[PATCH] v4l: platform: Add Renesas R-Car FDP1 Driver

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The FDP1 driver performs advanced de-interlacing on a memory 2 memory
based video stream, and supports conversion from YCbCr/YUV
to RGB pixel formats

Signed-off-by: Kieran Bingham <kieran@xxxxxxxxxxx>
---
 MAINTAINERS                        |    9 +
 drivers/media/platform/Kconfig     |   13 +
 drivers/media/platform/Makefile    |    1 +
 drivers/media/platform/rcar_fdp1.c | 2395 ++++++++++++++++++++++++++++++++++++
 4 files changed, 2418 insertions(+)
 create mode 100644 drivers/media/platform/rcar_fdp1.c

diff --git a/MAINTAINERS b/MAINTAINERS
index eb5e3b673c1d..985d243ff066 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7331,6 +7331,15 @@ F:	Documentation/devicetree/bindings/media/renesas,fcp.txt
 F:	drivers/media/platform/rcar-fcp.c
 F:	include/media/rcar-fcp.h
 
+MEDIA DRIVERS FOR RENESAS - FDP1
+M:	Kieran Bingham <kieran@xxxxxxxxxxx>
+L:	linux-media@xxxxxxxxxxxxxxx
+L:	linux-renesas-soc@xxxxxxxxxxxxxxx
+T:	git git://linuxtv.org/media_tree.git
+S:	Supported
+F:	Documentation/devicetree/bindings/media/renesas,fdp1.txt
+F:	drivers/media/platform/rcar_fdp1.c
+
 MEDIA DRIVERS FOR RENESAS - VSP1
 M:	Laurent Pinchart <laurent.pinchart@xxxxxxxxxxxxxxxx>
 L:	linux-media@xxxxxxxxxxxxxxx
diff --git a/drivers/media/platform/Kconfig b/drivers/media/platform/Kconfig
index 0141af8cfdbc..80cdc3b6efa3 100644
--- a/drivers/media/platform/Kconfig
+++ b/drivers/media/platform/Kconfig
@@ -235,6 +235,19 @@ config VIDEO_SH_VEU
 	    Support for the Video Engine Unit (VEU) on SuperH and
 	    SH-Mobile SoCs.
 
+config VIDEO_RENESAS_FDP1
+	tristate "Renesas Fine Display Processor"
+	depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
+	depends on ARCH_SHMOBILE || COMPILE_TEST
+	select VIDEOBUF2_DMA_CONTIG
+	select V4L2_MEM2MEM_DEV
+	---help---
+	  This is a V4L2 driver for the Renesas Fine Display Processor
+	  providing colour space conversion, and de-interlacing features.
+
+	  To compile this driver as a module, choose M here: the module
+	  will be called rcar_fdp1.
+
 config VIDEO_RENESAS_JPU
 	tristate "Renesas JPEG Processing Unit"
 	depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
diff --git a/drivers/media/platform/Makefile b/drivers/media/platform/Makefile
index befc4f97057c..0c8a3ae7b6cb 100644
--- a/drivers/media/platform/Makefile
+++ b/drivers/media/platform/Makefile
@@ -47,6 +47,7 @@ obj-$(CONFIG_VIDEO_SH_VOU)		+= sh_vou.o
 obj-$(CONFIG_SOC_CAMERA)		+= soc_camera/
 
 obj-$(CONFIG_VIDEO_RENESAS_FCP) 	+= rcar-fcp.o
+obj-$(CONFIG_VIDEO_RENESAS_FDP1)	+= rcar_fdp1.o
 obj-$(CONFIG_VIDEO_RENESAS_JPU) 	+= rcar_jpu.o
 obj-$(CONFIG_VIDEO_RENESAS_VSP1)	+= vsp1/
 
diff --git a/drivers/media/platform/rcar_fdp1.c b/drivers/media/platform/rcar_fdp1.c
new file mode 100644
index 000000000000..c7280183262a
--- /dev/null
+++ b/drivers/media/platform/rcar_fdp1.c
@@ -0,0 +1,2395 @@
+/*
+ * Renesas RCar Fine Display Processor
+ *
+ * Video format converter and frame deinterlacer device.
+ *
+ * Author: Kieran Bingham, <kieran@xxxxxxxxxxx>
+ * Copyright (c) 2016 Renesas Electronics Corporation.
+ *
+ * This code is developed and inspired from the vim2m, rcar_jpu,
+ * m2m-deinterlace, and vsp1 drivers.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the
+ * License, or (at your option) any later version
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/fs.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/timer.h>
+#include <media/rcar-fcp.h>
+#include <media/v4l2-ctrls.h>
+#include <media/v4l2-device.h>
+#include <media/v4l2-event.h>
+#include <media/v4l2-ioctl.h>
+#include <media/v4l2-mem2mem.h>
+#include <media/videobuf2-dma-contig.h>
+
+static unsigned int debug;
+module_param(debug, uint, 0644);
+MODULE_PARM_DESC(debug, "activate debug info");
+
+/* Min Width/Height/Height-Field */
+#define FDP1_MIN_W		80U
+#define FDP1_MIN_H		80U
+
+#define FDP1_MAX_W		3840U
+#define FDP1_MAX_H		2160U
+
+#define FDP1_MAX_PLANES		3U
+
+/* Flags that indicate a format can be used for capture/output */
+#define FDP1_CAPTURE		BIT(0)
+#define FDP1_OUTPUT		BIT(1)
+
+#define DRIVER_NAME		"rcar_fdp1"
+
+/* Number of Job's to have available on the processing queue */
+#define FDP1_NUMBER_JOBS 8
+#define FDP1_NUMBER_BUFFERS ((FDP1_NUMBER_JOBS*2)+1)
+
+#define dprintk(fdp1, fmt, arg...) \
+	v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
+
+/*
+ * FDP1 registers and bits
+ */
+
+/* FDP1 start register - Imm */
+#define FD1_CTL_CMD			0x0000
+#define FD1_CTL_CMD_STRCMD		BIT(0)
+
+/* Sync generator register - Imm */
+#define FD1_CTL_SGCMD			0x0004
+#define FD1_CTL_SGCMD_SGEN		BIT(0)
+
+/* Register set end register - Imm */
+#define FD1_CTL_REGEND			0x0008
+#define FD1_CTL_REGEND_REGEND		BIT(0)
+
+/* Channel activation register - Vupdt */
+#define FD1_CTL_CHACT			0x000c
+#define FD1_CTL_CHACT_SMW		BIT(9)
+#define FD1_CTL_CHACT_WR		BIT(8)
+#define FD1_CTL_CHACT_SMR		BIT(3)
+#define FD1_CTL_CHACT_RD2		BIT(2)
+#define FD1_CTL_CHACT_RD1		BIT(1)
+#define FD1_CTL_CHACT_RD0		BIT(0)
+
+/* Operation Mode Register - Vupdt */
+#define FD1_CTL_OPMODE			0x0010
+#define FD1_CTL_OPMODE_PRG		BIT(4)
+#define FD1_CTL_OPMODE_VIMD_INTERRUPT	(0 << 0)
+#define FD1_CTL_OPMODE_VIMD_BESTEFFORT	(1 << 0)
+#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT	(2 << 0)
+
+#define FD1_CTL_VPERIOD			0x0014
+#define FD1_CTL_CLKCTRL			0x0018
+#define FD1_CTL_CLKCTRL_CSTP_N		BIT(0)
+
+/* Software reset register */
+#define FD1_CTL_SRESET			0x001c
+#define FD1_CTL_SRESET_SRST		BIT(0)
+
+/* Control status register (V-update-status) */
+#define FD1_CTL_STATUS			0x0024
+#define FD1_CTL_STATUS_VINT_CNT_MASK	GENMASK(31, 16)
+#define FD1_CTL_STATUS_VINT_CNT_SHIFT	16
+#define FD1_CTL_STATUS_SGREGSET		BIT(10)
+#define FD1_CTL_STATUS_SGVERR		BIT(9)
+#define FD1_CTL_STATUS_SGFREND		BIT(8)
+#define FD1_CTL_STATUS_BSY		BIT(0)
+
+#define FD1_CTL_VCYCLE_STAT		0x0028
+
+/* Interrupt enable register */
+#define FD1_CTL_IRQENB			0x0038
+/* Interrupt status register */
+#define FD1_CTL_IRQSTA			0x003c
+/* Interrupt control register */
+#define FD1_CTL_IRQFSET			0x0040
+
+/* Common IRQ Bit settings */
+#define FD1_CTL_IRQ_VERE		BIT(16)
+#define FD1_CTL_IRQ_VINTE		BIT(4)
+#define FD1_CTL_IRQ_FREE		BIT(0)
+#define FD1_CTL_IRQ_MASK		(FD1_CTL_IRQ_VERE | \
+					 FD1_CTL_IRQ_VINTE | \
+					 FD1_CTL_IRQ_FREE)
+
+/* RPF */
+#define FD1_RPF_SIZE			0x0060
+#define FD1_RPF_SIZE_MASK		GENMASK(12, 0)
+#define FD1_RPF_SIZE_H_SHIFT		16
+#define FD1_RPF_SIZE_V_SHIFT		0
+
+#define FD1_RPF_FORMAT			0x0064
+#define FD1_RPF_FORMAT_CIPM		BIT(16)
+#define FD1_RPF_FORMAT_RSPYCS		BIT(13)
+#define FD1_RPF_FORMAT_RSPUVS		BIT(12)
+#define FD1_RPF_FORMAT_CF		BIT(8)
+
+#define FD1_RPF_PSTRIDE			0x0068
+#define FD1_RPF_PSTRIDE_Y_SHIFT		16
+#define FD1_RPF_PSTRIDE_C_SHIFT		0
+
+/* RPF0 Source Component Y Address register */
+#define FD1_RPF0_ADDR_Y			0x006c
+
+/* RPF1 Current Picture Registers */
+#define FD1_RPF1_ADDR_Y			0x0078
+#define FD1_RPF1_ADDR_C0		0x007c
+#define FD1_RPF1_ADDR_C1		0x0080
+
