All remaining references are userspace code to build tarballs, packages or such. Signed-off-by: Adam Borowski <kilobyte@xxxxxxxxxx> --- lib/Kconfig | 3 - lib/Makefile | 1 - lib/decompress.c | 4 - lib/decompress_bunzip2.c | 756 --------------------------------------- scripts/Makefile.lib | 12 +- 5 files changed, 2 insertions(+), 774 deletions(-) delete mode 100644 lib/decompress_bunzip2.c diff --git a/lib/Kconfig b/lib/Kconfig index e7ab43fd5461..83a548b8c504 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -286,9 +286,6 @@ config DECOMPRESS_GZIP select ZLIB_INFLATE tristate -config DECOMPRESS_BZIP2 - tristate - config DECOMPRESS_LZMA tristate diff --git a/lib/Makefile b/lib/Makefile index 58b48993f48a..4c1905e6d3a7 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -134,7 +134,6 @@ obj-$(CONFIG_XZ_DEC) += xz/ obj-$(CONFIG_RAID6_PQ) += raid6/ lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o -lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o lib-$(CONFIG_DECOMPRESS_LZMA) += decompress_unlzma.o lib-$(CONFIG_DECOMPRESS_XZ) += decompress_unxz.o lib-$(CONFIG_DECOMPRESS_LZO) += decompress_unlzo.o diff --git a/lib/decompress.c b/lib/decompress.c index ab3fc90ffc64..60f05122b9da 100644 --- a/lib/decompress.c +++ b/lib/decompress.c @@ -23,9 +23,6 @@ #ifndef CONFIG_DECOMPRESS_GZIP # define gunzip NULL #endif -#ifndef CONFIG_DECOMPRESS_BZIP2 -# define bunzip2 NULL -#endif #ifndef CONFIG_DECOMPRESS_LZMA # define unlzma NULL #endif @@ -51,7 +48,6 @@ struct compress_format { static const struct compress_format compressed_formats[] __initconst = { { {0x1f, 0x8b}, "gzip", gunzip }, { {0x1f, 0x9e}, "gzip", gunzip }, - { {0x42, 0x5a}, "bzip2", bunzip2 }, { {0x5d, 0x00}, "lzma", unlzma }, { {0xfd, 0x37}, "xz", unxz }, { {0x89, 0x4c}, "lzo", unlzo }, diff --git a/lib/decompress_bunzip2.c b/lib/decompress_bunzip2.c deleted file mode 100644 index 7c4932eed748..000000000000 --- a/lib/decompress_bunzip2.c +++ /dev/null @@ -1,756 +0,0 @@ -/* Small bzip2 deflate implementation, by Rob Landley (rob@xxxxxxxxxxx). - - Based on bzip2 decompression code by Julian R Seward (jseward@xxxxxxx), - which also acknowledges contributions by Mike Burrows, David Wheeler, - Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, - Robert Sedgewick, and Jon L. Bentley. - - This code is licensed under the LGPLv2: - LGPL (http://www.gnu.org/copyleft/lgpl.html -*/ - -/* - Size and speed optimizations by Manuel Novoa III (mjn3@xxxxxxxxxxxx). - - More efficient reading of Huffman codes, a streamlined read_bunzip() - function, and various other tweaks. In (limited) tests, approximately - 20% faster than bzcat on x86 and about 10% faster on arm. - - Note that about 2/3 of the time is spent in read_unzip() reversing - the Burrows-Wheeler transformation. Much of that time is delay - resulting from cache misses. - - I would ask that anyone benefiting from this work, especially those - using it in commercial products, consider making a donation to my local - non-profit hospice organization in the name of the woman I loved, who - passed away Feb. 12, 2003. - - In memory of Toni W. Hagan - - Hospice of Acadiana, Inc. - 2600 Johnston St., Suite 200 - Lafayette, LA 70503-3240 - - Phone (337) 232-1234 or 1-800-738-2226 - Fax (337) 232-1297 - - http://www.hospiceacadiana.com/ - - Manuel - */ - -/* - Made it fit for running in Linux Kernel by Alain Knaff (alain@xxxxxxxx) -*/ - - -#ifdef STATIC -#define PREBOOT -#else -#include <linux/decompress/bunzip2.h> -#endif /* STATIC */ - -#include <linux/decompress/mm.h> -#include <linux/crc32poly.h> - -#ifndef INT_MAX -#define INT_MAX 0x7fffffff -#endif - -/* Constants for Huffman coding */ -#define MAX_GROUPS 6 -#define GROUP_SIZE 50 /* 64 would have been more efficient */ -#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ -#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ -#define SYMBOL_RUNA 0 -#define SYMBOL_RUNB 1 - -/* Status return values */ -#define RETVAL_OK 0 -#define RETVAL_LAST_BLOCK (-1) -#define RETVAL_NOT_BZIP_DATA (-2) -#define