On Fri, 2009-01-23 at 16:30 +0800, Zhang, Yanmin wrote: > On Fri, 2009-01-23 at 10:06 +0200, Pekka Enberg wrote: > > On Fri, 2009-01-23 at 08:52 +0200, Pekka Enberg wrote: > > > > 1) If I start CPU_NUM clients and servers, SLUB's result is about 2% better than SLQB's; > > > > 2) If I start 1 clinet and 1 server, and bind them to different physical cpu, SLQB's result > > > > is about 10% better than SLUB's. > > > > > > > > I don't know why there is still 10% difference with item 2). Maybe cachemiss causes it? > > > > > > Maybe we can use the perfstat and/or kerneltop utilities of the new perf > > > counters patch to diagnose this: > > > > > > http://lkml.org/lkml/2009/1/21/273 > > > > > > And do oprofile, of course. Thanks! > > > > I assume binding the client and the server to different physical CPUs > > also means that the SKB is always allocated on CPU 1 and freed on CPU > > 2? If so, we will be taking the __slab_free() slow path all the time on > > kfree() which will cause cache effects, no doubt. > > > > But there's another potential performance hit we're taking because the > > object size of the cache is so big. As allocations from CPU 1 keep > > coming in, we need to allocate new pages and unfreeze the per-cpu page. > > That in turn causes __slab_free() to be more eager to discard the slab > > (see the PageSlubFrozen check there). > > > > So before going for cache profiling, I'd really like to see an oprofile > > report. I suspect we're still going to see much more page allocator > > activity > Theoretically, it should, but oprofile doesn't show that. That's bit surprising, actually. FWIW, I've included a patch for empty slab lists. But it's probably not going to help here. > > there than with SLAB or SLQB which is why we're still behaving > > so badly here. > > oprofile output with 2.6.29-rc2-slubrevertlarge: > CPU: Core 2, speed 2666.71 MHz (estimated) > Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (Unhalted core cycles) count 100000 > samples % app name symbol name > 132779 32.9951 vmlinux copy_user_generic_string > 25334 6.2954 vmlinux schedule > 21032 5.2264 vmlinux tg_shares_up > 17175 4.2679 vmlinux __skb_recv_datagram > 9091 2.2591 vmlinux sock_def_readable > 8934 2.2201 vmlinux mwait_idle > 8796 2.1858 vmlinux try_to_wake_up > 6940 1.7246 vmlinux __slab_free > > #slaninfo -AD > Name Objects Alloc Free %Fast > :0000256 1643 5215544 5214027 94 0 > kmalloc-8192 28 5189576 5189560 0 0 > :0000168 2631 141466 138976 92 28 > :0004096 1452 88697 87269 99 96 > :0000192 3402 63050 59732 89 11 > :0000064 6265 46611 40721 98 82 > :0000128 1895 30429 28654 93 32 Looking at __slab_free(), unless page->inuse is constantly zero and we discard the slab, it really is just cache effects (10% sounds like a lot, though!). AFAICT, the only way to optimize that is with Christoph's unfinished pointer freelists patches or with a remote free list like in SLQB. Pekka diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h index 3bd3662..41a4c1a 100644 --- a/include/linux/slub_def.h +++ b/include/linux/slub_def.h @@ -48,6 +48,9 @@ struct kmem_cache_node { unsigned long nr_partial; unsigned long min_partial; struct list_head partial; + unsigned long nr_empty; + unsigned long max_empty; + struct list_head empty; #ifdef CONFIG_SLUB_DEBUG atomic_long_t nr_slabs; atomic_long_t total_objects; diff --git a/mm/slub.c b/mm/slub.c index 8fad23f..5a12597 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -134,6 +134,11 @@ */ #define MAX_PARTIAL 10 +/* + * Maximum number of empty slabs. + */ +#define MAX_EMPTY 1 + #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ SLAB_POISON | SLAB_STORE_USER) @@ -1205,6 +1210,24 @@ static void discard_slab(struct kmem_cache *s, struct page *page) free_slab(s, page); } +static void discard_or_cache_slab(struct kmem_cache *s, struct page *page) +{ + struct kmem_cache_node *n; + int node; + + node = page_to_nid(page); + n = get_node(s, node); + + dec_slabs_node(s, node, page->objects); + + if (likely(n->nr_empty >= n->max_empty)) { + free_slab(s, page); + } else { + n->nr_empty++; + list_add(&page->lru, &n->partial); + } +} + /* * Per slab locking using the pagelock */ @@ -1252,7 +1275,7 @@ static void remove_partial(struct kmem_cache *s, struct page *page) } /* - * Lock slab and remove from the partial list. + * Lock slab and remove from the partial or empty list. * * Must hold list_lock. */ @@ -1261,7 +1284,6 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n, { if (slab_trylock(page)) { list_del(&page->lru); - n->nr_partial--; __SetPageSlubFrozen(page); return 1; } @@ -1271,7 +1293,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n, /* * Try