+/* RPF2 next picture register */
+#define FD1_RPF2_ADDR_Y			0x0084
+
+#define FD1_RPF_SMSK_ADDR		0x0090
+#define FD1_RPF_SWAP			0x0094
+
+/* WPF */
+#define FD1_WPF_FORMAT			0x00c0
+#define FD1_WPF_FORMAT_PDV_SHIFT	24
+#define FD1_WPF_FORMAT_FCNL		BIT(20)
+#define FD1_WPF_FORMAT_WSPYCS		BIT(15)
+#define FD1_WPF_FORMAT_WSPUVS		BIT(14)
+#define FD1_WPF_FORMAT_WRTM_601_16	(0 << 9)
+#define FD1_WPF_FORMAT_WRTM_601_0	(1 << 9)
+#define FD1_WPF_FORMAT_WRTM_709_16	(2 << 9)
+#define FD1_WPF_FORMAT_CSC		BIT(8)
+
+#define FD1_WPF_RNDCTL			0x00c4
+#define FD1_WPF_RNDCTL_CBRM		BIT(28)
+#define FD1_WPF_RNDCTL_CLMD_NOCLIP	(0 << 12)
+#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235	(1 << 12)
+#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254	(2 << 12)
+
+#define FD1_WPF_PSTRIDE			0x00c8
+#define FD1_WPF_PSTRIDE_Y_SHIFT		16
+#define FD1_WPF_PSTRIDE_C_SHIFT		0
+
+/* WPF Destination picture */
+#define FD1_WPF_ADDR_Y			0x00cc
+#define FD1_WPF_ADDR_C0			0x00d0
+#define FD1_WPF_ADDR_C1			0x00d4
+#define FD1_WPF_SWAP			0x00d8
+#define FD1_WPF_SWAP_OSWAP_SHIFT	0
+#define FD1_WPF_SWAP_SSWAP_SHIFT	4
+
+/* WPF/RPF Common */
+#define FD1_RWPF_SWAP_BYTE		BIT(0)
+#define FD1_RWPF_SWAP_WORD		BIT(1)
+#define FD1_RWPF_SWAP_LWRD		BIT(2)
+#define FD1_RWPF_SWAP_LLWD		BIT(3)
+
+/* IPC */
+#define FD1_IPC_MODE			0x0100
+#define FD1_IPC_MODE_DLI		BIT(8)
+#define FD1_IPC_MODE_DIM_ADAPT2D3D	(0 << 0)
+#define FD1_IPC_MODE_DIM_FIXED2D	(1 << 0)
+#define FD1_IPC_MODE_DIM_FIXED3D	(2 << 0)
+#define FD1_IPC_MODE_DIM_PREVFIELD	(3 << 0)
+#define FD1_IPC_MODE_DIM_NEXTFIELD	(4 << 0)
+
+#define FD1_IPC_SMSK_THRESH		0x0104
+#define FD1_IPC_SMSK_THRESH_CONST	0x00010002
+
+#define FD1_IPC_COMB_DET		0x0108
+#define FD1_IPC_COMB_DET_CONST		0x00200040
+
+#define FD1_IPC_MOTDEC			0x010c
+#define FD1_IPC_MOTDEC_CONST		0x00008020
+
+/* DLI registers */
+#define FD1_IPC_DLI_BLEND		0x0120
+#define FD1_IPC_DLI_BLEND_CONST		0x0080ff02
+
+#define FD1_IPC_DLI_HGAIN		0x0124
+#define FD1_IPC_DLI_HGAIN_CONST		0x001000ff
+
+#define FD1_IPC_DLI_SPRS		0x0128
+#define FD1_IPC_DLI_SPRS_CONST		0x009004ff
+
+#define FD1_IPC_DLI_ANGLE		0x012c
+#define FD1_IPC_DLI_ANGLE_CONST		0x0004080c
+
+#define FD1_IPC_DLI_ISOPIX0		0x0130
+#define FD1_IPC_DLI_ISOPIX0_CONST	0xff10ff10
+
+#define FD1_IPC_DLI_ISOPIX1		0x0134
+#define FD1_IPC_DLI_ISOPIX1_CONST	0x0000ff10
+
+/* Sensor registers */
+#define FD1_IPC_SENSOR_TH0		0x0140
+#define FD1_IPC_SENSOR_TH0_CONST	0x20208080
+
+#define FD1_IPC_SENSOR_TH1		0x0144
+#define FD1_IPC_SENSOR_TH1_CONST	0
+
+#define FD1_IPC_SENSOR_CTL0		0x0170
+#define FD1_IPC_SENSOR_CTL0_CONST	0x00002201
+
+#define FD1_IPC_SENSOR_CTL1		0x0174
+#define FD1_IPC_SENSOR_CTL1_CONST	0
+
+#define FD1_IPC_SENSOR_CTL2		0x0178
+#define FD1_IPC_SENSOR_CTL2_X_SHIFT	16
+#define FD1_IPC_SENSOR_CTL2_Y_SHIFT	0
+
+#define FD1_IPC_SENSOR_CTL3		0x017c
+#define FD1_IPC_SENSOR_CTL3_0_SHIFT	16
+#define FD1_IPC_SENSOR_CTL3_1_SHIFT	0
+
+/* Line memory pixel number register */
+#define FD1_IPC_LMEM			0x01e0
+#define FD1_IPC_LMEM_LINEAR		1024
+#define FD1_IPC_LMEM_TILE		960
+
+/* Internal Data (HW Version) */
+#define FD1_IP_INTDATA			0x0800
+#define FD1_IP_H3			0x02010101
+#define FD1_IP_M3W			0x02010202
+
+/* LUTs */
+#define FD1_LUT_DIF_ADJ			0x1000
+#define FD1_LUT_SAD_ADJ			0x1400
+#define FD1_LUT_BLD_GAIN		0x1800
+#define FD1_LUT_DIF_GAIN		0x1c00
+#define FD1_LUT_MDET			0x2000
+
+/**
+ * struct fdp1_fmt - The FDP1 internal format data
+ * @fourcc: the fourcc code, to match the V4L2 API
+ * @bpp: bits per pixel per plane
+ * @num_planes: number of planes
+ * @hsub: horizontal subsampling factor
+ * @vsub: vertical subsampling factor
+ * @fmt: 7-bit format code for the fdp1 hardware
+ * @swap_yc: the Y and C components are swapped (Y comes before C)
+ * @swap_uv: the U and V components are swapped (V comes before U)
+ * @swap: swap register control
+ * @types: types of queue this format is applicable to
+ */
+struct fdp1_fmt {
+	u32	fourcc;
+	u8	bpp[3];
+	u8	num_planes;
+	u8	hsub;
+	u8	vsub;
+	u8	fmt;
+	bool	swap_yc;
+	bool	swap_uv;
+	u8	swap;
+	u8	types;
+};
+
+static const struct fdp1_fmt fdp1_formats[] = {
+	/* RGB formats are only supported by the Write Pixel Formatter */
+
+	{ V4L2_PIX_FMT_RGB332, { 8, 0, 0}, 1, 1, 1, 0x00, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_XRGB444, { 16, 0, 0}, 1, 1, 1, 0x01, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_XRGB555, { 16, 0, 0}, 1, 1, 1, 0x04, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_RGB565, { 16, 0, 0}, 1, 1, 1, 0x06, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_ABGR32, { 32, 0, 0}, 1, 1, 1, 0x13, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_XBGR32, { 32, 0, 0}, 1, 1, 1, 0x13, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_ARGB32, { 32, 0, 0}, 1, 1, 1, 0x13, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_XRGB32, { 32, 0, 0}, 1, 1, 1, 0x13, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_RGB24, { 24, 0, 0}, 1, 1, 1, 0x15, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_BGR24, { 24, 0, 0}, 1, 1, 1, 0x18, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_ARGB444, { 16, 0, 0}, 1, 1, 1, 0x19, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD,
+	  FDP1_CAPTURE },
+	{ V4L2_PIX_FMT_ARGB555, { 16, 0, 0}, 1, 1, 1, 0x1b, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD,
+	  FDP1_CAPTURE },
+
+	/* YUV Formats are supported by Read and Write Pixel Formatters */
+
+	{ V4L2_PIX_FMT_NV16M, { 8, 16, 0}, 2, 2, 1, 0x41, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_NV61M, { 8, 16, 0}, 2, 2, 1, 0x41, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_NV12M, { 8, 16, 0}, 2, 2, 2, 0x42, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_NV21M, { 8, 16, 0}, 2, 2, 2, 0x42, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_UYVY, { 16, 0, 0}, 1, 2, 1, 0x47, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_VYUY, { 16, 0, 0}, 1, 2, 1, 0x47, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YUYV, { 16, 0, 0}, 1, 2, 1, 0x47, true, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YVYU, { 16, 0, 0}, 1, 2, 1, 0x47, true, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YUV444M, { 8, 8, 8}, 3, 1, 1, 0x4a, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YVU444M, { 8, 8, 8}, 3, 1, 1, 0x4a, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YUV422M, { 8, 8, 8}, 3, 2, 1, 0x4b, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YVU422M, { 8, 8, 8}, 3, 2, 1, 0x4b, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YUV420M, { 8, 8, 8}, 3, 2, 2, 0x4c, false, false,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+	{ V4L2_PIX_FMT_YVU420M, { 8, 8, 8}, 3, 2, 2, 0x4c, false, true,
+	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+	  FDP1_CAPTURE | FDP1_OUTPUT },
+};
+
+static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
+{
+	return fmt->fmt <= 0x1b; /* Last RGB code */
+}
+
+/*
+ * FDP1 Lookup tables range from 0...255 only
+ *
+ * Each table must be less than 256 entries, and all tables
+ * are padded out to 256 entries by duplicating the last value.