RETVAL_UNEXPECTED_INPUT_EOF (-3) -#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) -#define RETVAL_DATA_ERROR (-5) -#define RETVAL_OUT_OF_MEMORY (-6) -#define RETVAL_OBSOLETE_INPUT (-7) - -/* Other housekeeping constants */ -#define BZIP2_IOBUF_SIZE 4096 - -/* This is what we know about each Huffman coding group */ -struct group_data { - /* We have an extra slot at the end of limit[] for a sentinal value. */ - int limit[MAX_HUFCODE_BITS+1]; - int base[MAX_HUFCODE_BITS]; - int permute[MAX_SYMBOLS]; - int minLen, maxLen; -}; - -/* Structure holding all the housekeeping data, including IO buffers and - memory that persists between calls to bunzip */ -struct bunzip_data { - /* State for interrupting output loop */ - int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; - /* I/O tracking data (file handles, buffers, positions, etc.) */ - long (*fill)(void*, unsigned long); - long inbufCount, inbufPos /*, outbufPos*/; - unsigned char *inbuf /*,*outbuf*/; - unsigned int inbufBitCount, inbufBits; - /* The CRC values stored in the block header and calculated from the - data */ - unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; - /* Intermediate buffer and its size (in bytes) */ - unsigned int *dbuf, dbufSize; - /* These things are a bit too big to go on the stack */ - unsigned char selectors[32768]; /* nSelectors = 15 bits */ - struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ - int io_error; /* non-zero if we have IO error */ - int byteCount[256]; - unsigned char symToByte[256], mtfSymbol[256]; -}; - - -/* Return the next nnn bits of input. All reads from the compressed input - are done through this function. All reads are big endian */ -static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) -{ - unsigned int bits = 0; - - /* If we need to get more data from the byte buffer, do so. - (Loop getting one byte at a time to enforce endianness and avoid - unaligned access.) */ - while (bd->inbufBitCount < bits_wanted) { - /* If we need to read more data from file into byte buffer, do - so */ - if (bd->inbufPos == bd->inbufCount) { - if (bd->io_error) - return 0; - bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); - if (bd->inbufCount <= 0) { - bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; - return 0; - } - bd->inbufPos = 0; - } - /* Avoid 32-bit overflow (dump bit buffer to top of output) */ - if (bd->inbufBitCount >= 24) { - bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); - bits_wanted -= bd->inbufBitCount; - bits <<= bits_wanted; - bd->inbufBitCount = 0; - } - /* Grab next 8 bits of input from buffer. */ - bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; - bd->inbufBitCount += 8; - } - /* Calculate result */ - bd->inbufBitCount -= bits_wanted; - bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); - - return bits; -} - -/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ - -static int INIT get_next_block(struct bunzip_data *bd) -{ - struct group_data *hufGroup = NULL; - int *base = NULL; - int *limit = NULL; - int dbufCount, nextSym, dbufSize, groupCount, selector, - i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount; - unsigned char uc, *symToByte, *mtfSymbol, *selectors; - unsigned int *dbuf, origPtr; - - dbuf = bd->dbuf; - dbufSize = bd->dbufSize; - selectors = bd->selectors; - byteCount = bd->byteCount; - symToByte = bd->symToByte; - mtfSymbol = bd->mtfSymbol; - - /* Read in header signature and CRC, then validate signature. - (last block signature means CRC is for whole file, return now) */ - i = get_bits(bd, 24); - j = get_bits(bd, 24); - bd->headerCRC = get_bits(bd, 32); - if ((i == 0x177245) && (j == 0x385090)) - return RETVAL_LAST_BLOCK; - if ((i != 0x314159) || (j != 0x265359)) - return RETVAL_NOT_BZIP_DATA; - /* We can add support for blockRandomised if anybody complains. - There was some code for this in busybox 1.0.0-pre3, but nobody ever - noticed that it didn't actually work. */ - if (get_bits(bd, 1)) - return RETVAL_OBSOLETE_INPUT; - origPtr = get_bits(bd, 24); - if (origPtr >= dbufSize) - return RETVAL_DATA_ERROR; - /* mapping table: if some byte values are never used (encoding things - like ascii text), the compression code removes the gaps to have fewer - symbols to deal with, and writes a sparse bitfield indicating which - values were present. We make a translation table to convert the - symbols back to the corresponding bytes. */ - t = get_bits(bd, 16); - symTotal = 0; - for (i = 0; i < 16; i++) { - if (t&(1 << (15-i))) { - k = get_bits(bd, 16); - for (j = 0; j < 16; j++) - if (k&(1 << (15-j))) - symToByte[symTotal++] = (16*i)+j; - } - } - /* How many different Huffman coding groups does this block use? */ - groupCount = get_bits(bd, 3); - if (groupCount < 2 || groupCount > MAX_GROUPS) - return RETVAL_DATA_ERROR; - /* nSelectors: Every GROUP_SIZE many symbols we select a new - Huffman coding group. Read in the group selector list, - which is stored as MTF encoded bit runs. (MTF = Move To - Front, as each value is used it's moved to the start of the - list.) */ - nSelectors = get_bits(bd, 15); - if (!nSelectors) - return RETVAL_DATA_ERROR; - for (i = 0; i < groupCount; i++) - mtfSymbol[i] = i; - for (i = 0; i < nSelectors; i++) { - /* Get next value */ - for (j = 0; get_bits(bd, 1); j++) - if (j >= groupCount) - return RETVAL_DATA_ERROR; - /* Decode MTF to get the next selector */ - uc = mtfSymbol[j]; - for (; j; j--) - mtfSymbol[j] = mtfSymbol[j-1]; - mtfSymbol[0] = selectors[i] = uc; - } - /* Read the Huffman coding tables for each group, which code - for symTotal literal symbols, plus two run symbols (RUNA, - RUNB) */ - symCount = symTotal+2; - for (j = 0; j < groupCount; j++) { - unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; - int minLen, maxLen, pp; - /* Read Huffman code lengths for each symbol. They're - stored in a way similar to mtf; record a starting - value for the first symbol, and an offset from the - previous value for everys symbol after that. - (Subtracting 1 before the loop and then adding it - back at the end is an optimization that makes the - test inside the loop simpler: symbol length 0 - becomes negative, so an unsigned inequality catches - it.) */ - t = get_bits(bd, 5)-1; - for (i = 0; i < symCount; i++) { - for (;;) { - if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) - return RETVAL_DATA_ERROR; - - /* If first bit is 0, stop. Else - second bit indicates whether to - increment or decrement the value. - Optimization: grab 2 bits and unget - the second if the first was 0. */ - - k = get_bits(bd, 2); - if (k < 2) { - bd->inbufBitCount++; - break; - } - /* Add one if second bit 1, else - * subtract 1. Avoids if/else */ - t += (((k+1)&2)-1); - } - /* Correct for the initial -1, to get the - * final symbol length */ - length[i] = t+1; - } - /* Find largest and smallest lengths in this group */ - minLen = maxLen = length[0]; - - for (i = 1; i < symCount; i++) { - if (length[i] > maxLen) - maxLen = length[i]; - else if (length[i] < minLen) - minLen = length[i]; - } - - /* Calculate permute[], base[], and limit[] tables from - * length[]. - * - * permute[] is the lookup table for converting - * Huffman coded symbols into decoded symbols. base[] - * is the amount to subtract from the value of a - * Huffman symbol of a given length when using - * permute[]. - * - * limit[] indicates the largest numerical value a - * symbol with a given number of bits can have. This - * is how the Huffman codes can vary in length: each - * code with a value > limit[length] needs another - * bit. - */ - hufGroup = bd->groups+j; - hufGroup->minLen = minLen; - hufGroup->maxLen = maxLen; - /* Note that minLen can't be smaller than 1, so we - adjust the base and limit array pointers so we're - not always wasting the first entry. We do this - again when using them (during symbol decoding).