There was an timing issue about "repeated start" time at the I2C controller of version0, controller appears to drop SDA at .875x (7/8) programmed clk high. On version 1 of the controller, the rule(.875x) isn't enough to meet tSU;STA requirements on 100k's Standard-mode. To resolve this issue, sda_update_config, start_setup_config and stop_setup_config for I2C timing information are added, new rules are designed to calculate the timing information at new v1. And pclk and sclk are treated individually at new v1. Signed-off-by: David Wu <david.wu at rock-chips.com> --- Changes in v4: - pclk and sclk are treated individually - use switch-case to seperate from different version (Andy) - fix dead loop form Julia's notice Change in v3: - Too many arguments for ops func, use struct for them(Andy) drivers/i2c/busses/i2c-rk3x.c | 380 ++++++++++++++++++++++++++++++++++++------ 1 file changed, 328 insertions(+), 52 deletions(-) diff --git a/drivers/i2c/busses/i2c-rk3x.c b/drivers/i2c/busses/i2c-rk3x.c index c4b0d89..c82c2f9 100644 --- a/drivers/i2c/busses/i2c-rk3x.c +++ b/drivers/i2c/busses/i2c-rk3x.c @@ -25,6 +25,7 @@ #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/math64.h> +#include <linux/property.h> /* Register Map */ @@ -58,6 +59,16 @@ enum { #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ +#define REG_CON_SDA_CNT(cnt) ((cnt) << 8) +#define REG_CON_STA_CNT(cnt) ((cnt) << 12) +#define REG_CON_STO_CNT(cnt) ((cnt) << 14) + +#define VERSION_MASK GENMASK(31, 16) +#define VERSION_SHIFT 16 + +#define RK3X_I2C_V0 0x0 +#define RK3X_I2C_V1 0x1 + /* REG_MRXADDR bits */ #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ @@ -90,18 +101,44 @@ struct rk3x_i2c_soc_data { int grf_offset; }; +/** + * struct rk3x_i2c_calced_timings: + * @div_low: Divider output for low + * @div_high: Divider output for high + * @sda_update_cfg: Used to config sda change state when scl is low, + * used to adjust setup/hold time + * @stp_sta_cfg: Start setup config for setup start time and hold start time + * @stp_sto_cfg: Stop setup config for setup stop time + */ +struct rk3x_i2c_calced_timings { + unsigned long div_low; + unsigned long div_high; + unsigned int sda_update_cfg; + unsigned int stp_sta_cfg; + unsigned int stp_sto_cfg; +}; + +struct rk3x_i2c_ops { + int (*calc_timings)(unsigned long, + struct i2c_timings *, + struct rk3x_i2c_calced_timings *); +}; + struct rk3x_i2c { struct i2c_adapter adap; struct device *dev; struct rk3x_i2c_soc_data *soc_data; + struct rk3x_i2c_ops ops; /* Hardware resources */ void __iomem *regs; - struct clk *clk; + struct clk *pclk; + struct clk *sclk; struct notifier_block clk_rate_nb; /* Settings */ struct i2c_timings t; + struct rk3x_i2c_calced_timings t_calc; /* Synchronization & notification */ spinlock_t lock; @@ -131,6 +168,13 @@ static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) return readl(i2c->regs + offset); } +static inline u32 rk3x_i2c_get_con_count(struct rk3x_i2c *i2c) +{ + return REG_CON_SDA_CNT(i2c->t_calc.sda_update_cfg) | + REG_CON_STA_CNT(i2c->t_calc.stp_sta_cfg) | + REG_CON_STO_CNT(i2c->t_calc.stp_sto_cfg); +} + /* Reset all interrupt pending bits */ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) { @@ -142,13 +186,13 @@ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) */ static void rk3x_i2c_start(struct rk3x_i2c *i2c) { - u32 val; + u32 val = rk3x_i2c_get_con_count(i2c); rk3x_i2c_clean_ipd(i2c); i2c_writel(i2c, REG_INT_START, REG_IEN); /* enable adapter with correct mode, send START condition */ - val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; + val = val | REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; /* if we want to react to NACK, set ACTACK bit */ if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) @@ -189,7 +233,7 @@ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) * get the intended effect by resetting its internal state * and issuing an ordinary START. */ - i2c_writel(i2c, 0, REG_CON); + i2c_writel(i2c, rk3x_i2c_get_con_count(i2c), REG_CON); /* signal that we are finished with the current msg */ wake_up(&i2c->wait); @@ -431,21 +475,22 @@ out: } /** - * Calculate divider values for desired SCL frequency + * Calculate timing values for desired SCL frequency * * @clk_rate: I2C input clock rate * @t: Known I2C timing information. * @div_low: Divider output for low * @div_high: Divider output for high + * @t_calc: Caculated rk3x private timings that would + * be written into regs * * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case * a best-effort divider value is returned in divs. If the target rate is * too high, we silently use the highest possible rate. */ -static int rk3x_i2c_calc_divs(unsigned long clk_rate, - struct i2c_timings *t, - unsigned long *div_low, - unsigned long *div_high) +static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, + struct i2c_timings *t, + struct rk3x_i2c_calced_timings *t_calc) { unsigned long spec_min_low_ns, spec_min_high_ns; unsigned long spec_setup_start, spec_max_data_hold_ns; @@ -552,8 +597,8 @@ static int rk3x_i2c_calc_divs(unsigned long clk_rate, * Time needed to meet hold requirements is important. * Just use that. */ - *div_low = min_low_div; - *div_high = min_high_div; + t_calc->div_low = min_low_div; + t_calc->div_high = min_high_div; } else { /* * We've got to distribute some time among the low and high @@ -582,25 +627,204 @@ static int rk3x_i2c_calc_divs(unsigned long clk_rate, /* Give low the "ideal" and give high whatever extra is left */ extra_low_div = ideal_low_div - min_low_div; - *div_low = ideal_low_div; - *div_high = min_high_div + (extra_div - extra_low_div); + t_calc->div_low = ideal_low_div; + t_calc->div_high = min_high_div + (extra_div - extra_low_div); } /* * Adjust to the fact that the hardware has an implicit "+1". * NOTE: Above calculations always produce div_low > 0 and div_high > 0. */ - *div_low = *div_low - 1; - *div_high = *div_high - 1; + t_calc->div_low -= 1; + t_calc->div_high -= 1; /* Maximum divider supported by hw is 0xffff */ - if (*div_low > 0xffff) { - *div_low = 0xffff; + if (t_calc->div_low > 0xffff) { + t_calc->div_low = 0xffff; ret = -EINVAL; } - if (*div_high > 0xffff) { - *div_high = 0xffff; + if (t_calc->div_high > 0xffff) { + t_calc->div_high = 0xffff; + ret = -EINVAL; + } + + return ret; +} + +/** + * Calculate timing values for desired SCL frequency + * + * @clk_rate: I2C input clock rate + * @t: Known I2C timing information + * @t_calc: Caculated rk3x private timings that would + * be written into regs + * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case + * a best-effort divider value is returned in divs. If the target rate is + * too high, we silently use the highest possible rate. + * The following formulas are v1's method to calculate timings. + * + * l = divl + 1; + * h = divh + 1; + * s = sda_update_config + 1; + * u = start_setup_config + 1; + * p = stop_setup_config + 1; + * T = Tclk_i2c; + + * tHigh = 8 * h * T; + * tLow = 8 * l * T; + + * tHD;sda = (l * s + 1) * T; + * tSU;sda = [(8 - s) * l + 1] * T; + * tI2C = 8 * (l + h) * T; + + * tSU;sta = (8h * u + 1) * T; + * tHD;sta = [8h * (u + 1) - 1] * T; + * tSU;sto = (8h * p + 1) * T; + */ +static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, + struct i2c_timings *t, + struct rk3x_i2c_calced_timings *t_calc) +{ + unsigned long spec_min_low_ns, spec_min_high_ns; + unsigned long spec_min_setup_start_ns, spec_min_stop_setup_ns; + unsigned long spec_min_data_setup_ns, spec_max_data_hold_ns; + + unsigned long min_low_ns, min_high_ns, min_total_ns; + unsigned long min_setup_start_ns, min_setup_data_ns; + unsigned long min_stop_setup_ns, max_hold_data_ns; + + unsigned long clk_rate_khz, scl_rate_khz; + + unsigned long min_low_div, min_high_div; + + unsigned long min_div_for_hold, min_total_div; + unsigned long extra_div, extra_low_div; + unsigned long sda_update_cfg; + + int ret = 0; + + /* Support standard-mode and fast-mode */ + if (WARN_ON(t->bus_freq_hz > 400000)) + t->bus_freq_hz = 400000; + + /* prevent scl_rate_khz from becoming 0 */ + if (WARN_ON(t->bus_freq_hz < 1000)) + t->bus_freq_hz = 1000; + + /* + * min_low_ns: The minimum number of ns we need to hold low to + * meet I2C specification, should include fall time. + * min_high_ns: The minimum number of ns we need to hold high to + * meet I2C specification, should include rise time. + */ + if (t->bus_freq_hz <= 100000) { + spec_min_low_ns = 4700; + spec_min_high_ns = 4000; + + spec_min_setup_start_ns = 4700; + spec_min_stop_setup_ns = 4000; + + spec_min_data_setup_ns = 250; + spec_max_data_hold_ns = 3450; + } else if (t->bus_freq_hz <= 400000) { + spec_min_low_ns = 1300; + spec_min_high_ns = 600; + + spec_min_setup_start_ns = 600; + spec_min_stop_setup_ns = 600; + + spec_min_data_setup_ns = 100; + spec_max_data_hold_ns = 900; + } + + /* caculate min-divh and min-divl */ + clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); + scl_rate_khz = t->bus_freq_hz / 1000; + min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); + + min_high_ns = t->scl_rise_ns + spec_min_high_ns; + min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); + + min_low_ns = t->scl_fall_ns + spec_min_low_ns; + min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); + + /* Final divh and divl must be greater than 0, otherwise the + * hardware would not output the i2c clk. + */ + min_high_div = (min_high_div < 1) ? 2 : min_high_div; + min_low_div = (min_low_div < 1) ? 2 : min_low_div; + + /* These are the min dividers needed for min hold times. */ + min_div_for_hold = (min_low_div + min_high_div); + min_total_ns = min_low_ns + min_high_ns; + + /* + * This is the maximum divider so we don't go over the maximum. + * We don't round up here (we round down) since this is a maximum. + */ + if (min_div_for_hold >= min_total_div) { + /* + * Time needed to meet hold requirements is important. + * Just use that. + */ + t_calc->div_low = min_low_div; + t_calc->div_high = min_high_div; + } else { + /* + * We've got to distribute some time among the low and high + * so we don't run too fast. + * We'll try to split things up by the scale of min_low_div and + * min_high_div, biasing slightly towards having a higher div + * for low (spend more time low). + */ + extra_div = min_total_div - min_div_for_hold; + extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, + min_div_for_hold); + + t_calc->div_low = min_low_div + extra_low_div; + t_calc->div_high = min_high_div + (extra_div - extra_low_div); + } + + /* + * calculate sda data hold count by the rules, data_upd_st:3 + * is a appropriate value to reduce calculated times. + */ + for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { + max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg + * (t_calc->div_low) + 1) + * 1000000, clk_rate_khz); + min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg) + * (t_calc->div_low) + 1) + * 1000000, clk_rate_khz); + if ((max_hold_data_ns < spec_max_data_hold_ns) && + (min_setup_data_ns > spec_min_data_setup_ns)) { + t_calc->sda_update_cfg = sda_update_cfg; + break; + } + } + + /* caculate setup start config */ + min_setup_start_ns = t->scl_rise_ns + spec_min_setup_start_ns; + t_calc->stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns + - 1000000, 8 * 1000000 * (t_calc->div_high)); + + /* caculate setup stop config */ + min_stop_setup_ns = t->scl_rise_ns + spec_min_stop_setup_ns; + t_calc->stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_stop_setup_ns + - 1000000, 8 * 1000000 * (t_calc->div_high)); + + t_calc->stp_sta_cfg -= 1; + t_calc->stp_sto_cfg -= 1; + t_calc->sda_update_cfg -= 1; + + t_calc->div_low -= 1; + t_calc->div_high -= 1; + + /* Maximum divider supported by hw is 0xffff */ + if ((t_calc->div_low > 0xffff) || (t_calc->div_high > 0xffff)) { + t_calc->div_low = 0xffff; + t_calc->div_high = 0xffff; ret = -EINVAL; } @@ -610,19 +834,22 @@ static int rk3x_i2c_calc_divs(unsigned long clk_rate, static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) { struct i2c_timings *t = &i2c->t; - unsigned long div_low, div_high; + struct rk3x_i2c_calced_timings *t_calc = &i2c->t_calc; u64 t_low_ns, t_high_ns; int ret; - ret = rk3x_i2c_calc_divs(clk_rate, t, &div_low, &div_high); + ret = i2c->ops.calc_timings(clk_rate, t, t_calc); WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); - clk_enable(i2c->clk); - i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV); - clk_disable(i2c->clk); + clk_enable(i2c->pclk); + i2c_writel(i2c, (t_calc->div_high << 16) | + (t_calc->div_low & 0xffff), REG_CLKDIV); + clk_disable(i2c->pclk); - t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate); - t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate); + t_low_ns = div_u64(((u64)t_calc->div_low + 1) * 8 * 1000000000, + clk_rate); + t_high_ns = div_u64(((u64)t_calc->div_high + 1) * 8 * 1000000000, + clk_rate); dev_dbg(i2c->dev, "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", clk_rate / 1000, @@ -652,12 +879,12 @@ static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long { struct clk_notifier_data *ndata = data; struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); - unsigned long div_low, div_high; + struct i2c_timings *t = &i2c->t; + struct rk3x_i2c_calced_timings *t_calc = &i2c->t_calc; switch (event) { case PRE_RATE_CHANGE: - if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t, - &div_low, &div_high) != 0) + if (i2c->ops.calc_timings(ndata->new_rate, t, t_calc) != 0) return NOTIFY_STOP; /* scale up */ @@ -772,7 +999,9 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap, spin_lock_irqsave(&i2c->lock, flags); - clk_enable(i2c->clk); + clk_enable(i2c->pclk); + if (i2c->sclk) + clk_enable(i2c->sclk); i2c->is_last_msg = false; @@ -806,7 +1035,8 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap, /* Force a STOP condition without interrupt */ i2c_writel(i2c, 0, REG_IEN); - i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON); + i2c_writel(i2c, rk3x_i2c_get_con_count(i2c) | + REG_CON_EN | REG_CON_STOP, REG_CON); i2c->state = STATE_IDLE; @@ -820,7 +1050,9 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap, } } - clk_disable(i2c->clk); + if (i2c->sclk) + clk_disable(i2c->sclk); + clk_disable(i2c->pclk); spin_unlock_irqrestore(&i2c->lock, flags); return