+ */
+static u8 fdp1_diff_adj[] = {
+	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
+	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
+	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
+};
+
+static u8 fdp1_sad_adj[] = {
+	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
+	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
+	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
+};
+
+static u8 fdp1_bld_gain[] = {
+	0x80,
+};
+
+static u8 fdp1_dif_gain[] = {
+	0x80,
+};
+
+static u8 fdp1_mdet[] = {
+	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+/* Per-queue, driver-specific private data */
+struct fdp1_q_data {
+	const struct fdp1_fmt	*fmt;
+	struct v4l2_pix_format_mplane format;
+
+	unsigned int		vsize;
+	unsigned int		stride_y;
+	unsigned int		stride_c;
+};
+
+/* Custom controls */
+#define V4L2_CID_DEINT_MODE		(V4L2_CID_USER_BASE + 0x1000)
+
+static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
+{
+	const struct fdp1_fmt *fmt;
+	unsigned int i;
+
+	for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
+		fmt = &fdp1_formats[i];
+		if (fmt->fourcc == pixelformat)
+			return fmt;
+	}
+
+	return NULL;
+}
+
+enum fdp1_deint_mode {
+	FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
+	FDP1_ADAPT2D3D,
+	FDP1_FIXED2D,
+	FDP1_FIXED3D,
+	FDP1_PREVFIELD,
+	FDP1_NEXTFIELD,
+};
+
+#define FDP1_DEINT_MODE_USES_NEXT(mode) \
+	(mode == FDP1_ADAPT2D3D || \
+	 mode == FDP1_FIXED3D   || \
+	 mode == FDP1_NEXTFIELD)
+
+#define FDP1_DEINT_MODE_USES_PREV(mode) \
+	(mode == FDP1_ADAPT2D3D || \
+	 mode == FDP1_FIXED3D   || \
+	 mode == FDP1_PREVFIELD)
+
+/*
+ * fdp1_v4l2_buffer: Track v4l2_buffers with a reference count
+ *
+ * As buffers come in, they may be used for more than one field.
+ * It then becomes necessary to track the usage of these buffers,
+ * and only release when the last job has completed using this
+ * vb buffer.
+ */
+struct fdp1_v4l2_buffer {
+	struct vb2_v4l2_buffer	vb;
+	struct list_head	list;
+};
+
+/*
+ * FDP1 operates on potentially 3 fields, which are tracked
+ * from the VB buffers using this context structure.
+ * Will always be a field or a full frame, never two fields.
+ */
+struct fdp1_buffer {
+	struct vb2_v4l2_buffer	*vb;
+	dma_addr_t		addrs[3];
+
+	/* Should be NONE:TOP:BOTTOM only */
+	enum v4l2_field		field;
+
+	/* Flag to indicate this is the last field in the vb */
+	bool			last_field;
+
+	/* Buffer queue lists */
+	struct list_head	list;
+};
+
+struct fdp1_job {
+	/* These could be pointers to save 'memory' and copying */
+	struct fdp1_buffer	*previous;
+	struct fdp1_buffer	*active;
+	struct fdp1_buffer	*next;
+	struct fdp1_buffer	dst;
+
+	/* A job can only be on one list at a time */
+	struct list_head	list;
+};
+
+struct fdp1_dev {
+	struct v4l2_device	v4l2_dev;
+	struct video_device	vfd;
+
+	struct mutex		dev_mutex;
+	spinlock_t		irqlock;
+	spinlock_t		device_process_lock;
+
+	void __iomem		*regs;
+	unsigned int		irq;
+	struct device		*dev;
+	void			*alloc_ctx;
+
+	/* Job Queues */
+	struct fdp1_job		jobs[FDP1_NUMBER_JOBS];
+	struct list_head	free_job_list;
+	struct list_head	queued_job_list;
+	struct list_head	hw_job_list;
+
+	unsigned int		clk_rate;
+
+	struct rcar_fcp_device	*fcp;
+	struct v4l2_m2m_dev	*m2m_dev;
+};
+
+struct fdp1_ctx {
+	struct v4l2_fh		fh;
+	struct fdp1_dev		*fdp1;
+
+	struct v4l2_ctrl_handler hdl;
+	unsigned int		sequence;
+
+	/* Processed buffers in this transaction */
+	u8			num_processed;
+
+	/* Transaction length (i.e. how many buffers per transaction) */
+	u32			translen;
+
+	/* Abort requested by m2m */
+	int			aborting;
+
+	/* Deinterlace processing mode */
+	enum fdp1_deint_mode	deint_mode;
+
+	/*
+	 * Adaptive 2d 3d mode uses a shared mask
+	 * This is allocated at streamon, if the ADAPT2D3D mode
+	 * is requested
+	 */
+	unsigned int		smsk_size;
+	dma_addr_t		smsk_addr[2];
+	void			*smsk_cpu;
+
+	/* Capture pipeline, can specify an alpha value
+	 * for supported formats. 0-255 only
+	 */
+	unsigned char		alpha;
+
+	/* Source and destination queue data */
+	struct fdp1_q_data	out_q; /* HW Source */
+	struct fdp1_q_data	cap_q; /* HW Destination */
+
+	/*
+	 * Field Queues
+	 * Interlaced fields fields are used on 3 occasions,
+	 * and tracked in this list.
+	 *
+	 * V4L2 Buffers are tracked inside the fdp1_buffer
+	 * and released when the last 'field' completes
+	 */
+	struct fdp1_buffer	buffers[FDP1_NUMBER_BUFFERS];
+	struct list_head	free_buffers;
+	struct list_head	fdp1_buffer_queue;
+	unsigned int		buffers_queued;
+
+	/*
+	 * For de-interlacing we need to track our previous buffer
+	 * while preparing our job lists.
+	 */
+	struct fdp1_buffer	*previous;
+};
+
+static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
+{
+	return container_of(fh, struct fdp1_ctx, fh);
+}
+
+static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
+					 enum v4l2_buf_type type)
+{
+	if (V4L2_TYPE_IS_OUTPUT(type))
+		return &ctx->out_q;
+	else
+		return &ctx->cap_q;
+}
+
+/*
+ * list_remove_job: Take the first item off the specified job list
+ *
+ * Returns: pointer to a job, or NULL if the list is empty.
+ */
+static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
+					 struct list_head *list)
+{
+	struct fdp1_job *job;
+	unsigned long flags;
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	job = list_first_entry_or_null(list, struct fdp1_job, list);
+	if (job)
+		list_del(&job->list);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+	return job;
+}
+
+/*
+ * list_add_job: Add a job to the specified job list
+ *
+ * Returns: void - always succeeds
+ */
+static void list_add_job(struct fdp1_dev *fdp1,
+			 struct list_head *list,
+			 struct fdp1_job *job)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	list_add_tail(&job->list, list);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+}
+
+static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
+{
+	return list_remove_job(fdp1, &fdp1->free_job_list);
+}
+
+static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+	/* Ensure that all residue from previous jobs is gone */
+	memset(job, 0, sizeof(struct fdp1_job));
+
+	list_add_job(fdp1, &fdp1->free_job_list, job);
+}
+
+static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+	list_add_job(fdp1, &fdp1->queued_job_list, job);
+}
+
+static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
+{
+	return list_remove_job(fdp1, &fdp1->queued_job_list);
+}
+
+static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+	list_add_job(fdp1, &fdp1->hw_job_list, job);
+}
+
+static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
+{
+	return list_remove_job(fdp1, &fdp1->hw_job_list);
+}
+
+/*
+ * Buffer lists handling
+ */
+static struct fdp1_buffer *list_remove_buffer(struct fdp1_dev *fdp1,
+					       struct list_head *list)
+{
+	struct fdp1_buffer *buf;
+	unsigned long flags;
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	buf = list_first_entry_or_null(list, struct fdp1_buffer, list);
+	if (buf)
+		list_del(&buf->list);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+	return buf;
+}
+
+/*
+ * list_add_buffer: Add a buffer to the specified list
+ *
+ * Returns: void - always succeeds
+ */
+static void list_add_buffer(struct fdp1_dev *fdp1,
+			    struct list_head *list,
+			    struct fdp1_buffer *buf)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	list_add_tail(&buf->list, list);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+}
+
+/*
+ * fdp1_buffer_alloc: Retrieve a buffer to track a single field/frame
+ *
+ * Must always return a buffer, and should block if necessary.
