -EIO; + } + + return ret; +} + +/* Reset a GSI event ring in ALLOCATED or ERROR state. */ +static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + enum gsi_evt_ring_state state = evt_ring->state; + int ret; + + if (state != GSI_EVT_RING_STATE_ALLOCATED && + state != GSI_EVT_RING_STATE_ERROR) { + dev_err(gsi->dev, "bad event ring state (%u) before reset\n", + evt_ring->state); + return; + } + + ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); + if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) + dev_err(gsi->dev, "bad event ring state (%u) after reset\n", + evt_ring->state); +} + +/* Issue a hardware de-allocation request for an allocated event ring */ +static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + int ret; + + if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { + dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n", + evt_ring->state); + return; + } + + ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); + if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) + dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n", + evt_ring->state); +} + +/* Return the hardware's notion of the current state of a channel */ +static enum gsi_channel_state +gsi_channel_state(struct gsi *gsi, u32 channel_id) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + return u32_get_bits(val, CHSTATE_FMASK); +} + +/* Issue a channel command and wait for it to complete */ +static int +gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) +{ + struct completion *completion = &channel->completion; + u32 channel_id = gsi_channel_id(channel); + u32 val; + + val = u32_encode_bits(channel_id, CH_CHID_FMASK); + val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); + + if (gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, completion)) + return 0; /* Success! */ + + dev_err(channel->gsi->dev, "GSI command %u to channel %u timed out " + "(state is %u)\n", opcode, channel_id, channel->state); + + return -ETIMEDOUT; +} + +/* Allocate GSI channel in NOT_ALLOCATED state */ +static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + /* Get initial channel state */ + channel->state = gsi_channel_state(gsi, channel_id); + + if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) + return -EINVAL; + + ret = gsi_channel_command(channel, GSI_CH_ALLOCATE); + if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) { + dev_err(gsi->dev, "bad channel state (%u) after alloc\n", + channel->state); + ret = -EIO; + } + + return ret; +} + +/* Start an ALLOCATED channel */ +static int gsi_channel_start_command(struct gsi_channel *channel) +{ + enum gsi_channel_state state = channel->state; + int ret; + + if (state != GSI_CHANNEL_STATE_ALLOCATED && + state != GSI_CHANNEL_STATE_STOPPED) + return -EINVAL; + + ret = gsi_channel_command(channel, GSI_CH_START); + if (!ret && channel->state != GSI_CHANNEL_STATE_STARTED) { + dev_err(channel->gsi->dev, + "bad channel state (%u) after start\n", + channel->state); + ret = -EIO; + } + + return ret; +} + +/* Stop a GSI channel in STARTED state */ +static int gsi_channel_stop_command(struct gsi_channel *channel) +{ + enum gsi_channel_state state = channel->state; + int ret; + + if (state != GSI_CHANNEL_STATE_STARTED && + state != GSI_CHANNEL_STATE_STOP_IN_PROC) + return -EINVAL; + + ret = gsi_channel_command(channel, GSI_CH_STOP); + if (ret || channel->state == GSI_CHANNEL_STATE_STOPPED) + return ret; + + /* We may have to try again if stop is in progress */ + if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC) + return -EAGAIN; + + dev_err(channel->gsi->dev, "bad channel state (%u) after stop\n", + channel->state); + + return -EIO; +} + +/* Reset a GSI channel in ALLOCATED or ERROR state. */ +static void gsi_channel_reset_command(struct gsi_channel *channel) +{ + int ret; + + msleep(1); /* A short delay is required before a RESET command */ + + if (channel->state != GSI_CHANNEL_STATE_STOPPED && + channel->state != GSI_CHANNEL_STATE_ERROR) { + dev_err(channel->gsi->dev, + "bad channel state (%u) before reset\n", + channel->state); + return; + } + + ret = gsi_channel_command(channel, GSI_CH_RESET); + if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) + dev_err(channel->gsi->dev, + "bad channel state (%u) after reset\n", + channel->state); +} + +/* Deallocate an ALLOCATED GSI channel */ +static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + if (channel->state != GSI_CHANNEL_STATE_ALLOCATED) { + dev_err(gsi->dev, "bad channel state (%u) before dealloc\n", + channel->state); + return; + } + + ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC); + if (!ret && channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) + dev_err(gsi->dev, "bad channel state (%u) after dealloc\n", + channel->state); +} + +/* Ring an event ring doorbell, reporting the last entry processed by the AP. + * The index argument (modulo the ring count) is the first unfilled entry, so + * we supply one less than that with the doorbell. Update the event ring + * index field with the value provided. + */ +static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) +{ + struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; + u32 val; + + ring->index = index; /* Next unused entry */ + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(ring, (index - 1) % ring->count); + iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); +} + +/* Program an event ring for use */ +static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; + u32 val; + + val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); + val |= EV_INTYPE_FMASK; + val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + val = u32_encode_bits(size, EV_R_LENGTH_FMASK); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the