On Thu, Jan 14, 2016 at 2:31 PM, David Wu <david.wu at rock-chips.com> wrote: > There was an timing issue about "repeated start" time at the I2C > controller of version0, controller appears to drop SDA at .875x (7/8) > programmed clk high. The rule(.875x) isn't enough to meet tSU;STA > requirements on 100k's Standard-mode. To resolve this issue, > data_upd_st, start_setup_cnt and stop_setup_cnt configs for I2C > timing information are added, new rules are designed to calculate > the timing information at new v1. > --- a/drivers/i2c/busses/i2c-rk3x.c > +++ b/drivers/i2c/busses/i2c-rk3x.c > @@ -58,10 +58,15 @@ enum { > #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ > #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ > > +#define REG_CON_SDA_CNT(cnt) ((cnt) << 8) > +#define REG_CON_STA_CNT(cnt) ((cnt) << 12) > +#define REG_CON_STO_CNT(cnt) ((cnt) << 14) > + > #define VERSION_MASK GENMASK(31, 16) > #define VERSION_SHIFT 16 > > #define RK3X_I2C_V0 0x0 > +#define RK3X_I2C_V1 0x1 > > /* REG_MRXADDR bits */ > #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ > @@ -99,10 +104,16 @@ struct rk3x_i2c_soc_data { > * struct rk3x_priv_i2c_timings - rk3x I2C timing information > * @div_low: Divider output for low > * @div_high: Divider output for high > + * @thd_sda_count: SDA update point config used to adjust sda setup/hold time > + * @tsu_sta_count: Start setup config for setup start time and hold start time > + * @tsu_sto_count: Stop setup config for setup stop time > */ > struct rk3x_priv_i2c_timings { > unsigned long div_low; > unsigned long div_high; > + unsigned int thd_sda_count; > + unsigned int tsu_sta_count; > + unsigned int tsu_sto_count; > }; And in this (or even separate) patch makes sense to introduce extension structure, which is struct rk3x_priv_i2c_timings. > struct rk3x_i2c_ops { > @@ -154,6 +165,13 @@ static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) > return readl(i2c->regs + offset); > } > > +static inline u32 rk3x_i2c_get_con_count(struct rk3x_i2c *i2c) > +{ > + return REG_CON_SDA_CNT(i2c->t_priv.thd_sda_count) | > + REG_CON_STA_CNT(i2c->t_priv.tsu_sta_count) | > + REG_CON_STO_CNT(i2c->t_priv.tsu_sto_count); > +} > + > /* Reset all interrupt pending bits */ > static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) > { > @@ -165,13 +183,13 @@ static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) > */ > static void rk3x_i2c_start(struct rk3x_i2c *i2c) > { > - u32 val; > + u32 val = rk3x_i2c_get_con_count(i2c); > > rk3x_i2c_clean_ipd(i2c); > i2c_writel(i2c, REG_INT_START, REG_IEN); > > /* enable adapter with correct mode, send START condition */ > - val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; > + val = val | REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; > > /* if we want to react to NACK, set ACTACK bit */ > if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) > @@ -212,7 +230,7 @@ static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) > * get the intended effect by resetting its internal state > * and issuing an ordinary START. > */ > - i2c_writel(i2c, 0, REG_CON); > + i2c_writel(i2c, rk3x_i2c_get_con_count(i2c), REG_CON); > > /* signal that we are finished with the current msg */ > wake_up(&i2c->wait); > @@ -630,6 +648,211 @@ static int rk3x_i2c_v0_calc_clock(unsigned long clk_rate, > return ret; > } > > +/** > + * Calculate timing clock info values for desired SCL frequency > + * > + * @clk_rate: I2C input clock rate > + * @t_input: Known I2C timing information > + * @t_output: Caculated rk3x private timing information that would > + * be written into regs > + * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case > + * a best-effort divider value