+ */
+static struct fdp1_buffer *fdp1_buffer_alloc(struct fdp1_ctx *ctx)
+{
+	return list_remove_buffer(ctx->fdp1, &ctx->free_buffers);
+}
+
+static void fdp1_buffer_free(struct fdp1_ctx *ctx,
+			struct fdp1_buffer *buf)
+{
+	/* job->previous may be on the first field */
+	if (!buf)
+		return;
+
+	if (buf->last_field)
+		v4l2_m2m_buf_done(buf->vb, VB2_BUF_STATE_DONE);
+
+	memset(buf, 0, sizeof(struct fdp1_buffer));
+
+	list_add_buffer(ctx->fdp1, &ctx->free_buffers, buf);
+}
+
+static void queue_buffer(struct fdp1_ctx *ctx, struct fdp1_buffer *buf)
+{
+	list_add_buffer(ctx->fdp1, &ctx->fdp1_buffer_queue, buf);
+	ctx->buffers_queued++;
+}
+
+static struct fdp1_buffer *dequeue_buffer(struct fdp1_ctx *ctx)
+{
+	ctx->buffers_queued--;
+	return list_remove_buffer(ctx->fdp1, &ctx->fdp1_buffer_queue);
+}
+
+/*
+ * Return the next buffer in the queue - or NULL,
+ * without removing the item from the list
+ */
+static struct fdp1_buffer *peek_queued_buffer(struct fdp1_ctx *ctx)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	unsigned long flags;
+	struct fdp1_buffer *buf;
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	buf = list_first_entry_or_null(&ctx->fdp1_buffer_queue,
+			struct fdp1_buffer, list);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+	return buf;
+}
+
+static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
+{
+	u32 value = ioread32(fdp1->regs + reg);
+
+	if (debug >= 2)
+		dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
+
+	return value;
+}
+
+static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
+{
+	if (debug >= 2)
+		dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
+
+	iowrite32(val, fdp1->regs + reg);
+}
+
+/* IPC registers are to be programmed with constant values */
+static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+
+	fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST,	FD1_IPC_SMSK_THRESH);
+	fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST,	FD1_IPC_COMB_DET);
+	fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST,	FD1_IPC_MOTDEC);
+
+	fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST,	FD1_IPC_DLI_BLEND);
+	fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST,	FD1_IPC_DLI_HGAIN);
+	fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST,	FD1_IPC_DLI_SPRS);
+	fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST,	FD1_IPC_DLI_ANGLE);
+	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST,	FD1_IPC_DLI_ISOPIX0);
+	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST,	FD1_IPC_DLI_ISOPIX1);
+}
+
+
+static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	struct fdp1_q_data *src_q_data = &ctx->out_q;
+	unsigned int x0, x1;
+	unsigned int hsize = src_q_data->format.width;
+	unsigned int vsize = src_q_data->format.height;
+
+	x0 = hsize / 3;
+	x1 = 2 * hsize / 3;
+
+	fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
+	fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
+	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
+	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
+
+	fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
+			 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
+			 FD1_IPC_SENSOR_CTL2);
+
+	fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
+			 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
+			 FD1_IPC_SENSOR_CTL3);
+}
+
+/*
+ * fdp1_write_lut: Write a padded LUT to the hw
+ *
+ * FDP1 uses constant data for de-interlacing processing,
+ * with large tables. These hardware tables are all 256 bytes
+ * long, however they often contain repeated data at the end.
+ *
+ * The last byte of the table is written to all remaining entries.
+ */
+static void fdp1_write_lut(struct fdp1_dev *fdp1,
+			   u8 *lut,
+			   unsigned int len,
+			   unsigned int base)
+{
+	unsigned int i;
+	u8 pad;
+
+	/* Tables larger than the hw are clipped */
+	len = min(len, 256u);
+
+	for (i = 0; i < len; i++)
+		fdp1_write(fdp1, lut[i], base + (i*4));
+
+	/* Tables are padded with the last entry */
+	pad = lut[i-1];
+
+	for (; i < 256; i++)
+		fdp1_write(fdp1, pad, base + (i*4));
+}
+
+static void fdp1_set_lut(struct fdp1_dev *fdp1)
+{
+	fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
+			FD1_LUT_DIF_ADJ);
+	fdp1_write_lut(fdp1, fdp1_sad_adj,  ARRAY_SIZE(fdp1_sad_adj),
+			FD1_LUT_SAD_ADJ);
+	fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
+			FD1_LUT_BLD_GAIN);
+	fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
+			FD1_LUT_DIF_GAIN);
+	fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
+			FD1_LUT_MDET);
+}
+
+static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
+			       struct fdp1_job *job)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	u32 picture_size;
+	u32 pstride;
+	u32 format;
+	u32 smsk_addr;
+
+	struct fdp1_q_data *q_data = &ctx->out_q;
+
+	/* Picture size is common to Source and Destination frames */
+	picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
+		     | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
+
+	/* Strides */
+	pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
+	if (q_data->format.num_planes > 1)
+		pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
+
+	/* Format control */
+	format = q_data->fmt->fmt;
+	if (q_data->fmt->swap_yc)
+		format |= FD1_RPF_FORMAT_RSPYCS;
+
+	if (q_data->fmt->swap_uv)
+		format |= FD1_RPF_FORMAT_RSPUVS;
+
+	if (job->active->field == V4L2_FIELD_BOTTOM) {
+		format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
+		smsk_addr = ctx->smsk_addr[0];
+	} else {
+		smsk_addr = ctx->smsk_addr[1];
+	}
+
+	/* Deint mode is non-zero when deinterlacing */
+	if (ctx->deint_mode)
+		format |= FD1_RPF_FORMAT_CIPM;
+
+	fdp1_write(fdp1, format, FD1_RPF_FORMAT);
+	fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
+	fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
+	fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
+	fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
+
+	/* Previous Field Channel (CH0) */
+	if (job->previous)
+		fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
+
+	/* Current Field Channel (CH1) */
+	fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
+	fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
+	fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
+
+	/* Next Field  Channel (CH2) */
+	if (job->next)
+		fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
+}
+
+static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
+			       struct fdp1_job *job)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	struct fdp1_q_data *src_q_data = &ctx->out_q;
+	struct fdp1_q_data *q_data = &ctx->cap_q;
+	u32 pstride;
+	u32 format;
+	u32 swap;
+	u32 rndctl;
+
+	pstride = q_data->format.plane_fmt[0].bytesperline
+			<< FD1_WPF_PSTRIDE_Y_SHIFT;
+
+	if (q_data->format.num_planes > 1)
+		pstride |= q_data->format.plane_fmt[1].bytesperline
+			<< FD1_WPF_PSTRIDE_C_SHIFT;
+
+	format = q_data->fmt->fmt; /* Output Format Code */
+
+	if (q_data->fmt->swap_yc)
+		format |= FD1_WPF_FORMAT_WSPYCS;
+
+	if (q_data->fmt->swap_uv)
+		format |= FD1_WPF_FORMAT_WSPUVS;
+
+	if (fdp1_fmt_is_rgb(q_data->fmt)) {
+		/* Enable Colour Space conversion */
+		format |= FD1_WPF_FORMAT_CSC;
+
+		/* Set WRTM */
+		if (src_q_data->format.ycbcr_enc == V4L2_COLORSPACE_REC709)
+			format |= FD1_WPF_FORMAT_WRTM_709_16;
+		else if (src_q_data->format.quantization ==
+				V4L2_QUANTIZATION_FULL_RANGE)
+			format |= FD1_WPF_FORMAT_WRTM_601_0;
+		else
+			format |= FD1_WPF_FORMAT_WRTM_601_16;
+	}
+
+	/* Set an alpha value into the Pad Value */
+	format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
+
+	/* Determine picture rounding and clipping */
+	rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
+	rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
+
+	/* WPF Swap needs both ISWAP and OSWAP setting */
+	swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
+	swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
+
+	fdp1_write(fdp1, format, FD1_WPF_FORMAT);
+	fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
+	fdp1_write(fdp1, swap, FD1_WPF_SWAP);
+	fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
+
+	fdp1_write(fdp1, job->dst.addrs[0], FD1_WPF_ADDR_Y);
+	fdp1_write(fdp1, job->dst.addrs[1], FD1_WPF_ADDR_C0);
+	fdp1_write(fdp1, job->dst.addrs[2], FD1_WPF_ADDR_C1);
+}
+
+static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
+				      struct fdp1_job *job)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
+	u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
+	u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
+
+	/* De-interlacing Mode */
+	switch (ctx->deint_mode) {
+	default:
+	case FDP1_PROGRESSIVE:
+		dprintk(fdp1, "Progressive Mode\n");
+		opmode |= FD1_CTL_OPMODE_PRG;
+		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+		break;
+	case FDP1_ADAPT2D3D:
+		dprintk(fdp1, "Adapt2d3d Mode\n");
+		if (ctx->sequence == 0 || ctx->aborting)
+			ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+		else
+			ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
+
+		if (ctx->sequence > 1) {
+			channels |= FD1_CTL_CHACT_SMW;
+			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
+		}
+
+		if (ctx->sequence > 2)
+			channels |= FD1_CTL_CHACT_SMR;
+
+		break;
+	case FDP1_FIXED3D:
+		dprintk(fdp1, "Fixed 3d Mode\n");
+		ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
+		/* Except for first and last frame, enable all channels */
+		if (!(ctx->sequence == 0 || ctx->aborting))
+			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
+		break;
+	case FDP1_FIXED2D:
+		dprintk(fdp1, "Fixed 2d Mode\n");
+		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+		/* No extra channels enabled */
+		break;
+	case FDP1_PREVFIELD:
+		dprintk(fdp1, "Previous Field Mode\n");
+		ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
+		channels |= FD1_CTL_CHACT_RD0; /* Previous */
+		break;
+	case FDP1_NEXTFIELD:
+		dprintk(fdp1, "Next Field Mode\n");
+		ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
+		channels |= FD1_CTL_CHACT_RD2; /* Next */
+		break;
+	}
+
+	fdp1_write(fdp1, channels,	FD1_CTL_CHACT);
+	fdp1_write(fdp1, opmode,	FD1_CTL_OPMODE);
+	fdp1_write(fdp1, ipcmode,	FD1_IPC_MODE);
+}
+
+/*
+ * fdp1_device_process() - Run the hardware
+ *
+ * Configure and start the hardware to generate a single frame
+ * of output given our input parameters.
+ */
+static int fdp1_device_process(struct fdp1_ctx *ctx)
+
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	struct fdp1_job *job;
+	unsigned long flags;
+
+	spin_lock_irqsave(&fdp1->device_process_lock, flags);
+
+	/* Get a job to process */
+	job = get_queued_job(fdp1);
+	if (!job) {
+		/*
+		 * VINT can call us to see if we can queue another job.
+		 * If we have no work to do, we simply return.