event ring, + * respectively. + */ + val = evt_ring->ring.addr & GENMASK(31, 0); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); + + val = evt_ring->ring.addr >> 32; + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); + + /* Enable interrupt moderation by setting the moderation delay */ + val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); + val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); + + /* No MSI write data, and MSI address high and low address is 0 */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); + + /* We don't need to get event read pointer updates */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); + + /* Finally, tell the hardware we've completed event 0 (arbitrary) */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); +} + +/* Return the last (most recent) transaction completed on a channel. */ +static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) +{ + struct gsi_trans_info *trans_info = &channel->trans_info; + struct gsi_trans *trans; + + spin_lock_bh(&trans_info->spinlock); + + if (!list_empty(&trans_info->complete)) + trans = list_last_entry(&trans_info->complete, + struct gsi_trans, links); + else if (!list_empty(&trans_info->polled)) + trans = list_last_entry(&trans_info->polled, + struct gsi_trans, links); + else + trans = NULL; + + /* Caller will wait for this, so take a reference */ + if (trans) + refcount_inc(&trans->refcount); + + spin_unlock_bh(&trans_info->spinlock); + + return trans; +} + +/* Wait for transaction activity on a channel to complete */ +static void gsi_channel_trans_quiesce(struct gsi_channel *channel) +{ + struct gsi_trans *trans; + + /* Get the last transaction, and wait for it to complete */ + trans = gsi_channel_trans_last(channel); + if (trans) { + wait_for_completion(&trans->completion); + gsi_trans_free(trans); + } +} + +/* Stop channel activity. Transactions may not be allocated until thawed. */ +static void gsi_channel_freeze(struct gsi_channel *channel) +{ + gsi_channel_trans_quiesce(channel); + + napi_disable(&channel->napi); + + gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); +} + +/* Allow transactions to be used on the channel again. */ +static void gsi_channel_thaw(struct gsi_channel *channel) +{ + gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); + + napi_enable(&channel->napi); +} + +/* Program a channel for use */ +static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) +{ + size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; + u32 channel_id = gsi_channel_id(channel); + union gsi_channel_scratch scr = { }; + struct gsi_channel_scratch_gpi *gpi; + struct gsi *gsi = channel->gsi; + u32 wrr_weight = 0; + u32 val; + + /* Arbitrarily pick TRE 0 as the first channel element to use */ + channel->tre_ring.index = 0; + + /* We program all channels to use GPI protocol */ + val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); + if (channel->toward_ipa) + val |= CHTYPE_DIR_FMASK; + val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); + val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + val = u32_encode_bits(size, R_LENGTH_FMASK); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the channel ring, + * respectively. + */ + val = channel->tre_ring.addr & GENMASK(31, 0); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); + + val = channel->tre_ring.addr >> 32; + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); + + /* Command channel gets low weighted round-robin priority */ + if (channel->command) + wrr_weight = field_max(WRR_WEIGHT_FMASK); + val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); + + /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ + + /* Enable the doorbell engine if requested */ + if (doorbell) + val |= USE_DB_ENG_FMASK; + + if (!channel->use_prefetch) + val |= USE_ESCAPE_BUF_ONLY_FMASK; + + iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); + + /* Now update the scratch registers for GPI protocol */ + gpi = &scr.gpi; + gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * + GSI_RING_ELEMENT_SIZE; + gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; + + val = scr.data.word1; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); + + val = scr.data.word2; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); + + val = scr.data.word3; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); + + /* We must preserve the upper 16 bits of the last scratch register. + * The next sequence assumes those bits remain unchanged between the + * read and the write. + */ + val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + + /* All done! */ +} + +static void gsi_channel_deprogram(struct gsi_channel *channel) +{ + /* Nothing to do */ +} + +/* Start an allocated GSI channel */ +int gsi_channel_start(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 evt_ring_id = channel->evt_ring_id; + int ret; + + mutex_lock(&gsi->mutex); + + ret = gsi_channel_start_command(channel); + + mutex_unlock(&gsi->mutex); + + /* Clear the channel's event ring interrupt in case it's pending */ + gsi_isr_ieob_clear(gsi, BIT(evt_ring_id)); + + gsi_channel_thaw(channel); + + return ret; +} + +/* Stop a started channel */ +int gsi_channel_stop(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 retries; + int ret; + + gsi_channel_freeze(channel); + + /* Channel could have entered STOPPED state since last call if the + * STOP command timed out. We won't stop a channel if stopping it + * was successful previously (so we still want the freeze above). + */ + if (channel->state == GSI_CHANNEL_STATE_STOPPED) + return 0; + + /* RX channels might require a little time to enter STOPPED state */ + retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; + + mutex_lock(&gsi->mutex); + + do { + ret = gsi_channel_stop_command(channel); + if (ret != -EAGAIN) + break; + msleep(1); + } while (retries--); + + mutex_unlock(&gsi->mutex); + + /* Thaw the channel if we need to retry (or on error) */ + if (ret) + gsi_channel_thaw(channel); + + return ret; +} + +/* Reset and reconfigure a channel (possibly leaving doorbell disabled) */ +void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + mutex_lock(&gsi->mutex); + + /* Due to a hardware quirk we need to reset RX channels twice. */ + gsi_channel_reset_command(channel); + if (!channel->toward_ipa) + gsi_channel_reset_command(channel); + + gsi_channel_program(channel, db_enable); + gsi_channel_trans_cancel_pending(channel); + + mutex_unlock(&gsi->mutex); +} + +/* Stop a STARTED channel for suspend (using stop if requested) */ +int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + if (stop) + return gsi_channel_stop(gsi, channel_id); + + gsi_channel_freeze(channel); + + return 0; +} + +/* Resume a suspended channel (starting will be requested if STOPPED) */ +int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + if (start) + return gsi_channel_start(gsi, channel_id); + + gsi_channel_thaw(channel); + + return 0; +} + +/** + * gsi_channel_tx_queued() - Report queued TX transfers for a channel + * @channel: Channel for which to report + * + * Report to the network stack the number of bytes and transactions that + * have been queued to hardware since last call. This and the next function + * supply information used by the network stack for throttling. + * + * For each channel we track the number of transactions used and bytes of + * data those transactions represent. We also track what those values are + * each time this function is called. Subtracting the two tells us + * the number of bytes and transactions that have been added between + * successive calls. + * + * Calling this each time we ring the channel doorbell allows us to + * provide accurate information to the network stack about how much + * work we've given the hardware at any point in time. + */ +void gsi_channel_tx_queued(struct gsi_channel *channel) +{ + u32 trans_count; + u32 byte_count; + + byte_count = channel->byte_count - channel->queued_byte_count; + trans_count = channel->trans_count - channel->queued_trans_count; + channel->queued_byte_count = channel->byte_count; + channel->queued_trans_count = channel->trans_count; + + ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), + trans_count, byte_count); +} + +/** + * gsi_channel_tx_update() - Report completed TX transfers + * @channel: Channel that has completed transmitting packets + * @trans: Last transation known to be complete + * + * Compute the number of transactions and bytes that have been transferred + * over a TX channel since the given transaction was committed. Report this + * information to the network stack. + * + * At the time a transaction is committed, we record its channel's + * committed transaction and byte counts *in the transaction*. + * Completions are signaled by the hardware with an interrupt, and + * we can determine the latest completed transaction at that time. + * + * The difference between the byte/transaction count recorded in + * the transaction and the count last time we recorded a completion + * tells us exactly how much data has been transferred between + * completions. + * + * Calling this each time we learn of a newly-completed transaction + * allows us to provide accurate information to the network stack + * about how much work has been completed by the hardware at a given + * point in time. + */ +static void +gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) +{ + u64 byte_count = trans->byte_count + trans->len; + u64 trans_count = trans->trans_count + 1; + + byte_count -= channel->compl_byte_count; + channel->compl_byte_count += byte_count; + trans_count -= channel->compl_trans_count; + channel->compl_trans_count += trans_count; + + ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), + trans_count, byte_count); +} + +/* Channel control interrupt handler */ +static void gsi_isr_chan_ctrl(struct gsi *gsi) +{ + u32 channel_mask; + + channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); + iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + + while (channel_mask) { + u32 channel_id = __ffs(channel_mask); + struct gsi_channel *channel; + + channel_mask ^= BIT(channel_id); + + channel = &gsi->channel[channel_id]; + channel->state = gsi_channel_state(gsi, channel_id); + + complete(&channel->completion); + } +} + +/* Event ring control interrupt handler */ +static void gsi_isr_evt_ctrl(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); + iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + struct gsi_evt_ring *evt_ring; + + event_mask ^= BIT(evt_ring_id); + + evt_ring = &gsi->evt_ring[evt_ring_id]; + evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); + + complete(&evt_ring->completion); + } +} + +/* Global channel error interrupt handler */ +static void +gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES_ERR) { + dev_err(gsi->dev, "channel %u out of resources\n", channel_id); + complete(&gsi->channel[channel_id].completion); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", + channel_id, err_ee, code); +} + +/* Global event error interrupt handler */ +static void +gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES_ERR) { + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + u32 channel_id = gsi_channel_id(evt_ring->channel); + + complete(&evt_ring->completion); + dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", + channel_id); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", + evt_ring_id, err_ee, code); +} + +/* Global