Given an input clock rate $r_{\tt in}>0$ and a divisor d define a frequency

$$r(d) := \frac{r_{\tt in}}{2 \cdot d}$$

Now given a target frequency $r_{\text{target}} > 0$ find an integer divisor d_{int} such that

$$e(d_{\mathtt{int}}) := \left| \frac{1}{r_{\mathtt{target}}} - \frac{1}{r(d_{\mathtt{int}})} \right| = \left| \frac{1}{r_{\mathtt{target}}} - \frac{2 \cdot d_{\mathtt{int}}}{r_{\mathtt{in}}} \right|$$

is minimal. The optimal divisor $d_{\tt opt}$ is $\frac{r_{\tt in}}{2 \cdot r_{\tt target}}$ which might not be integer though. The obvious candidates for $d_{\tt int}$ are $d_{\uparrow} := \lceil d_{\tt opt} \rceil$ and $d_{\downarrow} := \lfloor d_{\tt opt} \rfloor$. Now assuming $d \geq d_{\uparrow}$, we have:

$$\begin{split} \frac{2 \cdot d}{r_{\text{in}}} & \geq & \frac{2 \cdot d_{\uparrow}}{r_{\text{in}}} \\ & = & \frac{2 \cdot \left\lceil d_{\text{opt}} \right\rceil}{r_{\text{in}}} \\ & \geq & \frac{2 \cdot d_{\text{opt}}}{r_{\text{in}}} \\ & \geq & \frac{2 \cdot \frac{r_{\text{in}}}{r_{\text{in}}}}{r_{\text{in}}} \\ & = & \frac{1}{r_{\text{target}}} \\ \implies e(d) & = & \left| \frac{1}{r_{\text{target}}} - \frac{2 \cdot d}{r_{\text{in}}} \right| \\ & = & \frac{2 \cdot d}{r_{\text{in}}} - \frac{1}{r_{\text{target}}} \end{split}$$

With this it's trivial to prove that $e(d_{\uparrow}) \leq e(d)$. An analogous calculation for $d \leq d_{\downarrow}$ shows $e(d_{\downarrow}) \leq e(d)$. So d_{\uparrow} and d_{\downarrow} are indeed the best integer approximations right and left of d_{opt} .

Now assume d_{\uparrow} is a better approximation than d_{\downarrow} :

$$\begin{array}{ccc} & e(d_{\uparrow}) & \leq & e(d_{\downarrow}) \\ \Longleftrightarrow & \left| \frac{1}{r_{\mathrm{target}}} - \frac{2 \cdot d_{\uparrow}}{r_{\mathrm{in}}} \right| & \leq & \left| \frac{1}{r_{\mathrm{target}}} - \frac{2 \cdot d_{\downarrow}}{r_{\mathrm{in}}} \right| \\ \Longleftrightarrow & \left| \frac{r_{\mathrm{in}}}{2 \cdot r_{\mathrm{target}}} - d_{\uparrow} \right| & \leq & \left| \frac{r_{\mathrm{in}}}{2 \cdot r_{\mathrm{target}}} - d_{\downarrow} \right| \\ \Longleftrightarrow & \left| d_{\mathrm{opt}} - d_{\uparrow} \right| & \leq & \left| d_{\mathrm{opt}} - d_{\downarrow} \right| \end{array}$$

So d_{int} is d_{opt} rounded to the nearest integer.