Introduce functions to manipulate UFS inline encryption hardware in line with the JEDEC UFSHCI v2.1 specification and to work with the block keyslot manager. The UFS crypto API will assume by default that a vendor driver doesn't support UFS crypto, even if the hardware advertises the capability, because a lot of hardware requires some special handling that's not specified in the aforementioned JEDEC spec. Each vendor driver must explicity set hba->caps |= UFSHCD_CAP_CRYPTO before ufshcd_hba_init_crypto is called to opt-in to UFS crypto support. Signed-off-by: Satya Tangirala <satyat@xxxxxxxxxx> --- drivers/scsi/ufs/Kconfig | 9 + drivers/scsi/ufs/Makefile | 1 + drivers/scsi/ufs/ufshcd-crypto.c | 370 +++++++++++++++++++++++++++++++ drivers/scsi/ufs/ufshcd-crypto.h | 54 +++++ drivers/scsi/ufs/ufshcd.h | 14 ++ 5 files changed, 448 insertions(+) create mode 100644 drivers/scsi/ufs/ufshcd-crypto.c create mode 100644 drivers/scsi/ufs/ufshcd-crypto.h diff --git a/drivers/scsi/ufs/Kconfig b/drivers/scsi/ufs/Kconfig index d14c2243e02a..c69f1b49167b 100644 --- a/drivers/scsi/ufs/Kconfig +++ b/drivers/scsi/ufs/Kconfig @@ -160,3 +160,12 @@ config SCSI_UFS_BSG Select this if you need a bsg device node for your UFS controller. If unsure, say N. + +config SCSI_UFS_CRYPTO + bool "UFS Crypto Engine Support" + depends on SCSI_UFSHCD && BLK_INLINE_ENCRYPTION + help + Enable Crypto Engine Support in UFS. + Enabling this makes it possible for the kernel to use the crypto + capabilities of the UFS device (if present) to perform crypto + operations on data being transferred to/from the device. diff --git a/drivers/scsi/ufs/Makefile b/drivers/scsi/ufs/Makefile index 94c6c5d7334b..197e178f44bc 100644 --- a/drivers/scsi/ufs/Makefile +++ b/drivers/scsi/ufs/Makefile @@ -7,6 +7,7 @@ obj-$(CONFIG_SCSI_UFS_QCOM) += ufs-qcom.o obj-$(CONFIG_SCSI_UFSHCD) += ufshcd-core.o ufshcd-core-y += ufshcd.o ufs-sysfs.o ufshcd-core-$(CONFIG_SCSI_UFS_BSG) += ufs_bsg.o +ufshcd-core-$(CONFIG_SCSI_UFS_CRYPTO) += ufshcd-crypto.o obj-$(CONFIG_SCSI_UFSHCD_PCI) += ufshcd-pci.o obj-$(CONFIG_SCSI_UFSHCD_PLATFORM) += ufshcd-pltfrm.o obj-$(CONFIG_SCSI_UFS_HISI) += ufs-hisi.o diff --git a/drivers/scsi/ufs/ufshcd-crypto.c b/drivers/scsi/ufs/ufshcd-crypto.c new file mode 100644 index 000000000000..8b6f7c83f77f --- /dev/null +++ b/drivers/scsi/ufs/ufshcd-crypto.c @@ -0,0 +1,370 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright 2019 Google LLC + */ + +#include <linux/keyslot-manager.h> +#include "ufshcd.h" +#include "ufshcd-crypto.h" + +static inline int ufshcd_num_keyslots(struct ufs_hba *hba) +{ + return hba->crypto_capabilities.config_count + 1; +} + +static inline bool ufshcd_keyslot_valid(struct ufs_hba *hba, unsigned int slot) +{ + /* + * The actual number of configurations supported is (CFGC+1), so slot + * numbers range from 0 to config_count inclusive. + */ + return slot < ufshcd_num_keyslots(hba); +} + +static bool ufshcd_cap_idx_valid(struct ufs_hba *hba, unsigned int cap_idx) +{ + return cap_idx < hba->crypto_capabilities.num_crypto_cap; +} + +static u8 ufshcd_get_data_unit_size_mask(unsigned int