error interrupt handler */ +static void gsi_isr_glob_err(struct gsi *gsi) +{ + enum gsi_err_type type; + enum gsi_err_code code; + u32 which; + u32 val; + u32 ee; + + /* Get the logged error, then reinitialize the log */ + val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); + + ee = u32_get_bits(val, ERR_EE_FMASK); + which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); + type = u32_get_bits(val, ERR_TYPE_FMASK); + code = u32_get_bits(val, ERR_CODE_FMASK); + + if (type == GSI_ERR_TYPE_CHAN) + gsi_isr_glob_chan_err(gsi, ee, which, code); + else if (type == GSI_ERR_TYPE_EVT) + gsi_isr_glob_evt_err(gsi, ee, which, code); + else /* type GSI_ERR_TYPE_GLOB should be fatal */ + dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); +} + +/* Generic EE interrupt handler */ +static void gsi_isr_gp_int1(struct gsi *gsi) +{ + u32 result; + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); + result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); + if (result != GENERIC_EE_SUCCESS_FVAL) + dev_err(gsi->dev, "global INT1 generic result %u\n", result); + + complete(&gsi->completion); +} +/* Inter-EE interrupt handler */ +static void gsi_isr_glob_ee(struct gsi *gsi) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); + + if (val & ERROR_INT_FMASK) + gsi_isr_glob_err(gsi); + + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); + + val &= ~ERROR_INT_FMASK; + + if (val & EN_GP_INT1_FMASK) { + val ^= EN_GP_INT1_FMASK; + gsi_isr_gp_int1(gsi); + } + + if (val) + dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); +} + +/* I/O completion interrupt event */ +static void gsi_isr_ieob(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); + gsi_isr_ieob_clear(gsi, event_mask); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + + event_mask ^= BIT(evt_ring_id); + + gsi_irq_ieob_disable(gsi, evt_ring_id); + napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); + } +} + +/* General event interrupts represent serious problems, so report them */ +static void gsi_isr_general(struct gsi *gsi) +{ + struct device *dev = gsi->dev; + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); + + if (val) + dev_err(dev, "unexpected general interrupt 0x%08x\n", val); +} + +/** + * gsi_isr() - Top level GSI interrupt service routine + * @irq: Interrupt number (ignored) + * @dev_id: GSI pointer supplied to request_irq() + * + * This is the main handler function registered for the GSI IRQ. Each type + * of interrupt has a separate handler function that is called from here. + */ +static irqreturn_t gsi_isr(int irq, void *dev_id) +{ + struct gsi *gsi = dev_id; + u32 intr_mask; + u32 cnt = 0; + + while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { + /* intr_mask contains bitmask of pending GSI interrupts */ + do { + u32 gsi_intr = BIT(__ffs(intr_mask)); + + intr_mask ^= gsi_intr; + + switch (gsi_intr) { + case CH_CTRL_FMASK: + gsi_isr_chan_ctrl(gsi); + break; + case EV_CTRL_FMASK: + gsi_isr_evt_ctrl(gsi); + break; + case GLOB_EE_FMASK: + gsi_isr_glob_ee(gsi); + break; + case IEOB_FMASK: + gsi_isr_ieob(gsi); + break; + case GENERAL_FMASK: + gsi_isr_general(gsi); + break; + default: + dev_err(gsi->dev, + "%s: unrecognized type 0x%08x\n", + __func__, gsi_intr); + break; + } + } while (intr_mask); + + if (++cnt > GSI_ISR_MAX_ITER) { + dev_err(gsi->dev, "interrupt flood\n"); + break; + } + } + + return IRQ_HANDLED; +} + +/* Return the transaction associated with a transfer completion event */ +static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, + struct gsi_event *event) +{ + u32 tre_offset; + u32 tre_index; + + /* Event xfer_ptr records the TRE it's associated with */ + tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); + tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); + + return gsi_channel_trans_mapped(channel, tre_index); +} + +/** + * gsi_evt_ring_rx_update() - Record lengths of received data + * @evt_ring: Event ring associated with channel that received packets + * @index: Event index in ring reported by hardware + * + * Events for RX channels contain the actual number of bytes received into + * the buffer. Every event has a transaction associated with it, and here + * we update transactions to record their actual received lengths. + * + * This function is called whenever we learn that the GSI hardware has filled + * new events since the last time we checked. The ring's index field tells + * the first entry in need of processing. The index provided is the + * first *unfilled* event in the ring (following the last filled one). + * + * Events are sequential within the event ring, and transactions are + * sequential within the transaction pool. + * + * Note that @index always refers to an element *within* the event ring. + */ +static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) +{ + struct gsi_channel *channel = evt_ring->channel; + struct gsi_ring *ring = &evt_ring->ring; + struct gsi_trans_info *trans_info; + struct gsi_event *event_done; + struct gsi_event *event; + struct gsi_trans *trans; + u32 byte_count = 0; + u32 old_index; + u32 event_avail; + + trans_info = &channel->trans_info; + + /* We'll start with the oldest un-processed event. RX channels + * replenish receive buffers in single-TRE transactions, so we + * can just map that event to its transaction. Transactions + * associated with completion events are consecutive. + */ + old_index = ring->index; + event = gsi_ring_virt(ring, old_index); + trans = gsi_event_trans(channel, event); + + /* Compute the number of events to process before we wrap, + * and determine when we'll be done processing events. + */ + event_avail = ring->count - old_index % ring->count; + event_done = gsi_ring_virt(ring, index); + do { + trans->len = __le16_to_cpu(event->len); + byte_count += trans->len; + + /* Move on to the next event and transaction */ + if (--event_avail) + event++; + else + event = gsi_ring_virt(ring, 0); + trans = gsi_trans_pool_next(&trans_info->pool, trans); + } while (event != event_done); + + /* We record RX bytes when they are received */ + channel->byte_count += byte_count; + channel->trans_count++; +} + +/* Initialize a ring, including allocating DMA memory for its entries */ +static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) +{ + size_t size = count * GSI_RING_ELEMENT_SIZE; + struct device *dev = gsi->dev; + dma_addr_t addr; + + /* Hardware requires a 2^n ring size, with alignment equal to size */ + ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); + if (ring->virt && addr % size) { + dma_free_coherent(dev, size, ring->virt, ring->addr); + dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", + size); + return -EINVAL; /* Not a good error value, but distinct */ + } else if (!ring->virt) { + return -ENOMEM; + } + ring->addr = addr; + ring->count = count; + + return 0; +} + +/* Free a previously-allocated ring */ +static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) +{ + size_t size = ring->count * GSI_RING_ELEMENT_SIZE; + + dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); +} + +/* Allocate an available event ring id */ +static int gsi_evt_ring_id_alloc(struct gsi *gsi) +{ + u32 evt_ring_id; + + if (gsi->event_bitmap == ~0U) { + dev_err(gsi->dev, "event rings exhausted\n"); + return -ENOSPC; + } + + evt_ring_id = ffz(gsi->event_bitmap); + gsi->event_bitmap |= BIT(evt_ring_id); + + return (int)evt_ring_id; +} + +/* Free a previously-allocated event ring id */ +static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) +{ + gsi->event_bitmap &= ~BIT(evt_ring_id); +} + +/* Ring a channel doorbell, reporting the first un-filled entry */ +void gsi_channel_doorbell(struct gsi_channel *channel) +{ + struct gsi_ring *tre_ring = &channel->tre_ring; + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + u32 val; + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); + iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); +} + +/* Consult hardware, move any newly completed transactions to completed list */ +static void gsi_channel_update(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + struct gsi_trans *trans; + struct gsi_ring *ring; + u32 offset; + u32 index; + + evt_ring = &gsi->evt_ring[evt_ring_id]; + ring = &evt_ring->ring; + + /* See if there's anything new to process; if not, we're done. Note + * that index always refers to an entry *within* the event ring. + */ + offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); + index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); + if (index == ring->index % ring->count) + return; + + /* Get the transaction for the latest completed event. Take a + * reference to keep it from completing before we give the events + * for this and previous transactions back to the hardware. + */ + trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); + refcount_inc(&trans->refcount); + + /* For RX channels, update each completed transaction with the number + * of bytes that were actually received. For TX channels, report + * the number of transactions and bytes this completion represents + * up the network stack. + */ + if (channel->toward_ipa) + gsi_channel_tx_update(channel, trans); + else + gsi_evt_ring_rx_update(evt_ring, index); + + gsi_trans_move_complete(trans); + + /* Tell the hardware we've handled these events */ + gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); + + gsi_trans_free(trans); +} + +/** + * gsi_channel_poll_one() - Return a single completed transaction on a channel + * @channel: Channel to be polled + * + * @Return: Transaction pointer, or null if none are available + * + * This function returns the first entry on a channel's completed transaction + * list. If that list is empty, the hardware is consulted to determine + * whether any new transactions have completed. If so, they're moved to the + * completed list and the new first entry is returned. If there are no more + * completed transactions, a null pointer is returned. + */ +static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) +{ + struct gsi_trans *trans; + + /* Get the first transaction from the completed list */ + trans = gsi_channel_trans_complete(channel); + if (!trans) { + /* List is empty; see if there's more to do */ + gsi_channel_update(channel); + trans = gsi_channel_trans_complete(channel); + } + + if (trans) + gsi_trans_move_polled(trans); + + return trans; +} + +/** + * gsi_channel_poll() - NAPI poll function for a channel + * @napi: NAPI structure for the channel + * @budget: Budget supplied by NAPI core + + * @Return: Number of items polled (<= budget) + * + * Single transactions completed by hardware are polled until either + * the budget is exhausted, or there are no more. Each transaction + * polled is passed to gsi_trans_complete(), to perform remaining + * completion processing and retire/free the transaction. + */ +static int gsi_channel_poll(struct napi_struct *napi, int budget) +{ + struct gsi_channel *channel; + int count = 0; + + channel = container_of(napi, struct gsi_channel, napi); + while (count < budget) { + struct gsi_trans *trans; + + trans = gsi_channel_poll_one(channel); + if (!trans) + break; + gsi_trans_complete(trans); + } + + if (count < budget) { + napi_complete(&channel->napi); + gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); + } + + return count; +} + +/* The