This patch includes "gsi.c", which implements the generic software interface (GSI) for IPA. The generic software interface abstracts channels, which provide a means of transferring data either from the AP to the IPA, or from the IPA to the AP. A ring buffer of "transfer elements" (TREs) is used to describe data transfers to perform. The AP writes a doorbell register associated with a channel to let it know it has added new entries (for an AP->IPA channel) or has finished processing entries (for an IPA->AP channel). Each channel also has an event ring buffer, used by the IPA to communicate information about events related to a channel (for example, the completion of TREs). The IPA writes its own doorbell register, which triggers an interrupt on the AP, to signal that new event information has arrived. Signed-off-by: Alex Elder <elder@xxxxxxxxxx> --- drivers/net/ipa/gsi.c | 1635 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1635 insertions(+) create mode 100644 drivers/net/ipa/gsi.c diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c new file mode 100644 index 000000000000..a749d3b0d792 --- /dev/null +++ b/drivers/net/ipa/gsi.c @@ -0,0 +1,1635 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. + * Copyright (C) 2018-2019 Linaro Ltd. + */ + +#include <linux/types.h> +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/mutex.h> +#include <linux/completion.h> +#include <linux/io.h> +#include <linux/bug.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/netdevice.h> + +#include "gsi.h" +#include "gsi_reg.h" +#include "gsi_private.h" +#include "gsi_trans.h" +#include "ipa_gsi.h" +#include "ipa_data.h" + +/** + * DOC: The IPA Generic Software Interface + * + * The generic software interface (GSI) is an integral component of the IPA, + * providing a well-defined communication layer between the AP subsystem + * and the IPA core. The modem uses the GSI layer as well. + * + * -------- --------- + * | | | | + * | AP +<---. .----+ Modem | + * | +--. | | .->+ | + * | | | | | | | | + * -------- | | | | --------- + * v | v | + * --+-+---+-+-- + * | GSI | + * |-----------| + * | | + * | IPA | + * | | + * ------------- + * + * In the above diagram, the AP and Modem represent "execution environments" + * (EEs), which are independent operating environments that use the IPA for + * data transfer. + * + * Each EE uses a set of unidirectional GSI "channels," which allow transfer + * of data to or from the IPA. A channel is implemented as a ring buffer, + * with a DRAM-resident array of "transfer elements" (TREs) available to + * describe transfers to or from other EEs through the IPA. A transfer + * element can also contain an immediate command, requesting the IPA perform + * actions other than data transfer. + * + * Each TRE refers to a block of data--also located DRAM. After writing one + * or more TREs to a channel, the writer (either the IPA or an EE) writes a + * doorbell register to inform the receiving side how many elements have + * been written. Writing to a doorbell register triggers within the GSI. + * + * Each channel has a GSI "event ring" associated with it. An event ring + * is implemented very much like a channel ring, but is always directed from + * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel + * events by adding an entry to the event ring associated with the channel. + * The GSI then writes its doorbell for the event ring, causing the target + * EE to be interrupted. Each entry in an event ring contains a pointer + * to the channel TRE whose completion the event represents. + * + * Each TRE in a channel ring has a set of flags. One flag indicates whether + * the completion of the transfer operation generates an entry (and possibly + * an interrupt) in the channel's event ring. Other flags allow transfer + * elements to be chained together, forming a single logical transaction. + * TRE flags are used to control whether and when interrupts are generated + * to signal completion of channel transfers. + * + * Elements in channel and event rings are completed (or consumed) strictly + * in order. Completion of one entry implies the completion of all preceding + * entries. A single completion interrupt can therefore communicate the + * completion of many transfers. + * + * Note that all GSI registers are little-endian, which is the assumed + * endianness of I/O space accesses. The accessor functions perform byte + * swapping if needed (i.e., for a big endian CPU). + */ + +/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ +#define IPA_GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ + +#define GSI_CMD_TIMEOUT 5 /* seconds */ + +#define GSI_MHI_ER_START 10 /* First reserved event number */ +#define GSI_MHI_ER_END 16 /* Last reserved event number */ + +#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ + +/* Hardware values from the error log register error code field */ +enum gsi_err_code { + GSI_INVALID_TRE_ERR = 0x1, + GSI_OUT_OF_BUFFERS_ERR = 0x2, + GSI_OUT_OF_RESOURCES_ERR = 0x3, + GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, + GSI_EVT_RING_EMPTY_ERR = 0x5, + GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, + GSI_HWO_1_ERR = 0x8, +}; + +/* Hardware values from the error log register error type field */ +enum gsi_err_type { + GSI_ERR_TYPE_GLOB = 0x1, + GSI_ERR_TYPE_CHAN = 0x2, + GSI_ERR_TYPE_EVT = 0x3, +}; + +/* Fields in an error log register at GSI_ERROR_LOG_OFFSET */ +#define GSI_LOG_ERR_ARG3_FMASK GENMASK(3, 0) +#define GSI_LOG_ERR_ARG2_FMASK GENMASK(7, 4) +#define GSI_LOG_ERR_ARG1_FMASK GENMASK(11, 8) +#define GSI_LOG_ERR_CODE_FMASK GENMASK(15, 12) +#define GSI_LOG_ERR_VIRT_IDX_FMASK GENMASK(23, 19) +#define GSI_LOG_ERR_TYPE_FMASK GENMASK(27, 24) +#define GSI_LOG_ERR_EE_FMASK GENMASK(31, 28) + +/* Hardware