data_unit_size) +{ + if (data_unit_size < 512 || data_unit_size > 65536 || + !is_power_of_2(data_unit_size)) + return 0; + + return data_unit_size / 512; +} + +static size_t ufshcd_get_keysize_bytes(enum ufs_crypto_key_size size) +{ + switch (size) { + case UFS_CRYPTO_KEY_SIZE_128: + return 16; + case UFS_CRYPTO_KEY_SIZE_192: + return 24; + case UFS_CRYPTO_KEY_SIZE_256: + return 32; + case UFS_CRYPTO_KEY_SIZE_512: + return 64; + default: + return 0; + } +} + +/* Blk-crypto modes supported by UFS crypto */ +static const struct { + enum ufs_crypto_alg ufs_alg; + enum ufs_crypto_key_size ufs_key_size; + enum blk_crypto_mode_num blk_mode; + bool supported; +} ufs_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { + [BLK_ENCRYPTION_MODE_AES_256_XTS] = { + .ufs_alg = UFS_CRYPTO_ALG_AES_XTS, + .ufs_key_size = UFS_CRYPTO_KEY_SIZE_256, + .blk_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, + .supported = true, + }, +}; + +static int ufshcd_crypto_cap_find(struct ufs_hba *hba, + enum blk_crypto_mode_num crypto_mode, + unsigned int data_unit_size) +{ + enum ufs_crypto_alg ufs_alg; + u8 data_unit_mask; + int cap_idx; + enum ufs_crypto_key_size ufs_key_size; + union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array; + + if (!ufshcd_hba_is_crypto_supported(hba)) + return -EINVAL; + + if (!ufs_crypto_algs[crypto_mode].supported) + return -EINVAL; + + ufs_alg = ufs_crypto_algs[crypto_mode].ufs_alg; + ufs_key_size = ufs_crypto_algs[crypto_mode].ufs_key_size; + + data_unit_mask = ufshcd_get_data_unit_size_mask(data_unit_size); + + for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; + cap_idx++) { + if (ccap_array[cap_idx].algorithm_id == ufs_alg && + (ccap_array[cap_idx].sdus_mask & data_unit_mask) && + ccap_array[cap_idx].key_size == ufs_key_size) + return cap_idx; + } + + return -EINVAL; +} + +/** + * ufshcd_crypto_cfg_entry_write_key - Write a key into a crypto_cfg_entry + * + * Writes the key with the appropriate format - for AES_XTS, + * the first half of the key is copied as is, the second half is + * copied with an offset halfway into the cfg->crypto_key array. + * For the other supported crypto algs, the key is just copied. + * + * @cfg: The crypto config to write to + * @key: The key to write + * @cap: The crypto capability (which specifies the crypto alg and key size) + * + * Returns BLK_STS_OK on success, or BLK_STS_IOERR on error + */ +static blk_status_t ufshcd_crypto_cfg_entry_write_key( + union ufs_crypto_cfg_entry *cfg, + const u8 *key, + union ufs_crypto_cap_entry cap) +{ + size_t key_size_bytes = ufshcd_get_keysize_bytes(cap.key_size); + + if (key_size_bytes == 0) + return BLK_STS_IOERR; + + switch (cap.algorithm_id) { + case UFS_CRYPTO_ALG_AES_XTS: + key_size_bytes *= 2; + if (key_size_bytes > UFS_CRYPTO_KEY_MAX_SIZE) + return BLK_STS_IOERR; + + memcpy(cfg->crypto_key, key, key_size_bytes/2); + memcpy(cfg->crypto_key + UFS_CRYPTO_KEY_MAX_SIZE/2, + key + key_size_bytes/2, key_size_bytes/2); + return BLK_STS_OK; + case UFS_CRYPTO_ALG_BITLOCKER_AES_CBC: + /* fall through */ + case UFS_CRYPTO_ALG_AES_ECB: + /* fall through */ + case