event bitmap represents which event ids are available for allocation. + * Set bits are not available, clear bits can be used. This function + * initializes the map so all events supported by the hardware are available, + * then precludes any reserved events from being allocated. + */ +static u32 gsi_event_bitmap_init(u32 evt_ring_max) +{ + u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); + + event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); + + return event_bitmap; +} + +/* Setup function for event rings */ +static void gsi_evt_ring_setup(struct gsi *gsi) +{ + /* Nothing to do */ +} + +/* Inverse of gsi_evt_ring_setup() */ +static void gsi_evt_ring_teardown(struct gsi *gsi) +{ + /* Nothing to do */ +} + +/* Setup function for a single channel */ +static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id, + bool db_enable) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 evt_ring_id = channel->evt_ring_id; + int ret; + + if (!channel->gsi) + return 0; /* Ignore uninitialized channels */ + + ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); + if (ret) + return ret; + + gsi_evt_ring_program(gsi, evt_ring_id); + + ret = gsi_channel_alloc_command(gsi, channel_id); + if (ret) + goto err_evt_ring_de_alloc; + + gsi_channel_program(channel, db_enable); + + if (channel->toward_ipa) + netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll, NAPI_POLL_WEIGHT); + else + netif_napi_add(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll, NAPI_POLL_WEIGHT); + + return 0; + +err_evt_ring_de_alloc: + /* We've done nothing with the event ring yet so don't reset */ + gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); + + return ret; +} + +/* Inverse of gsi_channel_setup_one() */ +static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 evt_ring_id = channel->evt_ring_id; + + if (!channel->gsi) + return; /* Ignore uninitialized channels */ + + netif_napi_del(&channel->napi); + + gsi_channel_deprogram(channel); + gsi_channel_de_alloc_command(gsi, channel_id); + gsi_evt_ring_reset_command(gsi, evt_ring_id); + gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); +} + +static int gsi_generic_command(struct gsi *gsi, u32 channel_id, + enum gsi_generic_cmd_opcode opcode) +{ + struct completion *completion = &gsi->completion; + u32 val; + + val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); + val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); + val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); + + if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion)) + return 0; /* Success! */ + + dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", + opcode, channel_id); + + return -ETIMEDOUT; +} + +static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) +{ + return gsi_generic_command(gsi, channel_id, + GSI_GENERIC_ALLOCATE_CHANNEL); +} + +static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) +{ + int ret; + + ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL); + if (ret) + dev_err(gsi->dev, "error %d halting modem channel %u\n", + ret, channel_id); +} + +/* Setup function for channels */ +static int gsi_channel_setup(struct gsi *gsi, bool db_enable) +{ + u32 channel_id = 0; + u32 mask; + int ret; + + gsi_evt_ring_setup(gsi); + gsi_irq_enable(gsi); + + mutex_lock(&gsi->mutex); + + do { + ret = gsi_channel_setup_one(gsi, channel_id, db_enable); + if (ret) + goto err_unwind; + } while (++channel_id < gsi->channel_count); + + /* Make sure no channels were defined that hardware does not support */ + while (channel_id < GSI_CHANNEL_COUNT_MAX) { + struct gsi_channel *channel = &gsi->channel[channel_id++]; + + if (!channel->gsi) + continue; /* Ignore uninitialized channels */ + + dev_err(gsi->dev, "channel %u not supported by hardware\n", + channel_id - 1); + channel_id = gsi->channel_count; + goto err_unwind; + } + + /* Allocate modem channels if necessary */ + mask = gsi->modem_channel_bitmap; + while (mask) { + u32 modem_channel_id = __ffs(mask); + + ret = gsi_modem_channel_alloc(gsi, modem_channel_id); + if (ret) + goto err_unwind_modem; + + /* Clear bit from mask only after success (for unwind) */ + mask ^= BIT(modem_channel_id); + } + + mutex_unlock(&gsi->mutex); + + return 0; + +err_unwind_modem: + /* Compute which modem channels need to be deallocated */ + mask ^= gsi->modem_channel_bitmap; + while (mask) { + u32 channel_id = __fls(mask); + + mask ^= BIT(channel_id); + + gsi_modem_channel_halt(gsi, channel_id); + } + +err_unwind: + while (channel_id--) + gsi_channel_teardown_one(gsi, channel_id); + + mutex_unlock(&gsi->mutex); + + gsi_irq_disable(gsi); + gsi_evt_ring_teardown(gsi); + + return ret; +} + +/* Inverse of gsi_channel_setup() */ +static void gsi_channel_teardown(struct gsi *gsi) +{ + u32 mask = gsi->modem_channel_bitmap; + u32 channel_id; + + mutex_lock(&gsi->mutex); + + while (mask) { + u32 channel_id = __fls(mask); + + mask ^= BIT(channel_id); + + gsi_modem_channel_halt(gsi, channel_id); + } + + channel_id = gsi->channel_count - 1; + do + gsi_channel_teardown_one(gsi, channel_id); + while (channel_id--); + + mutex_unlock(&gsi->mutex); + + gsi_irq_disable(gsi); + gsi_evt_ring_teardown(gsi); +} + +/* Setup function for GSI. GSI firmware must be loaded and initialized */ +int gsi_setup(struct gsi *gsi, bool db_enable) +{ + u32 val; + + /* Here is where we first touch the GSI hardware */ + val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); + if (!