is returned in divs. If the target rate is > + * too high, we silently use the highest possible rate. > + * The following formulas are v1's method to calculate clock. > + * > + * l = divl + 1; > + * h = divh + 1; > + * s = data_upd_st + 1; > + * u = start_setup_cnt + 1; > + * p = stop_setup_cnt + 1; > + * T = Tclk_i2c; > + > + * tHigh = 8 * h * T; > + * tLow = 8 * l * T; > + > + * tHD;sda = (l * s + 1) * T; > + * tSU;sda = [(8 - s) * l + 1] * T; > + * tI2C = 8 * (l + h) * T; > + > + * tSU;sta = (8h * u + 1) * T; > + * tHD;sta = [8h * (u + 1) - 1] * T; > + * tSU;sto = (8h * p + 1) * T; > + */ > +static int rk3x_i2c_v1_calc_clock(unsigned long clk_rate, > + struct i2c_timings *t_input, > + struct rk3x_priv_i2c_timings *t_output) > +{ I see some similarities with existing code for v0. Can be refactored? > + unsigned long spec_min_low_ns, spec_min_high_ns; > + unsigned long spec_min_setup_start_ns, spec_min_stop_setup_ns; > + unsigned long spec_min_data_setup_ns, spec_max_data_hold_ns; > + > + unsigned long min_low_ns, min_high_ns, min_total_ns; > + unsigned long min_setup_start_ns, min_setup_data_ns; > + unsigned long min_stop_setup_ns, max_hold_data_ns; > + > + unsigned long clk_rate_khz, scl_rate_khz; > + > + unsigned long min_low_div, min_high_div; > + > + unsigned long min_div_for_hold, min_total_div; > + unsigned long extra_div, extra_low_div; > + unsigned long data_hd_cnt; > + > + int ret = 0; > + > + /* Support standard-mode and fast-mode */ > + if (WARN_ON(t_input->bus_freq_hz > 400000)) > + t_input->bus_freq_hz = 400000; > + > + /* prevent scl_rate_khz from becoming 0 */ > + if (WARN_ON(t_input->bus_freq_hz < 1000)) > + t_input->bus_freq_hz = 1000; > + > + /* > + * min_low_ns: The minimum number of ns we need to hold low to > + * meet I2C specification, should include fall time. > + * min_high_ns: The minimum number of ns we need to hold high to > + * meet I2C specification, should include rise time. > + */ > + if (t_input->bus_freq_hz <= 100000) { > + spec_min_low_ns = 4700; > + spec_min_high_ns = 4000; > + > + spec_min_setup_start_ns = 4700; > + spec_min_stop_setup_ns = 4000; > + > + spec_min_data_setup_ns = 250; > + spec_max_data_hold_ns = 3450; > + } else if (t_input->bus_freq_hz <= 400000) { > + spec_min_low_ns = 1300; > + spec_min_high_ns = 600; > + > + spec_min_setup_start_ns = 600; > + spec_min_stop_setup_ns = 600; > + > + spec_min_data_setup_ns = 100; > + spec_max_data_hold_ns = 900; > + } > + > + /* caculate min-divh and min-divl */ > + clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); > + scl_rate_khz = t_input->bus_freq_hz / 1000; > + min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); > + > + min_high_ns = t_input->scl_rise_ns + spec_min_high_ns; > + min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); > + > + min_low_ns = t_input->scl_fall_ns + spec_min_low_ns; > + min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); > + > + /* Final divh and divl must be greater than 0, otherwise the > + * hardware would not output the i2c clk. > + */ > + if (min_high_div <= 1) > + min_high_div = 2; > + if (min_low_div <= 1) > + min_low_div = 2; > + > + /* These are the min dividers needed for min hold times. */ > + min_div_for_hold = (min_low_div + min_high_div); > + min_total_ns = min_low_ns + min_high_ns; > + > + /* > + * This is the maximum divider so we don't go over the maximum. > + * We don't round up here (we round down) since this is a maximum. > + */ > + if (min_div_for_hold >= min_total_div) { > + /* > + * Time needed to meet hold requirements is important. > + * Just use that. > + */ > + t_output->div_low = min_low_div; > + t_output->div_high = min_high_div; > + } else { > + /* > + * We've got