values used when programming an event ring */ +enum gsi_evt_chtype { + GSI_EVT_CHTYPE_MHI_EV = 0x0, + GSI_EVT_CHTYPE_XHCI_EV = 0x1, + GSI_EVT_CHTYPE_GPI_EV = 0x2, + GSI_EVT_CHTYPE_XDCI_EV = 0x3, +}; + +/* Hardware values used when programming a channel */ +enum gsi_channel_protocol { + GSI_CHANNEL_PROTOCOL_MHI = 0x0, + GSI_CHANNEL_PROTOCOL_XHCI = 0x1, + GSI_CHANNEL_PROTOCOL_GPI = 0x2, + GSI_CHANNEL_PROTOCOL_XDCI = 0x3, +}; + +/* Hardware values representing an event ring immediate command opcode */ +enum gsi_evt_ch_cmd_opcode { + GSI_EVT_ALLOCATE = 0x0, + GSI_EVT_RESET = 0x9, + GSI_EVT_DE_ALLOC = 0xa, +}; + +/* Hardware values representing a channel immediate command opcode */ +enum gsi_ch_cmd_opcode { + GSI_CH_ALLOCATE = 0x0, + GSI_CH_START = 0x1, + GSI_CH_STOP = 0x2, + GSI_CH_RESET = 0x9, + GSI_CH_DE_ALLOC = 0xa, + GSI_CH_DB_STOP = 0xb, +}; + +/** gsi_gpi_channel_scratch - GPI protocol scratch register + * + * @max_outstanding_tre: + * Defines the maximum number of TREs allowed in a single transaction + * on a channel (in Bytes). This determines the amount of prefetch + * performed by the hardware. We configure this to equal the size of + * the TLV FIFO for the channel. + * @outstanding_threshold: + * Defines the threshold (in Bytes) determining when the sequencer + * should update the channel doorbell. We configure this to equal + * the size of two TREs. + */ +struct gsi_gpi_channel_scratch { + u64 reserved1; + u16 reserved2; + u16 max_outstanding_tre; + u16 reserved3; + u16 outstanding_threshold; +}; + +/** gsi_channel_scratch - channel scratch configuration area + * + * The exact interpretation of this register is protocol-specific. + * We only use GPI channels; see struct gsi_gpi_channel_scratch, above. + */ +union gsi_channel_scratch { + struct gsi_gpi_channel_scratch gpi; + struct { + u32 word1; + u32 word2; + u32 word3; + u32 word4; + } data; +}; + +/* Return the channel id associated with a given channel */ +static u32 gsi_channel_id(struct gsi_channel *channel) +{ + return channel - &channel->gsi->channel[0]; +} + +/* Report the number of bytes queued to hardware since last call */ +void gsi_channel_tx_queued(struct gsi_channel *channel) +{ + u32 trans_count; + u32 byte_count; + + trans_count = channel->trans_count - channel->queued_trans_count; + byte_count = channel->byte_count - channel->queued_byte_count; + channel->queued_trans_count = channel->trans_count; + channel->queued_byte_count = channel->byte_count; + + ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), + trans_count, byte_count); +} + +static void gsi_irq_event_enable(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + gsi->event_enable_bitmap |= BIT(evt_ring_id); + val = gsi->event_enable_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); +} + +static void gsi_irq_event_disable(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + gsi->event_enable_bitmap &= ~BIT(evt_ring_id); + val = gsi->event_enable_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); +} + +/* Enable all GSI_interrupt types */ +static void gsi_irq_enable(struct gsi *gsi) +{ + u32 val; + + /* Inter EE commands / interrupt are not supported. */ + val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; + iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); + + val = GENMASK(GSI_CHANNEL_MAX - 1, 0); + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + + val = GENMASK(GSI_EVT_RING_MAX - 1, 0); + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + + /* Each IEOB interrupt is enabled (later) as needed by channels */ + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + + val = GSI_CNTXT_GLOB_IRQ_ALL; + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + + /* Never enable GSI_BREAK_POINT */ + val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK; + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); +} + +/* Disable all GSI_interrupt types */ +static void gsi_irq_disable(struct gsi *gsi) +{ + iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); +} + +/* Return the hardware's notion of the current state of a channel */ +static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) +{ + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + u32 val; + + val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + return u32_get_bits(val, CHSTATE_FMASK); +} + +/* Return the hardware's notion of the current state of an event ring */ +static enum gsi_evt_ring_state +gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + return u32_get_bits(val, EV_CHSTATE_FMASK); +} + +/* Channel control interrupt handler */ +static void gsi_isr_chan_ctrl(struct gsi *gsi) +{ + u32 channel_mask; + + channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); + iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + + while (channel_mask) { + u32 channel_id = __ffs(channel_mask); + struct gsi_channel *channel; + + channel_mask ^= BIT(channel_id); + + channel = &gsi->channel[channel_id]; + channel->state = gsi_channel_state(channel); + + complete(&channel->completion); + } +} + +static void gsi_isr_evt_ctrl(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); + iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + struct gsi_evt_ring *evt_ring; + + event_mask ^= BIT(evt_ring_id); + + evt_ring = &gsi->evt_ring[evt_ring_id]; + evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); + + complete(&evt_ring->completion); + } +} + +static void +gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES_ERR) { + dev_err(gsi->dev, "channel %u out of resources\n", channel_id); + complete(&gsi->channel[channel_id].completion); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", + channel_id, err_ee, code); +} + +static void +gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES_ERR) { + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + u32 channel_id = gsi_channel_id(evt_ring->channel); + + complete(&evt_ring->completion); + dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", + channel_id); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", + evt_ring_id, err_ee, code); +} + +static void gsi_isr_glob_err(struct gsi *gsi) +{ + enum gsi_err_type type; + enum gsi_err_code code; + u32 which; + u32 val; + u32 ee; + + /* Get the logged error, then reinitialize the log */ + val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); + + ee = u32_get_bits(val, GSI_LOG_ERR_EE_FMASK); + which = u32_get_bits(val, GSI_LOG_ERR_VIRT_IDX_FMASK); + type = u32_get_bits(val, GSI_LOG_ERR_TYPE_FMASK); + code = u32_get_bits(val, GSI_LOG_ERR_CODE_FMASK); + + if (type == GSI_ERR_TYPE_CHAN) + gsi_isr_glob_chan_err(gsi, ee, which, code); + else if (type == GSI_ERR_TYPE_EVT) + gsi_isr_glob_evt_err(gsi, ee, which, code); + else /* type GSI_ERR_TYPE_GLOB should be fatal */ + dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); +} + +static void gsi_isr_glob_ee(struct gsi *gsi) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); + + if (val & ERROR_INT_FMASK) + gsi_isr_glob_err(gsi); + + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); + + val &= ~ERROR_INT_FMASK; + + if (val & EN_GP_INT1_FMASK) { + dev_err(gsi->dev, "unexpected global INT1\n"); + val ^= EN_GP_INT1_FMASK; + } + + if (val) + dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); +} + +/* I/O completion interrupt event */ +static void gsi_isr_ieob(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); + iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + + event_mask ^= BIT(evt_ring_id); + + gsi_irq_event_disable(gsi, evt_ring_id); + napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); + } +} + +/* We don't currently expect to receive any inter-EE channel interrupts */ +static void gsi_isr_inter_ee_chan_ctrl(struct gsi *gsi) +{ + u32 channel_mask; + + channel_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_OFFSET); + iowrite32(channel_mask, gsi->virt + GSI_INTER_EE_SRC_CH_IRQ_CLR_OFFSET); + + while (channel_mask) { + u32 channel_id = __ffs(channel_mask); + + dev_err(gsi->dev, "ch %u inter-EE interrupt\n", channel_id); + channel_mask ^= BIT(channel_id); + } +} + +/* We don't currently expect to receive any inter-EE event interrupts */ +static void gsi_isr_inter_ee_evt_ctrl(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_OFFSET); + iowrite32(event_mask, + gsi->virt + GSI_INTER_EE_SRC_EV_CH_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + + event_mask ^= BIT(evt_ring_id); + + /* not currently expected */ + dev_err(gsi->dev, "evt %u inter-EE interrupt\n", evt_ring_id); + } +} + +/* We don't currently expect to receive any general event interrupts */ +static void gsi_isr_general(struct gsi *gsi) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); + + if (val & CLR_BREAK_POINT_FMASK) + dev_err(gsi->dev, "breakpoint!\n"); + val ^= CLR_BREAK_POINT_FMASK; + + if (val) + dev_err(gsi->dev, "unexpected general interrupt 0x%08x\n", val); +} + +/** + * gsi_isr() - Top level GSI interrupt service routine + * @irq: Interrupt number (ignored) + * @dev_id: GSI pointer supplied to request_irq() + * + * This is the main handler function registered for the GSI IRQ. Each type + * of interrupt has a separate handler function that is called from here. + */ +static irqreturn_t gsi_isr(int irq, void *dev_id) +{ + struct gsi *gsi = dev_id; + u32 intr_mask; + u32 cnt = 0; + + while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { + /* intr_mask contains bitmask of pending GSI interrupts */ + do { + u32 gsi_intr = BIT(__ffs(intr_mask)); + + intr_mask ^= gsi_intr; + + switch (gsi_intr) { + case CH_CTRL_FMASK: + gsi_isr_chan_ctrl(gsi); + break; + case EV_CTRL_FMASK: + gsi_isr_evt_ctrl(gsi); + break; + case GLOB_EE_FMASK: + gsi_isr_glob_ee(gsi); + break; + case IEOB_FMASK: + gsi_isr_ieob(gsi); + break; + case INTER_EE_CH_CTRL_FMASK: + gsi_isr_inter_ee_chan_ctrl(gsi); + break; + case INTER_EE_EV_CTRL_FMASK: + gsi_isr_inter_ee_evt_ctrl(gsi); + break; + case GENERAL_FMASK: + gsi_isr_general(gsi); + break; + default: + dev_err(gsi->dev, + "%s: unrecognized type 0x%08x\n", + __func__, gsi_intr); + break; + } + } while (intr_mask); + + if (++cnt > GSI_ISR_MAX_ITER) { + dev_err(gsi->dev, "interrupt flood\n"); + break; + } + } + + return IRQ_HANDLED; +} + +/* Return the virtual address associated with a ring index */ +void *gsi_ring_virt(struct gsi_ring *ring, u32 index) +{ + /* Note: index *must* be used modulo the ring count here */ + return ring->virt + (index % ring->count) * sizeof(struct gsi_tre); +} + +/* Return the 32-bit DMA address associated with a ring index */ +u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) +{ + return (ring->addr & GENMASK(31, 0)) + index * sizeof(struct gsi_tre); +} + +/* Return the ring index of a 32-bit ring offset */ +static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) +{ + /* Code assumes channel and event ring elements are the same size */ + BUILD_BUG_ON(sizeof(struct gsi_tre) != + sizeof(struct gsi_xfer_compl_evt)); + + return (offset - gsi_ring_addr(ring, 0)) / sizeof(struct gsi_tre); +} + +/* Return the transaction associated with a transfer completion event */ +static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, + struct gsi_xfer_compl_evt *evt) +{ + u32 tre_offset; + u32 tre_index; + + /* Event xfer_ptr records the TRE it's associated with */ + tre_offset = le64_to_cpu(evt->xfer_ptr) & GENMASK(31, 0); + tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); + + return gsi_channel_trans_mapped(channel, tre_index); +} +/** + * gsi_channel_tx_update() - Report completed TX transfers + * @channel: Channel that has completed