+		 */
+		spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
+		return 0;
+	}
+
+	/* First Frame only? ... */
+	fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
+
+	/* Set the mode, and configuration */
+	fdp1_configure_deint_mode(ctx, job);
+
+	/* DLI Static Configuration */
+	fdp1_set_ipc_dli(ctx);
+
+	/* Sensor Configuration */
+	fdp1_set_ipc_sensor(ctx);
+
+	/* Setup the source picture */
+	fdp1_configure_rpf(ctx, job);
+
+	/* Setup the destination picture */
+	fdp1_configure_wpf(ctx, job);
+
+	/* Line Memory Pixel Number Register for linear access */
+	fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
+
+	/* Enable Interrupts */
+	fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
+
+	/* Finally, the Immediate Registers */
+
+	/* This job is now in the HW queue */
+	queue_hw_job(fdp1, job);
+
+	/* Start the command */
+	fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
+
+	/* Registers will update to HW at next VINT */
+	fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
+
+	/* Enable VINT Generator */
+	fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
+
+	spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
+
+	return 0;
+}
+
+/*
+ * mem2mem callbacks
+ */
+
+/**
+ * job_ready() - check whether an instance is ready to be scheduled to run
+ */
+static int fdp1_m2m_job_ready(void *priv)
+{
+	struct fdp1_ctx *ctx = priv;
+	struct fdp1_q_data *src_q_data = &ctx->out_q;
+	int srcbufs = 1;
+	int dstbufs = 1;
+
+	dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
+			v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
+			v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
+
+	/* One output buffer is required for each field */
+	if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
+		dstbufs = 2;
+
+	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
+	    || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
+		dprintk(ctx->fdp1, "Not enough buffers available\n");
+		return 0;
+	}
+
+	return 1;
+}
+
+static void fdp1_m2m_job_abort(void *priv)
+{
+	struct fdp1_ctx *ctx = priv;
+
+	dprintk(ctx->fdp1, "+\n");
+
+	/* Will cancel the transaction in the next interrupt handler */
+	ctx->aborting = 1;
+
+	/* Immediate abort sequence */
+	fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
+	fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
+}
+
+/*
+ * prepare_buffer: Prepare an fdp1_buffer, from a vb2_v4l2_buffer
+ *
+ * This helps us serialise buffers containing two fields into
+ * sequential top and bottom fields.
+ * Destination buffers also go through this function to
+ * set the vb and addrs in the same manner.
+ */
+static void prepare_buffer(struct fdp1_ctx *ctx,
+			   struct fdp1_buffer *buf,
+			   struct vb2_v4l2_buffer *vb,
+			   bool next_field, bool last_field)
+{
+	struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_buf.type);
+	unsigned int i;
+
+	buf->vb = vb;
+	buf->last_field = last_field;
+
+	for (i = 0; i < vb->vb2_buf.num_planes; ++i)
+		buf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vb->vb2_buf, i);
+
+	switch (vb->field) {
+	case V4L2_FIELD_INTERLACED:
+	case V4L2_FIELD_INTERLACED_TB:
+	case V4L2_FIELD_SEQ_TB:
+		buf->field = (next_field) ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
+		break;
+	case V4L2_FIELD_INTERLACED_BT:
+	case V4L2_FIELD_SEQ_BT:
+		buf->field = (next_field) ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
+		break;
+	default:
+		buf->field = vb->field;
+	}
+
+	/* Buffer is completed */
+	if (next_field == false)
+		return;
+
+	/* Adjust buffer addresses for second field */
+	switch (vb->field) {
+	case V4L2_FIELD_INTERLACED:
+	case V4L2_FIELD_INTERLACED_TB:
+	case V4L2_FIELD_INTERLACED_BT:
+		for (i = 0; i < vb->vb2_buf.num_planes; i++)
+			buf->addrs[i] +=
+				(i == 0 ? q_data->stride_y : q_data->stride_c);
+		break;
+	case V4L2_FIELD_SEQ_TB:
+	case V4L2_FIELD_SEQ_BT:
+		for (i = 0; i < vb->vb2_buf.num_planes; i++)
+			buf->addrs[i] += q_data->vsize *
+				(i == 0 ? q_data->stride_y : q_data->stride_c);
+		break;
+	}
+}
+
+/*
+ * prepare_job: Prepare and queue a new job for a single action of work
+ *
+ * Prepare the next field, (or frame in progressive) and an output
+ * buffer for the hardware to perform a single operation.
+ */
+static struct fdp1_job *prepare_job(struct fdp1_ctx *ctx)
+{
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	struct fdp1_job *job;
+	unsigned int buffers_required = 1;
+
+	dprintk(fdp1, "+\n");
+
+	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
+		buffers_required = 2;
+
+	if (ctx->buffers_queued < buffers_required)
+		return 0;
+
+	job = fdp1_job_alloc(fdp1);
+	if (!job) {
+		dprintk(fdp1, "No free jobs currently available\n");
+		return NULL;
+	}
+
+	job->active = dequeue_buffer(ctx);
+	if (!job->active) {
+		/* Buffer check should prevent this ever happening */
+		dprintk(fdp1, "No input buffers currently available\n");
+
+		fdp1_job_free(fdp1, job);
+		return NULL;
+	}
+
+	dprintk(fdp1, "+ Buffer en-route...\n");
+
+	/* Source buffers have been prepared on our buffer_queue
+	 * Prepare our Output buffer
+	 */
+	job->dst.vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
+	prepare_buffer(ctx, &job->dst, job->dst.vb, false, true);
+
+	job->active->vb->sequence = ctx->sequence;
+	job->dst.vb->sequence = ctx->sequence;
+	ctx->sequence++;
+
+	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
+		job->previous = ctx->previous;
+
+		/* Active buffer becomes the next job's previous buffer */
+		ctx->previous = job->active;
+	}
+
+	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
+		/* Must be called after 'active' is dequeued */
+		job->next = peek_queued_buffer(ctx);
+	}
+
+	/* Transfer timestamps and flags from src->dst */
+
+	job->dst.vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
+
+	job->dst.vb->flags = job->active->vb->flags &
+				V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
+
+	/* Ideally, the frame-end function will just 'check' to see
+	 * if there are more jobs instead
+	 */
+	ctx->translen++;
+
+	/* Finally, Put this job on the processing queue */
+	queue_job(fdp1, job);
+
+	dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
+
+	return job;
+}
+
+/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
+ *
+ * A single input buffer is taken and serialised into our fdp1_buffer
+ * queue. The queue is then processed to create as many jobs as possible
+ * from our available input.
+ */
+static void fdp1_m2m_device_run(void *priv)
+{
+	struct fdp1_ctx *ctx = priv;
+	struct fdp1_dev *fdp1 = ctx->fdp1;
+	struct fdp1_q_data *src_q_data = &ctx->out_q;
+	struct vb2_v4l2_buffer *src_vb;
+	int fields = V4L2_FIELD_HAS_BOTH(src_q_data->format.field) ? 2 : 1;
+	unsigned int i;
+
+	dprintk(fdp1, "+\n");
+
+	ctx->translen = 0;
+
+	/* Get our incoming buffer of either one or two fields, or one frame */
+	src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
+
+	for (i = 0; i < fields; i++) {
+		struct fdp1_buffer *buf = fdp1_buffer_alloc(ctx);
+		bool last_field = (i+1 == fields);
+
+		prepare_buffer(ctx, buf, src_vb, i, last_field);
+		queue_buffer(ctx, buf);
+		dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
+				i, last_field);
+	}
+
+	/* Queue as many jobs as our data provides for */
+	while (prepare_job(ctx))
+		;
+
+	if (ctx->translen == 0) {
+		dprintk(fdp1, "No jobs were processed. M2M action complete\n");
+		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
+		return;
+	}
+
+	/* Kick the job processing action */
+	fdp1_device_process(ctx);
+}
+
+/*
+ * device_frame_end:
+ *
+ * Handles the M2M level after a buffer completion event.