to distribute some time among the low and high > + * so we don't run too fast. > + * We'll try to split things up by the scale of min_low_div and > + * min_high_div, biasing slightly towards having a higher div > + * for low (spend more time low). > + */ > + extra_div = min_total_div - min_div_for_hold; > + extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, > + min_div_for_hold); > + > + t_output->div_low = min_low_div + extra_low_div; > + t_output->div_high = min_high_div + (extra_div - extra_low_div); > + } > + > + /* > + * calculate sda data hold count by the rules, thd_sda_count:3 > + * is a appropriate value to reduce calculated times. > + * tHD;sda = (l * s + 1) * T > + * tSU;sda = ((8 - s) * l + 1) * T > + */ > + for (data_hd_cnt = 3; data_hd_cnt >= 0; data_hd_cnt--) { > + max_hold_data_ns = DIV_ROUND_UP((data_hd_cnt > + * (t_output->div_low) + 1) > + * 1000000, clk_rate_khz); > + min_setup_data_ns = DIV_ROUND_UP(((8 - data_hd_cnt) > + * (t_output->div_low) + 1) > + * 1000000, clk_rate_khz); > + if ((max_hold_data_ns < spec_max_data_hold_ns) && > + (min_setup_data_ns > spec_min_data_setup_ns)) { > + t_output->thd_sda_count = data_hd_cnt; > + break; > + } > + } > + > + /* > + * calculate start setup count, and we aren't care tHD;STA. > + * If the start setup count meets the rule of tSU;sta, it also > + * meets the rule of tHD;STA. > + * tSU;sta = (8h * u + 1) * T > + * tHD;sta = [8h * (u + 1) - 1] * T > + */ > + min_setup_start_ns = t_input->scl_rise_ns + spec_min_setup_start_ns; > + t_output->tsu_sta_count = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns > + - 1000000, 8 * 1000000 * (t_output->div_high)); > + > + /* > + * calculate start setup count by the rule: > + * tSU;sto =(8h * p + 1) * T > + */ > + min_stop_setup_ns = t_input->scl_rise_ns + spec_min_stop_setup_ns; > + t_output->tsu_sto_count = DIV_ROUND_UP(clk_rate_khz * min_stop_setup_ns > + - 1000000, 8 * 1000000 * (t_output->div_high)); > + > + /* > + * Adjust to the fact that the hardware has an implicit "+1". > + * NOTE: Above calculations always produce div_low > 0 and div_high > 0. > + */ > + t_output->div_low -= 1; > + t_output->div_high -= 1; > + > + /* Maximum divider supported by hw is 0xffff */ > + if (t_output->div_low > 0xffff) { > + t_output->div_low = 0xffff; > + ret = -EINVAL; > + } > + > + if (t_output->div_high > 0xffff) { > + t_output->div_high = 0xffff; > + ret = -EINVAL; > + } > + > + /* > + * Adjust to the fact that the hardware has an implicit "+1". > + * NOTE: Above calculations always produce thd_sda_count > 0, > + * tsu_sta_count > 0 and tsu_sta_count > 0. > + */ > + t_output->thd_sda_count -= 1; > + t_output->tsu_sta_count -= 1; > + t_output->tsu_sto_count -= 1; > + > + return ret; > +} > + > static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) > { > u64 t_low_ns, t_high_ns; > @@ -829,7 +1052,8 @@ static int rk3x_i2c_xfer(struct i2c_adapter *adap, > > /* Force a STOP condition without interrupt */ > i2c_writel(i2c, 0, REG_IEN); > - i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON); > + i2c_writel(i2c, rk3x_i2c_get_con_count(i2c) | > + REG_CON_EN | REG_CON_STOP, REG_CON); > > i2c->state = STATE_IDLE; > > @@ -969,7 +1193,9 @@ static int rk3x_i2c_probe(struct platform_device *pdev) > platform_set_drvdata(pdev, i2c); > > version = (readl(i2c->regs + REG_CON) & VERSION_MASK) >> VERSION_SHIFT; > - if (version == RK3X_I2C_V0) > + if (version == RK3X_I2C_V1) > + i2c->ops.calc_clock = rk3x_i2c_v1_calc_clock; > + else > i2c->ops.calc_clock = rk3x_i2c_v0_calc_clock; Perhaps time to use switch-case: switch ((value & MASK) >> SHIFT) { case V1: v1(); break; case V0: default: v0(); break; } -- With Best Regards, Andy Shevchenko