transmitting packets + * @trans: Last transation known to be complete + * + * Compute the number of transactions and bytes that have been + * transferred on a TX channel, and report that to higher layers in + * the network stack for throttling. + */ +static void +gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) +{ + u64 byte_count = trans->byte_count + trans->len; + u64 trans_count = trans->trans_count + 1; + + byte_count -= channel->compl_byte_count; + channel->compl_byte_count += byte_count; + trans_count -= channel->compl_trans_count; + channel->compl_trans_count += trans_count;; + /* assert(trans_count <= U32_MAX); */ + + ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), + trans_count, byte_count); +} + +/** + * gsi_evt_ring_rx_update() - Record lengths of received data + * @evt_ring: Event ring associated with channel that received packets + * @index: Event index in ring reported by hardware + * + * Events for RX channels contain the actual number of bytes received into + * the buffer. Every event has a transaction associated with it, and here + * we update transactions to record their actual received lengths. + * + * This function is called whenever we learn that the GSI hardware has filled + * new events since the last time we checked. The ring's index field tells + * the first entry in need of processing. The index provided is the + * first *unfilled* event in the ring (following the last filled one). + * + * Events are sequential within the event ring, and transactions are + * sequential within the transaction pool. + * + * Note that @index always refers to an element *within* the event ring. + */ +static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) +{ + struct gsi_channel *channel = evt_ring->channel; + struct gsi_ring *ring = &evt_ring->ring; + struct gsi_xfer_compl_evt *evt_done; + struct gsi_trans_info *trans_info; + struct gsi_xfer_compl_evt *evt; + struct gsi_trans *trans; + u32 byte_count = 0; + u32 trans_avail; + u32 old_index; + u32 evt_avail; + + /* We'll start with the oldest un-processed event. RX channels + * replenish receive buffers in single-TRE transactions, so we + * can just map that event to its transaction. + */ + old_index = ring->index; + evt = gsi_ring_virt(ring, old_index); + trans = gsi_event_trans(channel, evt); + + /* Compute the number of events to process before we wrap */ + evt_avail = ring->count - old_index % ring->count; + + /* And compute how many transactions to process before we wrap */ + trans_info = &channel->trans_info; + trans_avail = (u32)(&trans_info->pool[trans_info->pool_count] - trans); + + /* Finally, determine when we'll be done processing events */ + evt_done = gsi_ring_virt(ring, index); + do { + trans->len = __le16_to_cpu(evt->len); + byte_count += trans->result; + + if (--evt_avail) + evt++; + else + evt = gsi_ring_virt(ring, 0); + + if (--trans_avail) + trans++; + else + trans = &trans_info->pool[0]; + } while (evt != evt_done); + + /* We record RX bytes when they are received */ + channel->byte_count += byte_count; + channel->trans_count++; +} + +/* Ring an event ring doorbell, reporting the last entry processed by the AP. + * The index argument (modulo the ring count) is the first unfilled entry, so + * we supply one less than that with the doorbell. Update the event ring + * index field with the value provided. + */ +static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) +{ + struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; + u32 val; + + ring->index = index; /* Next unused entry */ + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(ring, (index - 1) % ring->count); + iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); +} + +/* Return the maximum number of channels the hardware supports */ +static u32 gsi_channel_max(struct gsi *gsi) +{ + u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); + + return u32_get_bits(val, NUM_CH_PER_EE_FMASK); +} + +/* Return the maximum number of event rings the hardware supports */ +static u32 gsi_evt_ring_max(struct gsi *gsi) +{ + u32 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); + + return u32_get_bits(val, NUM_EV_PER_EE_FMASK); +} + +/* Issue a GSI command by writing a value to a register, then wait for + * completion to be signaled. Reports an error if the command times out. + * (Timeout is not expected, and suggests broken hardware.) + */ +static void +gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) +{ + reinit_completion(completion); + + iowrite32(val, gsi->virt + reg); + if (!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ)) + dev_err(gsi->dev, "%s timeout reg 0x%08x val 0x%08x\n", + __func__, reg, val); +} + +/* Issue an event ring command and wait for it to complete */ +static void evt_ring_command(struct gsi *gsi, u32 evt_ring_id, + enum gsi_evt_ch_cmd_opcode op) +{ + struct completion *completion = &gsi->evt_ring[evt_ring_id].completion; + u32 val = 0; + + val |= u32_encode_bits(evt_ring_id, EV_CHID_FMASK); + val |= u32_encode_bits(op, EV_OPCODE_FMASK); + + gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion); +} + +/* Issue a channel command and wait for it to complete */ +static void +gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode op) +{ + u32 channel_id = gsi_channel_id(channel); + u32 val = 0; + + val |= u32_encode_bits(channel_id, CH_CHID_FMASK); + val |= u32_encode_bits(op, CH_OPCODE_FMASK); + + gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, &channel->completion); +} + +/* Initialize a ring, including allocating DMA memory for its entries */ +static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) +{ + size_t size = count * sizeof(struct gsi_tre); + dma_addr_t addr; + + BUILD_BUG_ON(!is_power_of_2(sizeof(struct gsi_tre))); + + if (!count) + return -EINVAL; + + /* Hardware requires a 2^n ring size, with alignment equal to size */ + ring->virt = dma_alloc_coherent(gsi->dev, size, &addr, GFP_KERNEL); + if (ring->virt && addr % size) { + dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); + dev_err(gsi->dev, "unable to alloc 0x%zx-aligned ring buffer\n", + size); + return -EINVAL; /* Not a good error value, but distinct */ + } else if (!ring->virt) { + return -ENOMEM; + } + ring->addr = addr; + ring->count = count; + + return 0; +} + +/* Free a previously-allocated ring */ +static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) +{ + size_t size = ring->count * sizeof(struct gsi_tre); + + dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); +} + +/* Program an event ring for use */ +static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + size_t size = evt_ring->ring.count * sizeof(struct gsi_tre); + u32 val = 0; + + BUILD_BUG_ON(sizeof(struct gsi_xfer_compl_evt) > + field_max(EV_ELEMENT_SIZE_FMASK)); + + val |= u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); + val |= EV_INTYPE_FMASK; + val |= u32_encode_bits(sizeof(struct gsi_xfer_compl_evt), + EV_ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + val = u32_encode_bits(size, EV_R_LENGTH_FMASK); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the event ring, + * respectively. + */ + val = evt_ring->ring.addr & GENMASK(31, 0); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); + + val = evt_ring->ring.addr >> 32; + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); + + /* Enable interrupt moderation by setting the moderation delay */ + val = u32_encode_bits(IPA_GSI_EVT_RING_INT_MODT, MODT_FMASK); + val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); + + /* No MSI write data, and MSI address high and low address is 0 */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); + + /* We don't need to get event read pointer updates */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); +} + +/* Issue an allocation request to the hardware for an event ring */ +static int gsi_evt_ring_alloc_hw(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + + evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); + + if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { + dev_err(gsi->dev, "evt_ring_id %u allocation bad state %u\n", + evt_ring_id, evt_ring->state); + return -EIO; + } + + gsi_evt_ring_program(gsi, evt_ring_id); + + /* Have the first event in the ring be the first one filled. */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); + + return 0; +} + +/* Issue a hardware de-allocation request for an (allocated) event ring */ +static void gsi_evt_ring_free_hw(struct gsi *gsi, u32 evt_ring_id) +{ + evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); + + evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); +} + +/* Allocate an available event ring id */ +static int gsi_evt_ring_id_alloc(struct gsi *gsi) +{ + u32 evt_ring_id; + + if (gsi->event_bitmap == ~0U) + return -ENOSPC; + + evt_ring_id = ffz(gsi->event_bitmap); + gsi->event_bitmap |= BIT(evt_ring_id); + + return (int)evt_ring_id; +} + +/* Free a previously-allocated event ring id */ +static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) +{ + gsi->event_bitmap &= ~BIT(evt_ring_id); +} + +/* Ring a channel doorbell, reporting the first un-filled entry */ +void gsi_channel_doorbell(struct gsi_channel *channel) +{ + struct gsi_ring *tre_ring = &channel->tre_ring; + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + u32 val; + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); + iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); +} + +/* Consult hardware, move any newly completed transactions to completed list */ +static void gsi_channel_update(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + struct gsi_trans *trans; + struct gsi_ring *ring; + u32 offset; + u32 index; + + evt_ring = &gsi->evt_ring[evt_ring_id]; + ring = &evt_ring->ring; + + /* See if there's anything new to process; if not, we're done. Note + * that index always refers to an entry *within* the event ring. + */ + offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); + index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); + if (index == ring->index % ring->count) + return; + + /* Get the transaction for the latest completed event. Take a + * reference to keep it from completing before we give the events + * for this and previous transactions back to the hardware. + */ + trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); + refcount_inc(&trans->refcount); + + /* For RX channels, update each completed transaction with the number + * of bytes that were actually received. For TX channels, report + * the number of transactions and bytes this completion represents + * up the network stack. + */ + if (channel->toward_ipa) + gsi_channel_tx_update(channel, trans); + else + gsi_evt_ring_rx_update(evt_ring, index); + + gsi_trans_move_complete(trans); + + /* Tell the hardware we've handled these events */ + gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); + + gsi_trans_free(trans); +} + +/** + * gsi_channel_poll_one() - Return a single completed transaction on a channel + * @channel: Channel to be polled + * + * @Return: Transaction pointer, or null if none are available + * + * This function returns the first entry on a channel's completed transaction + * list. If that list is empty, the hardware is consulted to determine + * whether any new transactions have completed. If so, they're moved to the + * completed list and the new first entry is returned. If there are no more + * completed transactions, a null pointer is returned. + */ +static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) +{ + struct gsi_trans *trans; + + /* Get