+ */
+static void device_frame_end(struct fdp1_dev *fdp1,
+			     enum vb2_buffer_state state)
+{
+	struct fdp1_ctx *ctx;
+	unsigned long flags;
+	struct fdp1_job *job = get_hw_queued_job(fdp1);
+
+	dprintk(fdp1, "+\n");
+
+	ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
+
+	if (ctx == NULL) {
+		v4l2_err(&fdp1->v4l2_dev,
+			"Instance released before the end of transaction\n");
+		return;
+	}
+
+	ctx->num_processed++;
+
+	/*
+	 * fdp1_buffer_free will call buf_done only when the last vb2_buffer
+	 * reference is complete
+	 */
+	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
+		fdp1_buffer_free(ctx, job->previous);
+	else
+		fdp1_buffer_free(ctx, job->active);
+
+	spin_lock_irqsave(&fdp1->irqlock, flags);
+	v4l2_m2m_buf_done(job->dst.vb, state);
+	spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+	/* Move this job back to the free job list */
+	fdp1_job_free(fdp1, job);
+
+	dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
+			ctx->num_processed, ctx->translen);
+
+	if (ctx->num_processed == ctx->translen ||
+			ctx->aborting) {
+		dprintk(ctx->fdp1, "Finishing transaction\n");
+		ctx->num_processed = 0;
+		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
+	} else {
+		/*
+		 * For pipelined performance support, this would
+		 * be called from a VINT handler
+		 */
+		fdp1_device_process(ctx);
+	}
+}
+
+/*
+ * video ioctls
+ */
+static int fdp1_vidioc_querycap(struct file *file, void *priv,
+			   struct v4l2_capability *cap)
+{
+	strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
+	strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
+	snprintf(cap->bus_info, sizeof(cap->bus_info),
+			"platform:%s", DRIVER_NAME);
+	cap->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
+	cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
+	return 0;
+}
+
+static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
+{
+	unsigned int i, num;
+
+	num = 0;
+
+	for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
+		if (fdp1_formats[i].types & type) {
+			if (num == f->index)
+				break;
+			++num;
+		}
+	}
+
+	/* Format not found */
+	if (i >= ARRAY_SIZE(fdp1_formats))
+		return -EINVAL;
+
+	/* Format found */
+	f->pixelformat = fdp1_formats[i].fourcc;
+
+	return 0;
+}
+
+static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
+				 struct v4l2_fmtdesc *f)
+{
+	return fdp1_enum_fmt(f, FDP1_CAPTURE);
+}
+
+static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
+				   struct v4l2_fmtdesc *f)
+{
+	return fdp1_enum_fmt(f, FDP1_OUTPUT);
+}
+
+static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+	struct fdp1_q_data *q_data;
+	struct fdp1_ctx *ctx = fh_to_ctx(priv);
+
+	if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
+		return -EINVAL;
+
+	q_data = get_q_data(ctx, f->type);
+	f->fmt.pix_mp = q_data->format;
+
+	return 0;
+}
+
+static int __fdp1_try_fmt(struct fdp1_ctx *ctx, const struct fdp1_fmt **fmtinfo,
+			  struct v4l2_pix_format_mplane *pix,
+			  enum v4l2_buf_type type)
+{
+	const struct fdp1_fmt *fmt;
+	unsigned int width = pix->width;
+	unsigned int height = pix->height;
+	unsigned int fmt_type;
+	unsigned int i;
+
+	fmt_type = V4L2_TYPE_IS_OUTPUT(type) ? FDP1_OUTPUT : FDP1_CAPTURE;
+
+	fmt = fdp1_find_format(pix->pixelformat);
+	if (!fmt || !(fmt->types & fmt_type))
+		fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
+
+	pix->pixelformat = fmt->fourcc;
+
+	/* Manage colorspace on the two queues */
+	if (V4L2_TYPE_IS_OUTPUT(type)) {
+		if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
+			pix->colorspace = V4L2_COLORSPACE_REC709;
+
+		if (pix->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
+			pix->ycbcr_enc =
+				V4L2_MAP_YCBCR_ENC_DEFAULT(pix->colorspace);
+
+		if (pix->quantization == V4L2_QUANTIZATION_DEFAULT)
+			pix->quantization =
+				V4L2_MAP_QUANTIZATION_DEFAULT(false,
+						pix->colorspace,
+						pix->ycbcr_enc);
+	} else {
+		/* Manage the CAPTURE Queue */
+		struct fdp1_q_data *src_data = &ctx->out_q;
+
+		if (fdp1_fmt_is_rgb(fmt)) {
+			pix->colorspace = V4L2_COLORSPACE_SRGB;
+			pix->ycbcr_enc = V4L2_YCBCR_ENC_SYCC;
+			pix->quantization = V4L2_QUANTIZATION_FULL_RANGE;
+		} else {
+			/* Copy input queue colorspace across */
+			pix->colorspace = src_data->format.colorspace;
+			pix->ycbcr_enc = src_data->format.ycbcr_enc;
+			pix->quantization = src_data->format.quantization;
+		}
+	}
+
+	/* We should be allowing FIELDS through on the Output queue !*/
+	if (V4L2_TYPE_IS_OUTPUT(type)) {
+		/* Clamp to allowable field types */
+		if (pix->field == V4L2_FIELD_ANY ||
+		    pix->field == V4L2_FIELD_NONE)
+			pix->field = V4L2_FIELD_NONE;
+		else if (!V4L2_FIELD_HAS_BOTH(pix->field))
+			pix->field = V4L2_FIELD_INTERLACED;
+
+		dprintk(ctx->fdp1, "Output Field Type set as %d\n", pix->field);
+	} else {
+		pix->field = V4L2_FIELD_NONE;
+	}
+
+	pix->num_planes = fmt->num_planes;
+
+	/* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
+	width = round_down(width, fmt->hsub);
+	height = round_down(height, fmt->vsub);
+
+	/* Clamp the width and height */
+	pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
+	pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
+
+	/* Compute and clamp the stride and image size. While not documented in
+	 * the datasheet, strides not aligned to a multiple of 128 bytes result
+	 * in image corruption.
+	 */
+	for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
+		unsigned int hsub = i > 0 ? fmt->hsub : 1;
+		unsigned int vsub = i > 0 ? fmt->vsub : 1;
+		 /* From VSP : TODO: Confirm alignment limits for FDP1 */
+		unsigned int align = 128;
+		unsigned int bpl;
+
+		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
+			      pix->width / hsub * fmt->bpp[i] / 8,
+			      round_down(65535U, align));
+
+		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
+		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
+					    * pix->height / vsub;
+
+		memset(pix->plane_fmt[i].reserved, 0,
+				sizeof(pix->plane_fmt[i].reserved));
+	}
+
+	if (fmt->num_planes == 3) {
+		/* The second and third planes must have the same stride. */
+		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
+		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
+
+		memset(pix->plane_fmt[2].reserved, 0,
+				sizeof(pix->plane_fmt[2].reserved));
+	}
+
+	pix->num_planes = fmt->num_planes;
+
+	if (fmtinfo)
+		*fmtinfo = fmt;
+
+	return 0;
+}
+
+static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+	struct fdp1_ctx *ctx = fh_to_ctx(priv);
+	int ret;
+
+	ret = __fdp1_try_fmt(ctx, NULL, &f->fmt.pix_mp, f->type);
+
+	if (ret < 0)
+		dprintk(ctx->fdp1, "try_fmt failed %d\n", ret);
+
+	return ret;
+}
+
+static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+	struct vb2_queue *vq;
+	struct fdp1_ctx *ctx = fh_to_ctx(priv);
+	struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
+	struct fdp1_q_data *q_data;
+	const struct fdp1_fmt *fmtinfo;
+	int ret;
+
+	vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
+
+	if (vb2_is_busy(vq)) {
+		v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
+		return -EBUSY;
+	}
+
+	ret = __fdp1_try_fmt(ctx, &fmtinfo, &f->fmt.pix_mp, f->type);
+	if (ret < 0) {
+		v4l2_err(&ctx->fdp1->v4l2_dev, "set_fmt failed %d\n", ret);
+		return ret;
+	}
+
+	q_data = get_q_data(ctx, f->type);
+	q_data->format = f->fmt.pix_mp;
+	q_data->fmt = fmtinfo;
+
+	q_data->vsize = f->fmt.pix_mp.height;
+	if (q_data->format.field != V4L2_FIELD_NONE)
+		q_data->vsize /= 2;
+
+	q_data->stride_y = q_data->format.plane_fmt[0].bytesperline;
+	q_data->stride_c = q_data->format.plane_fmt[1].bytesperline;
+
+	/* Adjust strides for interleaved buffers */
+	if (q_data->format.field == V4L2_FIELD_INTERLACED ||
+	    q_data->format.field == V4L2_FIELD_INTERLACED_TB ||
+	    q_data->format.field == V4L2_FIELD_INTERLACED_BT) {
+		q_data->stride_y *= 2;
+		q_data->stride_c *= 2;
+	}
+
+	dprintk(ctx->fdp1,
+		"Setting format for type %d, wxh: %dx%d, fmt: %4s (%d)\n",
+			f->type, q_data->format.width, q_data->format.height,
+			(char *)&q_data->fmt->fourcc, q_data->fmt->fourcc);
+
+	return 0;
+}
+
+static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
+{
+	struct fdp1_ctx *ctx =
+		container_of(ctrl->handler, struct fdp1_ctx, hdl);
+	struct fdp1_q_data *src_q_data = &ctx->out_q;
+
+	switch (ctrl->id) {
+	case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
+		if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
+			ctrl->val = 2;
+		else
+			ctrl->val = 1;
+		return 0;
+	}
+
+	return 1;
+}
+
+static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
+{
+	struct fdp1_ctx *ctx =
+		container_of(ctrl->handler, struct fdp1_ctx, hdl);
+
+	switch (ctrl->id) {
+	case V4L2_CID_ALPHA_COMPONENT:
+		ctx->alpha = ctrl->val;
+		break;
+
+	case V4L2_CID_DEINT_MODE:
+		ctx->deint_mode = ctrl->val;
+		break;
+	}
+
+	return 0;
+}
+
+static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
+	.s_ctrl = fdp1_s_ctrl,
+	.g_volatile_ctrl = fdp1_g_ctrl,
+};
+
+static const char * const fdp1_ctrl_deint_menu[] = {
+	"Progressive",