UFS_CRYPTO_ALG_ESSIV_AES_CBC: + memcpy(cfg->crypto_key, key, key_size_bytes); + return BLK_STS_OK; + } + + return BLK_STS_IOERR; +} + +static void ufshcd_program_key(struct ufs_hba *hba, + const union ufs_crypto_cfg_entry *cfg, + int slot) +{ + int i; + u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg); + + ufshcd_hold(hba, false); + /* Ensure that CFGE is cleared before programming the key */ + ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); + for (i = 0; i < 16; i++) { + ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[i]), + slot_offset + i * sizeof(cfg->reg_val[0])); + } + /* Write dword 17 */ + ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[17]), + slot_offset + 17 * sizeof(cfg->reg_val[0])); + /* Dword 16 must be written last */ + ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]), + slot_offset + 16 * sizeof(cfg->reg_val[0])); + ufshcd_release(hba); +} + +static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot) +{ + union ufs_crypto_cfg_entry cfg = { 0 }; + + ufshcd_program_key(hba, &cfg, slot); +} + +/* Clear all keyslots at driver init time */ +static void ufshcd_clear_all_keyslots(struct ufs_hba *hba) +{ + int slot; + + for (slot = 0; slot < ufshcd_num_keyslots(hba); slot++) + ufshcd_clear_keyslot(hba, slot); +} + +static blk_status_t ufshcd_crypto_keyslot_program(struct keyslot_manager *ksm, + const struct blk_crypto_key *key, + unsigned int slot) +{ + struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm); + blk_status_t err = BLK_STS_OK; + u8 data_unit_mask; + union ufs_crypto_cfg_entry cfg; + int cap_idx; + + cap_idx = ufshcd_crypto_cap_find(hba, key->crypto_mode, + key->data_unit_size); + + if (!(hba->caps & UFSHCD_CAP_CRYPTO) || + !ufshcd_keyslot_valid(hba, slot) || + !ufshcd_cap_idx_valid(hba, cap_idx)) + return BLK_STS_IOERR; + + data_unit_mask = ufshcd_get_data_unit_size_mask(key->data_unit_size); + + if (!(data_unit_mask & hba->crypto_cap_array[cap_idx].sdus_mask)) + return BLK_STS_IOERR; + + memset(&cfg, 0, sizeof(cfg)); + cfg.data_unit_size = data_unit_mask; + cfg.crypto_cap_idx = cap_idx; + cfg.config_enable |= UFS_CRYPTO_CONFIGURATION_ENABLE; + + err = ufshcd_crypto_cfg_entry_write_key(&cfg, key->raw, + hba->crypto_cap_array[cap_idx]); + if (err) + return err; + + ufshcd_program_key(hba, &cfg, slot); + + memzero_explicit(&cfg, sizeof(cfg)); + return BLK_STS_OK; +} + +static int ufshcd_crypto_keyslot_evict(struct keyslot_manager *ksm, + const struct blk_crypto_key *key, + unsigned int slot) +{ + struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm); + + if (!(hba->caps & UFSHCD_CAP_CRYPTO) || + !ufshcd_keyslot_valid(hba, slot)) + return -EINVAL; + + /* + * Clear the crypto cfg on the device. Clearing CFGE + * might not be sufficient, so just clear the entire cfg. + */ + ufshcd_clear_keyslot(hba, slot); + + return 0; +} + +void ufshcd_crypto_enable(struct ufs_hba *hba) +{ + if (!ufshcd_hba_is_crypto_supported(hba)) + return; + + hba->caps |= UFSHCD_CAP_CRYPTO; + + /* Reset might clear all keys, so reprogram all the keys. */ + blk_ksm_reprogram_all_keys(&hba->ksm); +} + +void