the first transaction from the completed list */ + trans = gsi_channel_trans_complete(channel); + if (!trans) { + /* List is empty; see if there's more to do */ + gsi_channel_update(channel); + trans = gsi_channel_trans_complete(channel); + } + + if (trans) + gsi_trans_move_polled(trans); + + return trans; +} + +/** + * gsi_channel_poll() - NAPI poll function for a channel + * @napi: NAPI structure for the channel + * @budget: Budget supplied by NAPI core + + * @Return: Number of items polled (<= budget) + * + * Single transactions completed by hardware are polled until either + * the budget is exhausted, or there are no more. Each transaction + * polled is passed to gsi_trans_complete(), to perform remaining + * completion processing and retire/free the transaction. + */ +static int gsi_channel_poll(struct napi_struct *napi, int budget) +{ + struct gsi_channel *channel; + int count = 0; + + channel = container_of(napi, struct gsi_channel, napi); + while (count < budget) { + struct gsi_trans *trans; + + trans = gsi_channel_poll_one(channel); + if (!trans) + break; + gsi_trans_complete(trans); + } + + if (count < budget) { + napi_complete(&channel->napi); + gsi_irq_event_enable(channel->gsi, channel->evt_ring_id); + } + + return count; +} + +/* The event bitmap represents which event ids are available for allocation. + * Set bits are not available, clear bits can be used. This function + * initializes the map so all events supported by the hardware are available, + * then precludes any reserved events from being allocated. + */ +static u32 gsi_event_bitmap_init(u32 evt_ring_max) +{ + u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); + + return event_bitmap | GENMASK(GSI_MHI_ER_END, GSI_MHI_ER_START); +} + +/* Setup function for event rings */ +static int gsi_evt_ring_setup(struct gsi *gsi) +{ + u32 evt_ring_max; + u32 evt_ring_id; + + evt_ring_max = gsi_evt_ring_max(gsi); + dev_dbg(gsi->dev, "evt_ring_max %u\n", evt_ring_max); + if (evt_ring_max != GSI_EVT_RING_MAX) + return -EIO; + + for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++) { + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + + evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); + if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) + return -EIO; + } + + return 0; +} + +/* Inverse of gsi_evt_ring_setup() */ +static void gsi_evt_ring_teardown(struct gsi *gsi) +{ + /* Nothing to do */ +} + +/* Configure a channel's "scratch registers" for a particular protocol */ +static void gsi_channel_scratch_write(struct gsi_channel *channel) +{ + u32 channel_id = gsi_channel_id(channel); + union gsi_channel_scratch scr = { }; + struct gsi_gpi_channel_scratch *gpi; + struct gsi *gsi = channel->gsi; + u32 val; + + /* See comments above definition of gsi_gpi_channel_scratch */ + gpi = &scr.gpi; + gpi->max_outstanding_tre = channel->data->tlv_count * + sizeof(struct gsi_tre); + gpi->outstanding_threshold = 2 * sizeof(struct gsi_tre); + + val = scr.data.word1; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); + + val = scr.data.word2; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); + + val = scr.data.word3; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); + + /* We must preserve the upper 16 bits of the last scratch register. + * The next sequence assumes those bits remain unchanged between the + * read and the write. + */ + val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); +} + +/* Program a channel for use */ +static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) +{ + size_t size = channel->tre_ring.count * sizeof(struct gsi_tre); + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + u32 wrr_weight = 0; + u32 val = 0; + + BUILD_BUG_ON(sizeof(struct gsi_tre) > field_max(ELEMENT_SIZE_FMASK)); + + val |= u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); + if (channel->toward_ipa) + val |= CHTYPE_DIR_FMASK; + val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); + val |= u32_encode_bits(sizeof(struct gsi_tre), ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + val = u32_encode_bits(size, R_LENGTH_FMASK); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the channel ring, + * respectively. + */ + val = channel->tre_ring.addr & GENMASK(31, 0); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); + + val = channel->tre_ring.addr >> 32; + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); + + if (channel->data->wrr_priority) + wrr_weight = field_max(WRR_WEIGHT_FMASK); + val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); + + /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ + if (doorbell) + val |= USE_DB_ENG_FMASK; + iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); +} + +/* Configure a channel; we configure all channels to use GPI protocol */ +static void gsi_channel_config(struct gsi_channel *channel, bool db_enable) +{ + /* Start at the first TRE entry each time we configure the channel */ + channel->tre_ring.index = 0; + gsi_channel_program(channel, db_enable); + gsi_channel_scratch_write(channel); +} + +/* Setup function for a single channel */ +static int gsi_channel_setup_one(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + u32 val; + int ret; + + if (!gsi) + return 0; /* Ignore uninitialized channels */ + + channel->state = gsi_channel_state(channel); + if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) + return -EIO; + + mutex_lock(&gsi->mutex); + + ret = gsi_evt_ring_alloc_hw(gsi, evt_ring_id); + if (ret) + goto err_mutex_unlock; + + gsi_channel_command(channel, GSI_CH_ALLOCATE); + gsi->channel_stats.allocate++; + + ret = channel->state == GSI_CHANNEL_STATE_ALLOCATED ? 