+	"Adaptive 2d/3d",
+	"Fixed 2d",
+	"Fixed 3d",
+	"Previous field",
+	"Next field",
+	NULL
+};
+
+static const struct v4l2_ctrl_config fdp1_ctrl_deint_mode = {
+	.ops = &fdp1_ctrl_ops,
+	.id = V4L2_CID_DEINT_MODE,
+	.name = "Deinterlace Mode",
+	.type = V4L2_CTRL_TYPE_MENU,
+	.qmenu = fdp1_ctrl_deint_menu,
+	.def = FDP1_FIXED3D,
+	.min = FDP1_ADAPT2D3D,
+	.max = FDP1_NEXTFIELD,
+	.menu_skip_mask = BIT(0),
+};
+
+static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
+	.vidioc_querycap	= fdp1_vidioc_querycap,
+
+	.vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
+	.vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
+	.vidioc_g_fmt_vid_cap_mplane	= fdp1_g_fmt,
+	.vidioc_g_fmt_vid_out_mplane	= fdp1_g_fmt,
+	.vidioc_try_fmt_vid_cap_mplane	= fdp1_try_fmt,
+	.vidioc_try_fmt_vid_out_mplane	= fdp1_try_fmt,
+	.vidioc_s_fmt_vid_cap_mplane	= fdp1_s_fmt,
+	.vidioc_s_fmt_vid_out_mplane	= fdp1_s_fmt,
+
+	.vidioc_reqbufs		= v4l2_m2m_ioctl_reqbufs,
+	.vidioc_querybuf	= v4l2_m2m_ioctl_querybuf,
+	.vidioc_qbuf		= v4l2_m2m_ioctl_qbuf,
+	.vidioc_dqbuf		= v4l2_m2m_ioctl_dqbuf,
+	.vidioc_prepare_buf	= v4l2_m2m_ioctl_prepare_buf,
+	.vidioc_create_bufs	= v4l2_m2m_ioctl_create_bufs,
+	.vidioc_expbuf		= v4l2_m2m_ioctl_expbuf,
+
+	.vidioc_streamon	= v4l2_m2m_ioctl_streamon,
+	.vidioc_streamoff	= v4l2_m2m_ioctl_streamoff,
+
+	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
+	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
+};
+
+/*
+ * Queue operations
+ */
+
+static int fdp1_queue_setup(struct vb2_queue *vq,
+				unsigned int *nbuffers, unsigned int *nplanes,
+				unsigned int sizes[], void *alloc_ctxs[])
+{
+	struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
+	struct fdp1_q_data *q_data;
+	unsigned int i;
+
+	q_data = get_q_data(ctx, vq->type);
+
+	if (*nplanes) {
+		if (*nplanes > FDP1_MAX_PLANES)
+			return -EINVAL;
+
+		for (i = 0; i < *nplanes; i++)
+			alloc_ctxs[i] = ctx->fdp1->alloc_ctx;
+
+		return 0;
+	}
+
+	*nplanes = q_data->format.num_planes;
+
+	for (i = 0; i < *nplanes; i++) {
+		sizes[i] = q_data->format.plane_fmt[i].sizeimage;
+		alloc_ctxs[i] = ctx->fdp1->alloc_ctx;
+	}
+
+	return 0;
+}
+
+static int fdp1_buf_prepare(struct vb2_buffer *vb)
+{
+	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
+	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
+	struct fdp1_q_data *q_data;
+	unsigned int i;
+
+	q_data = get_q_data(ctx, vb->vb2_queue->type);
+
+	/* Default to Progressive if ANY selected */
+	if (vbuf->field == V4L2_FIELD_ANY)
+		vbuf->field = V4L2_FIELD_NONE;
+
+	/* We only support progressive CAPTURE */
+	if (!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type) &&
+	     vbuf->field != V4L2_FIELD_NONE) {
+		dprintk(ctx->fdp1, "field isn't supported on capture\n");
+			return -EINVAL;
+	}
+
+	for (i = 0; i < q_data->format.num_planes; i++) {
+		unsigned long size = q_data->format.plane_fmt[i].sizeimage;
+
+		if (vb2_plane_size(vb, i) < size) {
+			dprintk(ctx->fdp1,
+				"data will not fit into plane [%u/%u] (%lu < %lu)\n",
+				i, q_data->format.num_planes,
+				vb2_plane_size(vb, i), size);
+			return -EINVAL;
+		}
+
+		/* We have known size formats all around */
+		vb2_set_plane_payload(vb, i, size);
+	}
+
+	return 0;
+}
+
+static void fdp1_buf_queue(struct vb2_buffer *vb)
+{
+	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
+	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
+
+	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
+}
+
+static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
+{
+	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
+	struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
+
+	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
+		/*
+		 * Force our deint_mode when we are progressive,
+		 * ignoring any setting on the device from the user,
+		 * Otherwise, lock in the requested de-interlace mode.
+		 */
+		if (q_data->format.field == V4L2_FIELD_NONE)
+			ctx->deint_mode = FDP1_PROGRESSIVE;
+
+		if (ctx->deint_mode == FDP1_ADAPT2D3D) {
+			u32 stride;
+			dma_addr_t smsk_base;
+			const u32 bpp = 2; /* bytes per pixel */
+
+			stride = round_up(q_data->format.width, 8);
+
+			ctx->smsk_size = bpp * stride * q_data->vsize;
+
+			ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
+				ctx->smsk_size, &smsk_base, GFP_KERNEL);
+
+			if (ctx->smsk_cpu == NULL) {
+				dprintk(ctx->fdp1, "Failed to alloc smsk\n");
+				return -ENOMEM;
+			}
+
+			ctx->smsk_addr[0] = smsk_base;
+			ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
+		}
+	}
+
+	return 0;
+}
+
+static void fdp1_stop_streaming(struct vb2_queue *q)
+{
+	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
+	struct vb2_v4l2_buffer *vbuf;
+	unsigned long flags;
+
+	while (1) {
+		if (V4L2_TYPE_IS_OUTPUT(q->type))
+			vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
+		else
+			vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
+		if (vbuf == NULL)
+			break;
+		spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
+		v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
+		spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
+	}
+
+	/* Empty Output queues */
+	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
+		/* Empty our internal queues */
+		struct fdp1_buffer *b;
+
+		/* Free any queued buffers */
+		b = dequeue_buffer(ctx);
+		while (b != NULL) {
+			fdp1_buffer_free(ctx, b);
+			b = dequeue_buffer(ctx);
+		}
+
+		/* Free smsk_data */
+		if (ctx->smsk_cpu) {
+			dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
+					ctx->smsk_cpu, ctx->smsk_addr[0]);
+			ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
+			ctx->smsk_cpu = NULL;
+		}
+
+		WARN(!list_empty(&ctx->fdp1_buffer_queue),
+				"Buffer queue not empty");
+	} else {
+		/* Empty Capture queues (Jobs) */
+		struct fdp1_job *job;
+
+		job = get_queued_job(ctx->fdp1);
+		while (job) {
+			if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
+				fdp1_buffer_free(ctx, job->previous);
+			else
+				fdp1_buffer_free(ctx, job->active);
+
+			v4l2_m2m_buf_done(job->dst.vb, VB2_BUF_STATE_ERROR);
+
+			job = get_queued_job(ctx->fdp1);
+		}
+
+		/* Free any held buffer in the ctx */
+		fdp1_buffer_free(ctx, ctx->previous);
+
+		WARN(!list_empty(&ctx->fdp1->queued_job_list),
+				"Queued Job List not empty");
+
+		WARN(!list_empty(&ctx->fdp1->hw_job_list),
+				"HW Job list not empty");
+	}
+}
+
+static struct vb2_ops fdp1_qops = {
+	.queue_setup	 = fdp1_queue_setup,
+	.buf_prepare	 = fdp1_buf_prepare,
+	.buf_queue	 = fdp1_buf_queue,
+	.start_streaming = fdp1_start_streaming,
+	.stop_streaming  = fdp1_stop_streaming,
+	.wait_prepare	 = vb2_ops_wait_prepare,
+	.wait_finish	 = vb2_ops_wait_finish,
+};
+
+static int queue_init(void *priv, struct vb2_queue *src_vq,
+		      struct vb2_queue *dst_vq)
+{
+	struct fdp1_ctx *ctx = priv;
+	int ret;
+
+	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
+	src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
+	src_vq->drv_priv = ctx;
+	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
+	src_vq->ops = &fdp1_qops;
+	src_vq->mem_ops = &vb2_dma_contig_memops;
+	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
+	src_vq->lock = &ctx->fdp1->dev_mutex;
+
+	ret = vb2_queue_init(src_vq);
+	if (ret)
+		return ret;
+
+	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
+	dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
+	dst_vq->drv_priv = ctx;
+	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
+	dst_vq->ops = &fdp1_qops;
+	dst_vq->mem_ops = &vb2_dma_contig_memops;
+	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
+	dst_vq->lock = &ctx->fdp1->dev_mutex;
+
+	return vb2_queue_init(dst_vq);
+}
+
+/*
+ * File operations
+ */
+static int fdp1_open(struct file *file)
+{
+	struct fdp1_dev *fdp1 = video_drvdata(file);
+	struct fdp1_ctx *ctx = NULL;
+	struct v4l2_ctrl *ctrl;
+	unsigned int i;
+	int ret = 0;
+
+	if (mutex_lock_interruptible(&fdp1->dev_mutex))
+		return -ERESTARTSYS;
+
+	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+	if (!ctx) {
+		ret = -ENOMEM;
+		goto done;
+	}
+
+	v4l2_fh_init(&ctx->fh, video_devdata(file));
+	file->private_data = &ctx->fh;
+	ctx->fdp1 = fdp1;
+
+	/* Initialise Queues */
+	INIT_LIST_HEAD(&ctx->free_buffers);
+	INIT_LIST_HEAD(&ctx->fdp1_buffer_queue);
+
+	/* Initialise the buffers on the free list */
+	for (i = 0; i < ARRAY_SIZE(ctx->buffers); i++)
+		list_add(&ctx->buffers[i].list, &ctx->free_buffers);
+
+	ctx->translen = 1;
+	ctx->sequence = 0;
+
+	/* Initialise controls */
+
+	v4l2_ctrl_handler_init(&ctx->hdl, 3);
+	v4l2_ctrl_new_custom(&ctx->hdl, &fdp1_ctrl_deint_mode, NULL);
+
+	ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
+			V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
+	if (ctrl)
+		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE |
+			       V4L2_CTRL_FLAG_READ_ONLY;
+
+	v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
+			  V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
+
+	if (ctx->hdl.error) {
+		ret = ctx->hdl.error;