ufshcd_crypto_disable(struct ufs_hba *hba) +{ + hba->caps &= ~UFSHCD_CAP_CRYPTO; +} + +static const struct keyslot_mgmt_ll_ops ufshcd_ksm_ops = { + .keyslot_program = ufshcd_crypto_keyslot_program, + .keyslot_evict = ufshcd_crypto_keyslot_evict, +}; + +static enum blk_crypto_mode_num ufshcd_blk_crypto_mode_num_for_alg_keysize( + enum ufs_crypto_alg ufs_crypto_alg, + enum ufs_crypto_key_size key_size) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(ufs_crypto_algs); i++) { + if (ufs_crypto_algs[i].supported && + ufs_crypto_algs[i].ufs_alg == ufs_crypto_alg && + ufs_crypto_algs[i].ufs_key_size == key_size) { + return ufs_crypto_algs[i].blk_mode; + } + } + return BLK_ENCRYPTION_MODE_INVALID; +} + +/** + * ufshcd_hba_init_crypto - Read crypto capabilities, init crypto fields in hba + * @hba: Per adapter instance + * + * Return: 0 if crypto was initialized or is not supported, else a -errno value. + */ +int ufshcd_hba_init_crypto(struct ufs_hba *hba) +{ + int cap_idx = 0; + int err = 0; + enum blk_crypto_mode_num blk_mode_num; + + /* + * Return 0 if crypto support isn't present/not advertised by vendor + * specific driver. + */ + if (!(hba->capabilities & MASK_CRYPTO_SUPPORT) || + !(hba->caps & UFSHCD_CAP_CRYPTO)) + goto out; + + /* + * Crypto Capabilities should never be 0, because the + * config_array_ptr > 04h. So we use a 0 value to indicate that + * crypto init failed, and can't be enabled. + */ + hba->crypto_capabilities.reg_val = + cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP)); + hba->crypto_cfg_register = + (u32)hba->crypto_capabilities.config_array_ptr * 0x100; + hba->crypto_cap_array = + devm_kcalloc(hba->dev, + hba->crypto_capabilities.num_crypto_cap, + sizeof(hba->crypto_cap_array[0]), + GFP_KERNEL); + if (!hba->crypto_cap_array) { + err = -ENOMEM; + goto out; + } + + err = blk_ksm_init(&hba->ksm, hba->dev, ufshcd_num_keyslots(hba)); + if (err) + goto out_free_caps; + + hba->ksm.ksm_ll_ops = ufshcd_ksm_ops; + /* UFS only supports 8 bytes for any DUN */ + hba->ksm.max_dun_bytes_supported = 8; + + /* + * Store all the capabilities and fill up the keyslot manager's + * supported crypto modes. + */ + for (cap_idx = 0; cap_idx < hba->crypto_capabilities.num_crypto_cap; + cap_idx++) { + hba->crypto_cap_array[cap_idx].reg_val = + cpu_to_le32(ufshcd_readl(hba, + REG_UFS_CRYPTOCAP + + cap_idx * sizeof(__le32))); + blk_mode_num = ufshcd_blk_crypto_mode_num_for_alg_keysize( + hba->crypto_cap_array[cap_idx].algorithm_id, + hba->crypto_cap_array[cap_idx].key_size); + if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID) + hba->ksm.crypto_modes_supported[blk_mode_num] |= + hba->crypto_cap_array[cap_idx].sdus_mask * 512; + } + + ufshcd_clear_all_keyslots(hba); + + return 0; + +out_free_caps: + devm_kfree(hba->dev, hba->crypto_cap_array); +out: + /* Indicate that init failed by setting crypto_capabilities to 0 */ + hba->crypto_capabilities.reg_val = 0; + return err; +} + +void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba, + struct request_queue *q) +{ + if (!ufshcd_hba_is_crypto_supported(hba) || !q) + return; + + blk_ksm_register(&hba->ksm, q); +} + +void