to allocate a partial slab from a specific node. */ -static struct page *get_partial_node(struct kmem_cache_node *n) +static struct page *get_partial_or_empty_node(struct kmem_cache_node *n) { struct page *page; @@ -1281,13 +1303,22 @@ static struct page *get_partial_node(struct kmem_cache_node *n) * partial slab and there is none available then get_partials() * will return NULL. */ - if (!n || !n->nr_partial) + if (!n || (!n->nr_partial && !n->nr_empty)) return NULL; spin_lock(&n->list_lock); + list_for_each_entry(page, &n->partial, lru) - if (lock_and_freeze_slab(n, page)) + if (lock_and_freeze_slab(n, page)) { + n->nr_partial--; + goto out; + } + + list_for_each_entry(page, &n->empty, lru) + if (lock_and_freeze_slab(n, page)) { + n->nr_empty--; goto out; + } page = NULL; out: spin_unlock(&n->list_lock); @@ -1297,7 +1328,7 @@ out: /* * Get a page from somewhere. Search in increasing NUMA distances. */ -static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) +static struct page *get_any_partial_or_empty(struct kmem_cache *s, gfp_t flags) { #ifdef CONFIG_NUMA struct zonelist *zonelist; @@ -1336,7 +1367,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) if (n && cpuset_zone_allowed_hardwall(zone, flags) && n->nr_partial > n->min_partial) { - page = get_partial_node(n); + page = get_partial_or_empty_node(n); if (page) return page; } @@ -1346,18 +1377,19 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) } /* - * Get a partial page, lock it and return it. + * Get a partial or empty page, lock it and return it. */ -static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) +static struct page * +get_partial_or_empty(struct kmem_cache *s, gfp_t flags, int node) { struct page *page; int searchnode = (node == -1) ? numa_node_id() : node; - page = get_partial_node(get_node(s, searchnode)); + page = get_partial_or_empty_node(get_node(s, searchnode)); if (page || (flags & __GFP_THISNODE)) return page; - return get_any_partial(s, flags); + return get_any_partial_or_empty(s, flags); } /* @@ -1403,7 +1435,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) } else { slab_unlock(page); stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); - discard_slab(s, page); + discard_or_cache_slab(s, page); } } } @@ -1542,7 +1574,7 @@ another_slab: deactivate_slab(s, c); new_slab: - new = get_partial(s, gfpflags, node); + new = get_partial_or_empty(s, gfpflags, node); if (new) { c->page = new; stat(c, ALLOC_FROM_PARTIAL); @@ -1693,7 +1725,7 @@ slab_empty: } slab_unlock(page); stat(c, FREE_SLAB); - discard_slab(s, page); + discard_or_cache_slab(s, page); return; debug: @@ -1927,6 +1959,8 @@ static void init_kmem_cache_cpu(struct kmem_cache *s, static void init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) { + spin_lock_init(&n->list_lock); + n->nr_partial = 0; /* @@ -1939,8 +1973,18 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) else if (n->min_partial > MAX_PARTIAL) n->min_partial = MAX_PARTIAL; - spin_lock_init(&n->list_lock); INIT_LIST_HEAD(&n->partial); + + n->nr_empty = 0; + /* + * XXX: This needs to take object size into account. We don't need + * empty slabs for caches which will have plenty of partial slabs + * available. Only caches that have either full or empty slabs need + * this kind of optimization. + */ + n->max_empty = MAX_EMPTY; + INIT_LIST_HEAD(&n->empty); + #ifdef CONFIG_SLUB_DEBUG atomic_long_set(&n->nr_slabs, 0); atomic_long_set(&n->total_objects, 0); @@ -2427,6 +2471,32 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) spin_unlock_irqrestore(&n->list_lock, flags); } +static void free_empty_slabs(struct kmem_cache *s) +{ + int node; + + for_each_node_state(node, N_NORMAL_MEMORY) { + struct kmem_cache_node *n; + struct page *page, *t; + unsigned long flags; + + n = get_node(s, node); + + if (!n->nr_empty) + continue; + + spin_lock_irqsave(&n->list_lock, flags); + + list_for_each_entry_safe(page, t, &n->empty, lru) { + list_del(&page->lru); + n->nr_empty--; + + free_slab(s, page); + } + spin_unlock_irqrestore(&n->list_lock, flags); + } +} + /* * Release all resources used by a slab cache. */ @@ -2436,6 +2506,8 @@ static inline int kmem_cache_close(struct kmem_cache *s) flush_all(s); + free_empty_slabs(s); + /* Attempt to free all objects */ free_kmem_cache_cpus(s); for_each_node_state(node, N_NORMAL_MEMORY) { @@ -2765,6 +2837,7 @@ int kmem_cache_shrink(struct kmem_cache *s) return -ENOMEM; flush_all(s); + free_empty_slabs(s); for_each_node_state(node, N_NORMAL_MEMORY) { n = get_node(s, node); -- To unsubscribe from this list: send the line "unsubscribe linux-scsi" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html