ret < 0 ? ret : num; @@ -860,7 +1092,8 @@ static int rk3x_i2c_probe(struct platform_device *pdev) int bus_nr; u32 value; int irq; - unsigned long clk_rate; + struct clk *sclk; + unsigned int clk_rate; i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); if (!i2c) @@ -879,18 +1112,11 @@ static int rk3x_i2c_probe(struct platform_device *pdev) i2c->adap.dev.of_node = np; i2c->adap.algo_data = i2c; i2c->adap.dev.parent = &pdev->dev; - i2c->dev = &pdev->dev; spin_lock_init(&i2c->lock); init_waitqueue_head(&i2c->wait); - i2c->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(i2c->clk)) { - dev_err(&pdev->dev, "cannot get clock\n"); - return PTR_ERR(i2c->clk); - } - mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); i2c->regs = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(i2c->regs)) @@ -944,22 +1170,63 @@ static int rk3x_i2c_probe(struct platform_device *pdev) platform_set_drvdata(pdev, i2c); - ret = clk_prepare(i2c->clk); + i2c->pclk = devm_clk_get(&pdev->dev, "i2c"); + if (IS_ERR(i2c->pclk)) { + dev_err(&pdev->dev, "cannot get i2c pclk\n"); + return PTR_ERR(i2c->pclk); + } + + ret = clk_prepare(i2c->pclk); if (ret < 0) { - dev_err(&pdev->dev, "Could not prepare clock\n"); + dev_err(&pdev->dev, "Could not prepare pclk\n"); return ret; } + value = readl(i2c->regs + REG_CON); + switch ((value & VERSION_MASK) >> VERSION_SHIFT) { + case RK3X_I2C_V1: + i2c->ops.calc_timings = rk3x_i2c_v1_calc_timings; + /* sclk and pclk need to do individually*/ + i2c->sclk = devm_clk_get(&pdev->dev, "i2c_sclk"); + if (IS_ERR(i2c->sclk)) { + dev_err(&pdev->dev, "cannot get i2c sclk\n"); + ret = PTR_ERR(i2c->sclk); + goto err_pclk; + } + ret = clk_prepare(i2c->sclk); + if (ret) { + dev_err(i2c->dev, "pclk prepare failed %d\n", ret); + goto err_pclk; + } + if (!device_property_read_u32(&pdev->dev, "input-clk-rate", + &clk_rate)) { + ret = clk_set_rate(i2c->sclk, clk_rate); + if (ret) + goto err_pclk; + } else { + /* use default input clock rate */ + clk_rate = clk_get_rate(i2c->sclk); + } + + break; + case RK3X_I2C_V0: + default: + i2c->ops.calc_timings = rk3x_i2c_v0_calc_timings; + /* sclk and pclk are the same clock */ + sclk = i2c->pclk; + clk_rate = clk_get_rate(sclk); + + break; + } + i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; - ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); + ret = clk_notifier_register(sclk, &i2c->clk_rate_nb); if (ret != 0) { - dev_err(&pdev->dev, "Unable to register clock notifier\n"); - goto err_clk; + dev_err(&pdev->dev, "Unable to register clk notifier\n"); + goto err_sclk; } - clk_rate = clk_get_rate(i2c->clk); rk3x_i2c_adapt_div(i2c, clk_rate); - ret = i2c_add_adapter(&i2c->adap); if (ret < 0) { dev_err(&pdev->dev, "Could not register adapter\n"); @@ -971,9 +1238,12 @@ static int rk3x_i2c_probe(struct platform_device *pdev) return 0; err_clk_notifier: - clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); -err_clk: - clk_unprepare(i2c->clk); + clk_notifier_unregister(sclk, &i2c->clk_rate_nb); +err_sclk: + if (i2c->sclk) + clk_unprepare(i2c->sclk); +err_pclk: + clk_unprepare(i2c->pclk); return ret; } @@ -983,8 +1253,14 @@ static int rk3x_i2c_remove(struct platform_device *pdev) i2c_del_adapter(&i2c->adap); - clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); - clk_unprepare(i2c->clk); + if (i2c->sclk) { + clk_notifier_unregister(i2c->sclk, &i2c->clk_rate_nb); + clk_unprepare(i2c->sclk); + } else { + clk_notifier_unregister(i2c->pclk, &i2c->clk_rate_nb); + } + + clk_unprepare(i2c->pclk); return 0; } -- 1.9.1