(val & ENABLED_FMASK)) { + dev_err(gsi->dev, "GSI has not been enabled\n"); + return -EIO; + } + + val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); + + gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); + if (!gsi->channel_count) { + dev_err(gsi->dev, "GSI reports zero channels supported\n"); + return -EINVAL; + } + if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { + dev_warn(gsi->dev, + "limiting to %u channels (hardware supports %u)\n", + GSI_CHANNEL_COUNT_MAX, gsi->channel_count); + gsi->channel_count = GSI_CHANNEL_COUNT_MAX; + } + + gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); + if (!gsi->evt_ring_count) { + dev_err(gsi->dev, "GSI reports zero event rings supported\n"); + return -EINVAL; + } + if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { + dev_warn(gsi->dev, + "limiting to %u event rings (hardware supports %u)\n", + GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); + gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; + } + + /* Initialize the error log */ + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + + /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ + iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); + + return gsi_channel_setup(gsi, db_enable); +} + +/* Inverse of gsi_setup() */ +void gsi_teardown(struct gsi *gsi) +{ + gsi_channel_teardown(gsi); +} + +/* Initialize a channel's event ring */ +static int gsi_channel_evt_ring_init(struct gsi_channel *channel) +{ + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + int ret; + + ret = gsi_evt_ring_id_alloc(gsi); + if (ret < 0) + return ret; + channel->evt_ring_id = ret; + + evt_ring = &gsi->evt_ring[channel->evt_ring_id]; + evt_ring->channel = channel; + + ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); + if (!ret) + return 0; /* Success! */ + + dev_err(gsi->dev, "error %d allocating channel %u event ring\n", + ret, gsi_channel_id(channel)); + + gsi_evt_ring_id_free(gsi, channel->evt_ring_id); + + return ret; +} + +/* Inverse of gsi_channel_evt_ring_init() */ +static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + + evt_ring = &gsi->evt_ring[evt_ring_id]; + gsi_ring_free(gsi, &evt_ring->ring); + gsi_evt_ring_id_free(gsi, evt_ring_id); +} + +/* Init function for event rings */ +static void gsi_evt_ring_init(struct gsi *gsi) +{ + u32 evt_ring_id = 0; + + gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); + gsi->event_enable_bitmap = 0; + do + init_completion(&gsi->evt_ring[evt_ring_id].completion); + while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); +} + +/* Inverse of gsi_evt_ring_init() */ +static void gsi_evt_ring_exit(struct gsi *gsi) +{ + /* Nothing to do */ +} + +static bool gsi_channel_data_valid(struct gsi *gsi, + const struct ipa_gsi_endpoint_data *data) +{ +#ifdef IPA_VALIDATION + u32 channel_id = data->channel_id; + struct device *dev = gsi->dev; + + /* Make sure channel ids are in the range driver supports */ + if (channel_id >= GSI_CHANNEL_COUNT_MAX) { + dev_err(dev, "bad channel id %u (must be less than %u)\n", + channel_id, GSI_CHANNEL_COUNT_MAX); + return false; + } + + if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { + dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id); + return false; + } + + if (!data->channel.tlv_count || + data->channel.tlv_count > GSI_TLV_MAX) { + dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n", + channel_id, data->channel.tlv_count, GSI_TLV_MAX); + return false; + } + + /* We have to allow at least one maximally-sized transaction to + * be outstanding (which would use tlv_count TREs). Given how + * gsi_channel_tre_max() is computed, tre_count has to be almost + * twice the TLV FIFO size to satisfy this requirement. + */ + if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { + dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", + channel_id, data->channel.tlv_count, + data->channel.tre_count); + return false; + } + + if (!is_power_of_2(data->channel.tre_count)) { + dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n", + channel_id, data->channel.tre_count); + return false; + } + + if (!is_power_of_2(data->channel.event_count)) { + dev_err(dev, "channel %u bad event_count %u (not power of 2)\n", + channel_id, data->channel.event_count); + return false; + } +#endif /* IPA_VALIDATION */ + + return true; +} + +/* Init function for a single channel */ +static int gsi_channel_init_one(struct gsi *gsi, + const struct ipa_gsi_endpoint_data *data, + bool command, bool prefetch) +{ + struct gsi_channel *channel; + u32 tre_count; + int ret; + + if (!gsi_channel_data_valid(gsi, data)) + return -EINVAL; + + /* Worst case we need an event for every outstanding TRE */ + if (data->channel.tre_count > data->channel.event_count) { + dev_warn(gsi->dev, "channel %u limited to %u TREs\n", + data->channel_id, data->channel.tre_count); + tre_count = data->channel.event_count; + } else { + tre_count = data->channel.tre_count; + } + + channel = &gsi->channel[data->channel_id]; + memset(channel, 0, sizeof(*channel)); + + channel->gsi = gsi; + channel->toward_ipa = data->toward_ipa; + channel->command = command; + channel->use_prefetch = command && prefetch; + channel->tlv_count = data->channel.tlv_count; + channel->tre_count = tre_count; + channel->event_count = data->channel.event_count; + init_completion(&channel->completion); + + ret = gsi_channel_evt_ring_init(channel); + if (ret) + goto err_clear_gsi; + + ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); + if (ret) { + dev_err(gsi->dev, "error %d allocating channel %u ring\n", + ret, data->channel_id); + goto err_channel_evt_ring_exit; + } + + ret = gsi_channel_trans_init(gsi, data->channel_id); + if (ret) + goto err_ring_free; + + if (command) { + u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); + + ret = ipa_cmd_pool_init(channel, tre_max); + } + if (!ret) + return 0; /* Success! */ + + gsi_channel_trans_exit(channel); +err_ring_free: + gsi_ring_free(gsi, &channel->tre_ring); +err_channel_evt_ring_exit: + gsi_channel_evt_ring_exit(channel); +err_clear_gsi: + channel->gsi = NULL; /* Mark it not (fully) initialized */ + + return ret; +} + +/* Inverse of gsi_channel_init_one() */ +static void gsi_channel_exit_one(struct gsi_channel *channel) +{ + if (!channel->gsi) + return; /* Ignore uninitialized channels */ + + if (channel->command) + ipa_cmd_pool_exit(channel); + gsi_channel_trans_exit(channel); + gsi_ring_free(channel->gsi, &channel->tre_ring); + gsi_channel_evt_ring_exit(channel); +} + +/* Init function for channels */ +static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count, + const struct ipa_gsi_endpoint_data *data, + bool modem_alloc) +{ + int ret = 0; + u32 i; + + gsi_evt_ring_init(gsi); + + /* The endpoint data array is indexed by endpoint name */ + for (i = 0; i < count; i++) { + bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; + + if (ipa_gsi_endpoint_data_empty(&data[i])) + continue; /* Skip over empty slots */ + + /* Mark modem channels to be allocated (hardware workaround) */ + if (data[i].ee_id == GSI_EE_MODEM) { + if (modem_alloc) + gsi->modem_channel_bitmap |= + BIT(data[i].channel_id); + continue; + } + + ret = gsi_channel_init_one(gsi, &data[i], command, prefetch); + if (ret) + goto err_unwind; + } + + return ret; + +err_unwind: + while (i--) { + if (ipa_gsi_endpoint_data_empty(&data[i])) + continue; + if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { + gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); + continue; + } + gsi_channel_exit_one(&gsi->channel[data->channel_id]); + } + gsi_evt_ring_exit(gsi); + + return ret; +} + +/* Inverse of gsi_channel_init() */ +static void gsi_channel_exit(struct gsi *gsi) +{ + u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; + + do + gsi_channel_exit_one(&gsi->channel[channel_id]); + while (channel_id--); + gsi->modem_channel_bitmap = 0; + + gsi_evt_ring_exit(gsi); +} + +/* Init function for GSI. GSI hardware does not need to be "ready" */ +int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, + u32 count, const struct ipa_gsi_endpoint_data *data, + bool modem_alloc) +{ + struct resource *res; + resource_size_t size; + unsigned int irq; + int ret; + + gsi_validate_build(); + + gsi->dev = &pdev->dev; + + /* The GSI layer performs NAPI on all endpoints. NAPI requires a + * network device structure, but the GSI layer does not have one, + * so we must create a dummy network device for this purpose. + */ + init_dummy_netdev(&gsi->dummy_dev); + + /* Get the GSI IRQ and request for it to wake the system */ + ret = platform_get_irq_byname(pdev, "gsi"); + if (ret <= 0) { + dev_err(gsi->dev, + "DT error %d getting \"gsi\" IRQ property\n", ret); + return ret ? : -EINVAL; + } + irq = ret; + + ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); + if (ret) { + dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); + return ret; + } + gsi->irq = irq; + + ret = enable_irq_wake(gsi->irq); + if (ret) + dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret); + gsi->irq_wake_enabled = !ret; + + /* Get GSI memory range and map it */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); + if (!res) { + dev_err(gsi->dev, + "DT error getting \"gsi\" memory property\n"); + ret = -ENODEV; + goto err_disable_irq_wake; + } + + size = resource_size(res); + if (res->start > U32_MAX || size > U32_MAX - res->start) { + dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n"); + ret = -EINVAL; + goto err_disable_irq_wake; + } + + gsi->virt = ioremap(res->start, size); + if (!gsi->virt) { + dev_err(gsi->dev, "unable to remap \"gsi\" memory\n"); + ret = -ENOMEM; + goto err_disable_irq_wake; + } + + ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc); + if (ret) + goto err_iounmap; + + mutex_init(&gsi->mutex); + init_completion(&gsi->completion); + + return 0; + +err_iounmap: + iounmap(gsi->virt); +err_disable_irq_wake: + if (gsi->irq_wake_enabled) + (void)disable_irq_wake(gsi->irq); + free_irq(gsi->irq, gsi); + + return ret; +} + +/* Inverse of gsi_init() */ +void gsi_exit(struct gsi *gsi) +{ + mutex_destroy(&gsi->mutex); + gsi_channel_exit(gsi); + if (gsi->irq_wake_enabled) + (void)disable_irq_wake(gsi->irq); + free_irq(gsi->irq, gsi); + iounmap(gsi->virt); +} + +/* The maximum number of outstanding TREs on a channel. This limits + * a channel's maximum number of transactions outstanding (worst case + * is one TRE per transaction). + * + * The absolute limit is the number of TREs in the channel's TRE ring, + * and in theory we should be able use all of them. But in practice, + * doing that led to the hardware reporting exhaustion of event ring + * slots for writing completion information. So the hardware limit + * would be (tre_count - 1). + * + * We reduce it a bit further though. Transaction resource pools are + * sized to be a little larger than this maximum, to allow resource + * allocations to always be contiguous. The number of entries in a + * TRE ring buffer is a power of 2, and the extra resources in a pool + * tends to nearly double the memory allocated for it. Reducing the + * maximum number of outstanding TREs allows the number of entries in + * a pool to avoid crossing that power-of-2 boundary, and this can + * substantially reduce pool memory requirements. The number we + * reduce it by matches the number added in gsi_trans_pool_init(). + */ +u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + /* Hardware limit is channel->tre_count - 1 */ + return channel->tre_count - (channel->tlv_count - 1); +} + +/* Returns the maximum number of TREs in a single transaction for a channel */ +u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + return channel->tlv_count; +} -- 2.20.1