+		v4l2_ctrl_handler_free(&ctx->hdl);
+		goto done;
+	}
+
+	ctx->fh.ctrl_handler = &ctx->hdl;
+	v4l2_ctrl_handler_setup(&ctx->hdl);
+
+	/* Configure default parameters. */
+	__fdp1_try_fmt(ctx, &ctx->out_q.fmt, &ctx->out_q.format,
+		      V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
+	__fdp1_try_fmt(ctx, &ctx->cap_q.fmt, &ctx->cap_q.format,
+		      V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
+
+	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
+
+	if (IS_ERR(ctx->fh.m2m_ctx)) {
+		ret = PTR_ERR(ctx->fh.m2m_ctx);
+
+		v4l2_ctrl_handler_free(&ctx->hdl);
+		kfree(ctx);
+		goto done;
+	}
+
+	/* Perform any power management required */
+	pm_runtime_get_sync(fdp1->dev);
+
+	v4l2_fh_add(&ctx->fh);
+
+	dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
+		ctx, ctx->fh.m2m_ctx);
+
+done:
+	mutex_unlock(&fdp1->dev_mutex);
+	return ret;
+}
+
+static int fdp1_release(struct file *file)
+{
+	struct fdp1_dev *fdp1 = video_drvdata(file);
+	struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
+
+	dprintk(fdp1, "Releasing instance %p\n", ctx);
+
+	v4l2_fh_del(&ctx->fh);
+	v4l2_fh_exit(&ctx->fh);
+	v4l2_ctrl_handler_free(&ctx->hdl);
+	mutex_lock(&fdp1->dev_mutex);
+	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
+	mutex_unlock(&fdp1->dev_mutex);
+	kfree(ctx);
+
+	pm_runtime_put(fdp1->dev);
+
+	return 0;
+}
+
+static const struct v4l2_file_operations fdp1_fops = {
+	.owner		= THIS_MODULE,
+	.open		= fdp1_open,
+	.release	= fdp1_release,
+	.poll		= v4l2_m2m_fop_poll,
+	.unlocked_ioctl	= video_ioctl2,
+	.mmap		= v4l2_m2m_fop_mmap,
+};
+
+static const struct video_device fdp1_videodev = {
+	.name		= DRIVER_NAME,
+	.vfl_dir	= VFL_DIR_M2M,
+	.fops		= &fdp1_fops,
+	.ioctl_ops	= &fdp1_ioctl_ops,
+	.minor		= -1,
+	.release	= video_device_release_empty,
+};
+
+static const struct v4l2_m2m_ops m2m_ops = {
+	.device_run	= fdp1_m2m_device_run,
+	.job_ready	= fdp1_m2m_job_ready,
+	.job_abort	= fdp1_m2m_job_abort,
+};
+
+static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
+{
+	struct fdp1_dev *fdp1 = dev_id;
+	u32 int_status;
+	u32 ctl_status;
+	u32 vint_cnt;
+	u32 cycles;
+
+	int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
+	cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
+	ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
+	vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
+			FD1_CTL_STATUS_VINT_CNT_SHIFT;
+
+	/* Clear interrupts */
+	fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
+
+	if (debug >= 2) {
+		dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
+			int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
+			int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
+			int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
+
+		dprintk(fdp1, "CycleStatus = %d (%dms)\n",
+			cycles, cycles/(fdp1->clk_rate/1000));
+
+		dprintk(fdp1,
+			"Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
+			ctl_status, vint_cnt,
+			ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
+			ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
+			ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
+			ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
+		dprintk(fdp1, "***********************************\n");
+	}
+
+	/* Spurious interrupt */
+	if (!(FD1_CTL_IRQ_MASK & int_status))
+		return IRQ_NONE;
+
+	/* Work completed, release the frame */
+	if (FD1_CTL_IRQ_VERE & int_status)
+		device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
+	else if (FD1_CTL_IRQ_FREE & int_status)
+		device_frame_end(fdp1, VB2_BUF_STATE_DONE);
+
+	return IRQ_HANDLED;
+}
+
+static int fdp1_probe(struct platform_device *pdev)
+{
+	struct fdp1_dev *fdp1;
+	struct video_device *vfd;
+	struct device_node *fcp_node;
+	struct resource *res;
+	struct clk *clk;
+	unsigned int i;
+
+	int ret;
+	int hw_version;
+
+	fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
+	if (!fdp1)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&fdp1->free_job_list);
+	INIT_LIST_HEAD(&fdp1->queued_job_list);
+	INIT_LIST_HEAD(&fdp1->hw_job_list);
+
+	/* Initialise the jobs on the free list */
+	for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
+		list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
+
+	mutex_init(&fdp1->dev_mutex);
+
+	spin_lock_init(&fdp1->irqlock);
+	spin_lock_init(&fdp1->device_process_lock);
+	fdp1->dev = &pdev->dev;
+	platform_set_drvdata(pdev, fdp1);
+
+	/* Memory-mapped registers */
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(fdp1->regs))
+		return PTR_ERR(fdp1->regs);
+
+	/* Interrupt service routine registration */
+	fdp1->irq = ret = platform_get_irq(pdev, 0);
+	if (ret < 0) {
+		dev_err(&pdev->dev, "cannot find IRQ\n");
+		return ret;
+	}
+
+	ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
+			       dev_name(&pdev->dev), fdp1);
+	if (ret) {
+		dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
+		return ret;
+	}
+
+	/* FCP */
+	fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
+	if (fcp_node) {
+		fdp1->fcp = rcar_fcp_get(fcp_node);
+		of_node_put(fcp_node);
+		if (IS_ERR(fdp1->fcp)) {
+			dev_err(&pdev->dev, "FCP not found (%ld)\n",
+				PTR_ERR(fdp1->fcp));
+			return PTR_ERR(fdp1->fcp);
+		}
+	}
+
+	/* Determine our clock rate */
+	clk = clk_get(&pdev->dev, NULL);
+	if (IS_ERR(clk))
+		return PTR_ERR(clk);
+
+	fdp1->clk_rate = clk_get_rate(clk);
+	clk_put(clk);
+
+	/* Memory allocation contexts */
+	fdp1->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
+	if (IS_ERR(fdp1->alloc_ctx)) {
+		v4l2_err(&fdp1->v4l2_dev, "Failed to init memory allocator\n");
+		return PTR_ERR(fdp1->alloc_ctx);
+	}
+
+	/* V4L2 device registration */
+	ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
+	if (ret) {
+		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
+		goto vb2_allocator_rollback;
+	}
+
+	/* M2M registration */
+	fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
+	if (IS_ERR(fdp1->m2m_dev)) {
+		v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
+		ret = PTR_ERR(fdp1->m2m_dev);
+		goto unreg_dev;
+	}
+
+	/* Video registration */
+	fdp1->vfd = fdp1_videodev;
+	vfd = &fdp1->vfd;
+	vfd->lock = &fdp1->dev_mutex;
+	vfd->v4l2_dev = &fdp1->v4l2_dev;
+	video_set_drvdata(vfd, fdp1);
+	strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
+
+	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
+	if (ret) {
+		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
+		goto release_m2m;
+	}
+
+	v4l2_info(&fdp1->v4l2_dev,
+			"Device registered as /dev/video%d\n", vfd->num);
+
+	/* Power up the cells to read HW */
+	pm_runtime_enable(&pdev->dev);
+	pm_runtime_get_sync(fdp1->dev);
+
+	hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
+	switch (hw_version) {
+	case FD1_IP_H3:
+		dprintk(fdp1, "FDP1 Version R-Car H3\n");
+		break;
+	case FD1_IP_M3W:
+		dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
+		break;
+	default:
+		dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
+				hw_version);
+	}
+
+	/* Allow the hw to sleep until an open call puts it to use */
+	pm_runtime_put(fdp1->dev);
+
+	return 0;
+
+release_m2m:
+	v4l2_m2m_release(fdp1->m2m_dev);
+
+unreg_dev:
+	v4l2_device_unregister(&fdp1->v4l2_dev);
+
+vb2_allocator_rollback:
+	vb2_dma_contig_cleanup_ctx(fdp1->alloc_ctx);
+
+	return ret;
+}
+
+static int fdp1_remove(struct platform_device *pdev)
+{
+	struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
+
+	v4l2_m2m_release(fdp1->m2m_dev);
+	video_unregister_device(&fdp1->vfd);
+	v4l2_device_unregister(&fdp1->v4l2_dev);
+	vb2_dma_contig_cleanup_ctx(fdp1->alloc_ctx);
+	pm_runtime_disable(&pdev->dev);
+
+	return 0;
+}
+
+static int fdp1_pm_runtime_suspend(struct device *dev)
+{
+	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
+
+	rcar_fcp_disable(fdp1->fcp);
+
+	return 0;
+}
+
+static int fdp1_pm_runtime_resume(struct device *dev)
+{
+	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
+
+	/* Program in the static LUTs */
+	fdp1_set_lut(fdp1);
+
+	return rcar_fcp_enable(fdp1->fcp);
+}
+
+static const struct dev_pm_ops fdp1_pm_ops = {
+	SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
+			   fdp1_pm_runtime_resume,
+			   NULL)
+};
+
+static const struct of_device_id fdp1_dt_ids[] = {
+	{ .compatible = "renesas,fdp1" },
+	{ },
+};
+MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
+
+static struct platform_driver fdp1_pdrv = {
+	.probe		= fdp1_probe,
+	.remove		= fdp1_remove,
+	.driver		= {
+		.name	= DRIVER_NAME,
+		.of_match_table = fdp1_dt_ids,
+		.pm	= &fdp1_pm_ops,
+	},
+};
+
+module_platform_driver(fdp1_pdrv);
+
+MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
+MODULE_AUTHOR("Kieran Bingham <kieran@xxxxxxxxxxx>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:" DRIVER_NAME);
-- 
2.7.4





[Index of Archives]     [Linux Samsung SOC]     [Linux Wireless]     [Linux Kernel]     [ATH6KL]     [Linux Bluetooth]     [Linux Netdev]     [Kernel Newbies]     [IDE]     [Security]     [Git]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux ATA RAID]     [Samba]     [Device Mapper]

  Powered by Linux