0 : -EIO; + if (ret) + goto err_free_evt_ring; + + gsi_channel_config(channel, true); + + mutex_unlock(&gsi->mutex); + + if (channel->toward_ipa) + netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll, NAPI_POLL_WEIGHT); + else + netif_napi_add(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll, NAPI_POLL_WEIGHT); + + /* Enable the event interrupt (clear it first in case pending) */ + val = BIT(evt_ring_id); + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); + gsi_irq_event_enable(gsi, evt_ring_id); + + return 0; + +err_free_evt_ring: + gsi_evt_ring_free_hw(gsi, evt_ring_id); +err_mutex_unlock: + mutex_unlock(&gsi->mutex); + + return ret; +} + +/* Inverse of gsi_channel_setup_one() */ +static void gsi_channel_teardown_one(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + + if (!gsi) + return; + + gsi_irq_event_disable(gsi, evt_ring_id); + + netif_napi_del(&channel->napi); + + mutex_lock(&gsi->mutex); + + gsi_channel_command(channel, GSI_CH_DE_ALLOC); + gsi->channel_stats.free++; + + gsi_evt_ring_free_hw(gsi, evt_ring_id); + + mutex_unlock(&gsi->mutex); + + gsi_channel_trans_exit(channel); +} + +/* Setup function for channels */ +static int gsi_channel_setup(struct gsi *gsi) +{ + u32 channel_max; + u32 channel_id; + int ret; + + channel_max = gsi_channel_max(gsi); + dev_dbg(gsi->dev, "channel_max %u\n", channel_max); + if (channel_max != GSI_CHANNEL_MAX) + return -EIO; + + ret = gsi_evt_ring_setup(gsi); + if (ret) + return ret; + + gsi_irq_enable(gsi); + + for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) { + ret = gsi_channel_setup_one(&gsi->channel[channel_id]); + if (ret) + goto err_unwind; + } + + return 0; + +err_unwind: + while (channel_id--) + gsi_channel_teardown_one(&gsi->channel[channel_id]); + gsi_irq_enable(gsi); + gsi_evt_ring_teardown(gsi); + + return ret; +} + +/* Inverse of gsi_channel_setup() */ +static void gsi_channel_teardown(struct gsi *gsi) +{ + u32 channel_id; + + for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) { + struct gsi_channel *channel = &gsi->channel[channel_id]; + + gsi_channel_teardown_one(channel); + } + gsi_irq_disable(gsi); + gsi_evt_ring_teardown(gsi); +} + +/* Setup function for GSI. GSI firmware must be loaded and initialized */ +int gsi_setup(struct gsi *gsi) +{ + u32 val; + + /* Here is where we first touch the GSI hardware */ + val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); + if (!(val & ENABLED_FMASK)) { + dev_err(gsi->dev, "GSI has not been enabled\n"); + return -EIO; + } + + /* Initialize the error log */ + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + + /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ + iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); + + return gsi_channel_setup(gsi); +} + +/* Inverse of gsi_setup() */ +void gsi_teardown(struct gsi *gsi) +{ + gsi_channel_teardown(gsi); +} + +/* Initialize a channel's event ring */ +static int gsi_channel_evt_ring_init(struct gsi_channel *channel) +{ + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + int ret; + + ret = gsi_evt_ring_id_alloc(gsi); + if (ret < 0) + return ret; + channel->evt_ring_id = ret; + + evt_ring = &gsi->evt_ring[channel->evt_ring_id]; + evt_ring->channel = channel; + + ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->data->event_count); + if (ret) + goto err_free_evt_ring_id; + + return 0; + +err_free_evt_ring_id: + gsi_evt_ring_id_free(gsi, channel->evt_ring_id); + + return ret; +} + +/* Inverse of gsi_channel_evt_ring_init() */ +static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) +{ + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + + evt_ring = &gsi->evt_ring[channel->evt_ring_id]; + gsi_ring_free(gsi, &evt_ring->ring); + gsi_evt_ring_id_free(gsi, channel->evt_ring_id); +} + +/* Init function for event rings */ +static void gsi_evt_ring_init(struct gsi *gsi) +{ + u32 evt_ring_id; + + BUILD_BUG_ON(GSI_EVT_RING_MAX >= BITS_PER_LONG); + + gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_MAX); + gsi->event_enable_bitmap = 0; + for (evt_ring_id = 0; evt_ring_id < GSI_EVT_RING_MAX; evt_ring_id++) + init_completion(&gsi->evt_ring[evt_ring_id].completion); +} + +/* Inverse of gsi_evt_ring_init() */ +static void gsi_evt_ring_exit(struct gsi *gsi) +{ + /* Nothing to do */ +} + +/* Init function for a single channel */ +static int +gsi_channel_init_one(struct gsi *gsi, const struct gsi_ipa_endpoint_data *data) +{ + struct gsi_channel *channel; + int ret; + + if (data->ee_id != GSI_EE_AP) + return 0; /* Ignore non-AP channels */ + + if (data->channel_id >= GSI_CHANNEL_MAX) { + dev_err(gsi->dev, "bad channel id %u (must be less than %u)\n", + data->channel_id, GSI_CHANNEL_MAX); + return -EINVAL; + } + + /* The value 256 here is arbitrary, and much higher than expected */ + if (!data->channel.tlv_count || data->channel.tlv_count > 256) { + dev_err(gsi->dev, "bad tlv_count %u (must be 1..256)\n", + data->channel.tlv_count); + return -EINVAL; + } + + if (!is_power_of_2(data->channel.tre_count)) { + dev_err(gsi->dev, "bad tre_count %u (must be power of 2)\n", + data->channel.tre_count); + return -EINVAL; + } + + if (!is_power_of_2(data->channel.event_count)) { + dev_err(gsi->dev, "bad event_count %u (must be power of 2)\n", + data->channel.event_count); + return -EINVAL; + } + + channel = &gsi->channel[data->channel_id]; + memset(channel, 0, sizeof(*channel)); + + channel->gsi = gsi; + channel->toward_ipa = data->toward_ipa; + channel->data = &data->channel; + + init_completion(&channel->completion); + + ret = gsi_channel_evt_ring_init(channel); + if (ret) + return ret; + + ret = gsi_ring_alloc(gsi, &channel->tre_ring, channel->data->tre_count); + if (ret) + goto err_channel_evt_ring_exit; + + ret = gsi_channel_trans_init(channel); + if (ret) + goto err_ring_free; + + return 0; + +err_ring_free: + gsi_ring_free(gsi, &channel->tre_ring); +err_channel_evt_ring_exit: + gsi_channel_evt_ring_exit(channel); + + return ret; +} + +/* Inverse of gsi_channel_init_one() */ +static void gsi_channel_exit_one(struct gsi_channel *channel) +{ + gsi_channel_trans_exit(channel); + gsi_ring_free(channel->gsi, &channel->tre_ring); + gsi_channel_evt_ring_exit(channel); +} + +/* Init function for channels */ +static int gsi_channel_init(struct gsi *gsi, u32 data_count, + const struct gsi_ipa_endpoint_data *data) +{ + int ret = 0; + u32 i; + + gsi_evt_ring_init(gsi); + for (i = 0; i < data_count; i++) { + ret = gsi_channel_init_one(gsi, &data[i]); + if (ret) + break; + } + + return ret; +} + +/* Inverse of gsi_channel_init() */ +static void gsi_channel_exit(struct gsi *gsi) +{ + u32 channel_id; + + for (channel_id = 0; channel_id < GSI_CHANNEL_MAX; channel_id++) + gsi_channel_exit_one(&gsi->channel[channel_id]); + gsi_evt_ring_exit(gsi); +} + +/* Init function for GSI. GSI hardware does not need to be "ready" */ +int gsi_init(struct gsi *gsi, struct platform_device *pdev, u32 data_count, + const struct gsi_ipa_endpoint_data *data) +{ + struct resource *res; + resource_size_t size; + unsigned int irq; + int ret; + + gsi->dev = &pdev->dev; + + /* The GSI layer performs NAPI on all endpoints. NAPI requires a + * network device structure, but the GSI layer does not have one, + * so we must create a dummy network device for this purpose. + */ + init_dummy_netdev(&gsi->dummy_dev); + + /* Get GSI memory range and map it */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); + if (!res) + return -ENXIO; + + size = resource_size(res); + if (res->start > U32_MAX || size > U32_MAX - res->start) + return -EINVAL; + + gsi->virt = ioremap(res->start, size); + if (!gsi->virt) + return -ENOMEM; + + mutex_init(&gsi->mutex); + + ret = platform_get_irq_byname(pdev, "gsi"); + if (ret < 0) + goto err_unmap_virt; + irq = ret; + + ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); + if (ret) + goto err_unmap_virt; + gsi->irq = irq; + + ret = enable_irq_wake(gsi->irq); + if (ret) + dev_err(gsi->dev, "error %d enabling gsi wake irq\n", ret); + gsi->irq_wake_enabled = ret ? 0 : 1; + + ret = gsi_channel_init(gsi, data_count, data); + if (ret) + goto err_mutex_destroy; + + return 0; + +err_mutex_destroy: + if (gsi->irq_wake_enabled) + (void)disable_irq_wake(gsi->irq); + free_irq(gsi->irq, gsi); + mutex_destroy(&gsi->mutex); +err_unmap_virt: + iounmap(gsi->virt); + + return ret; +} + +/* Inverse of gsi_init() */ +void gsi_exit(struct gsi *gsi) +{ + gsi_channel_exit(gsi); + + if (gsi->irq_wake_enabled) + (void)disable_irq_wake(gsi->irq); + free_irq(gsi->irq, gsi); + mutex_destroy(&gsi->mutex); + iounmap(gsi->virt); +} + +/* Returns the maximum number of pending transactions on a channel */ +u32 gsi_channel_trans_max(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + return channel->data->tre_count; +} + +/* Returns the maximum number of TREs in a single transaction for a channel */ +u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + return channel->data->tlv_count; +} + +/* Wait for all transaction activity on a channel to complete */ +void gsi_channel_trans_quiesce(struct gsi *gsi, u32 channel_id) +{ + struct gsi_trans *trans; + + /* Get the last transaction, and wait for it to complete */ + trans = gsi_channel_trans_last(gsi, channel_id); + if (trans) { + wait_for_completion(&trans->completion); + gsi_trans_free(trans); + } +} + +/* Make a channel operational */ +int gsi_channel_start(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + if (channel->state != GSI_CHANNEL_STATE_ALLOCATED && + channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC && + channel->state != GSI_CHANNEL_STATE_STOPPED) { + dev_err(gsi->dev, "channel %u bad state %u\n", channel_id, + (u32)channel->state); + return -ENOTSUPP; + } + + napi_enable(&channel->napi); + + mutex_lock(&gsi->mutex); + + gsi_channel_command(channel, GSI_CH_START); + gsi->channel_stats.start++; + + mutex_unlock(&gsi->mutex); + + return 0; +} + +/* Stop an operational channel */ +int gsi_channel_stop(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + if (channel->state == GSI_CHANNEL_STATE_STOPPED) + return 0; + + if (channel->state != GSI_CHANNEL_STATE_STARTED && + channel->state != GSI_CHANNEL_STATE_STOP_IN_PROC && + channel->state != GSI_CHANNEL_STATE_ERROR) { + dev_err(gsi->dev, "channel %u bad state %u\n", channel_id, + (u32)channel->state); + return -ENOTSUPP; + } + + gsi_channel_trans_quiesce(gsi, channel_id); + + mutex_lock(&gsi->mutex); + + gsi_channel_command(channel, GSI_CH_STOP); + gsi->channel_stats.stop++; + + mutex_unlock(&gsi->mutex); + + if (channel->state == GSI_CHANNEL_STATE_STOPPED) + ret = 0; + else if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC) + ret = -EAGAIN; + else + ret = -EIO; + + if (!ret) + napi_disable(&channel->napi); + + return ret; +} + +/* Reset and reconfigure a GSI channel (possibly leaving doorbell disabled) */ +int gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + if (channel->state != GSI_CHANNEL_STATE_STOPPED) { + dev_err(gsi->dev, "channel %u bad state %u\n", channel_id, + (u32)channel->state); + return -ENOTSUPP; + } + + /* In case the reset follows stop, need to wait 1 msec */ + usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); + + mutex_lock(&gsi->mutex); + + gsi_channel_command(channel, GSI_CH_RESET); + gsi->channel_stats.reset++; + + /* workaround: reset RX channels again */ + if (!channel->toward_ipa) { + usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); + gsi_channel_command(channel, GSI_CH_RESET); + } + + gsi_channel_config(channel, db_enable); + + /* Cancel pending transactions before the channel is started again */ + gsi_channel_trans_cancel_pending(channel); + + mutex_unlock(&gsi->mutex); + + return 0; +} -- 2.20.1