ufshcd_crypto_destroy_keyslot_manager(struct ufs_hba *hba) +{ + blk_ksm_destroy(&hba->ksm); +} diff --git a/drivers/scsi/ufs/ufshcd-crypto.h b/drivers/scsi/ufs/ufshcd-crypto.h new file mode 100644 index 000000000000..8270c0c5081a --- /dev/null +++ b/drivers/scsi/ufs/ufshcd-crypto.h @@ -0,0 +1,54 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright 2019 Google LLC + */ + +#ifndef _UFSHCD_CRYPTO_H +#define _UFSHCD_CRYPTO_H + +#ifdef CONFIG_SCSI_UFS_CRYPTO +#include <linux/keyslot-manager.h> +#include "ufshcd.h" +#include "ufshci.h" + +static inline bool ufshcd_hba_is_crypto_supported(struct ufs_hba *hba) +{ + return hba->crypto_capabilities.reg_val != 0; +} + +void ufshcd_crypto_enable(struct ufs_hba *hba); + +void ufshcd_crypto_disable(struct ufs_hba *hba); + +int ufshcd_hba_init_crypto(struct ufs_hba *hba); + +void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba, + struct request_queue *q); + +void ufshcd_crypto_destroy_keyslot_manager(struct ufs_hba *hba); + +#else /* CONFIG_SCSI_UFS_CRYPTO */ + +static inline bool ufshcd_hba_is_crypto_supported(struct ufs_hba *hba) +{ + return false; +} + +static inline void ufshcd_crypto_enable(struct ufs_hba *hba) { } + +static inline void ufshcd_crypto_disable(struct ufs_hba *hba) { } + +static inline int ufshcd_hba_init_crypto(struct ufs_hba *hba) +{ + return 0; +} + +static inline void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba, + struct request_queue *q) { } + +static inline void ufshcd_crypto_destroy_keyslot_manager(struct ufs_hba *hba) +{ } + +#endif /* CONFIG_SCSI_UFS_CRYPTO */ + +#endif /* _UFSHCD_CRYPTO_H */ diff --git a/drivers/scsi/ufs/ufshcd.h b/drivers/scsi/ufs/ufshcd.h index 978781c538c4..ee37dd44d5e6 100644 --- a/drivers/scsi/ufs/ufshcd.h +++ b/drivers/scsi/ufs/ufshcd.h @@ -55,6 +55,7 @@ #include <linux/clk.h> #include <linux/completion.h> #include <linux/regulator/consumer.h> +#include <linux/keyslot-manager.h> #include "unipro.h" #include <asm/irq.h> @@ -521,6 +522,10 @@ struct ufs_stats { * @is_urgent_bkops_lvl_checked: keeps track if the urgent bkops level for * device is known or not. * @scsi_block_reqs_cnt: reference counting for scsi block requests + * @crypto_capabilities: Content of crypto capabilities register (0x100) + * @crypto_cap_array: Array of crypto capabilities + * @crypto_cfg_register: Start of the crypto cfg array + * @ksm: the keyslot manager tied to this hba */ struct ufs_hba { void __iomem *mmio_base; @@ -634,6 +639,7 @@ struct ufs_hba { * enabled via HCE register. */ #define UFSHCI_QUIRK_BROKEN_HCE 0x400 + unsigned int quirks; /* Deviations from standard UFSHCI spec. */ /* Device deviations from standard UFS device spec. */ @@ -735,6 +741,14 @@ struct ufs_hba { struct device bsg_dev; struct request_queue *bsg_queue; + +#ifdef CONFIG_SCSI_UFS_CRYPTO + /* crypto */ + union ufs_crypto_capabilities crypto_capabilities; + union ufs_crypto_cap_entry *crypto_cap_array; + u32 crypto_cfg_register; + struct keyslot_manager ksm; +#endif /* CONFIG_SCSI_UFS_CRYPTO */ }; /* Returns true if clocks can be gated. Otherwise false */ -- 2.25.1.481.gfbce0eb801-goog