*/ - base = hufGroup->base-1; - limit = hufGroup->limit-1; - /* Calculate permute[]. Concurrently, initialize - * temp[] and limit[]. */ - pp = 0; - for (i = minLen; i <= maxLen; i++) { - temp[i] = limit[i] = 0; - for (t = 0; t < symCount; t++) - if (length[t] == i) - hufGroup->permute[pp++] = t; - } - /* Count symbols coded for at each bit length */ - for (i = 0; i < symCount; i++) - temp[length[i]]++; - /* Calculate limit[] (the largest symbol-coding value - *at each bit length, which is (previous limit << - *1)+symbols at this level), and base[] (number of - *symbols to ignore at each bit length, which is limit - *minus the cumulative count of symbols coded for - *already). */ - pp = t = 0; - for (i = minLen; i < maxLen; i++) { - pp += temp[i]; - /* We read the largest possible symbol size - and then unget bits after determining how - many we need, and those extra bits could be - set to anything. (They're noise from - future symbols.) At each level we're - really only interested in the first few - bits, so here we set all the trailing - to-be-ignored bits to 1 so they don't - affect the value > limit[length] - comparison. */ - limit[i] = (pp << (maxLen - i)) - 1; - pp <<= 1; - base[i+1] = pp-(t += temp[i]); - } - limit[maxLen+1] = INT_MAX; /* Sentinal value for - * reading next sym. */ - limit[maxLen] = pp+temp[maxLen]-1; - base[minLen] = 0; - } - /* We've finished reading and digesting the block header. Now - read this block's Huffman coded symbols from the file and - undo the Huffman coding and run length encoding, saving the - result into dbuf[dbufCount++] = uc */ - - /* Initialize symbol occurrence counters and symbol Move To - * Front table */ - for (i = 0; i < 256; i++) { - byteCount[i] = 0; - mtfSymbol[i] = (unsigned char)i; - } - /* Loop through compressed symbols. */ - runPos = dbufCount = symCount = selector = 0; - for (;;) { - /* Determine which Huffman coding group to use. */ - if (!(symCount--)) { - symCount = GROUP_SIZE-1; - if (selector >= nSelectors) - return RETVAL_DATA_ERROR; - hufGroup = bd->groups+selectors[selector++]; - base = hufGroup->base-1; - limit = hufGroup->limit-1; - } - /* Read next Huffman-coded symbol. */ - /* Note: It is far cheaper to read maxLen bits and - back up than it is to read minLen bits and then an - additional bit at a time, testing as we go. - Because there is a trailing last block (with file - CRC), there is no danger of the overread causing an - unexpected EOF for a valid compressed file. As a - further optimization, we do the read inline - (falling back to a call to get_bits if the buffer - runs dry). The following (up to got_huff_bits:) is - equivalent to j = get_bits(bd, hufGroup->maxLen); - */ - while (bd->inbufBitCount < hufGroup->maxLen) { - if (bd->inbufPos == bd->inbufCount) { - j = get_bits(bd, hufGroup->maxLen); - goto got_huff_bits; - } - bd->inbufBits = - (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; - bd->inbufBitCount += 8; - }; - bd->inbufBitCount -= hufGroup->maxLen; - j = (bd->inbufBits >> bd->inbufBitCount)& - ((1 << hufGroup->maxLen)-1); -got_huff_bits: - /* Figure how how many bits are in next symbol and - * unget extras */ - i = hufGroup->minLen; - while (j > limit[i]) - ++i; - bd->inbufBitCount += (hufGroup->maxLen - i); - /* Huffman decode value to get nextSym (with bounds checking) */ - if ((i > hufGroup->maxLen) - || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) - >= MAX_SYMBOLS)) - return RETVAL_DATA_ERROR; - nextSym = hufGroup->permute[j]; - /* We have now decoded the symbol, which indicates - either a new literal byte, or a repeated run of the - most recent literal byte. First, check if nextSym - indicates a repeated run, and if so loop collecting - how many times to repeat the last literal. */ - if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ - /* If this is the start of a new run, zero out - * counter */ - if (!runPos) { - runPos = 1; - t = 0; - } - /* Neat trick that saves 1 symbol: instead of - or-ing 0 or 1 at each bit position, add 1 - or 2 instead. For example, 1011 is 1 << 0 - + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 - + 1 << 2. You can make any bit pattern - that way using 1 less symbol than the basic - or 0/1 method (except all bits 0, which - would use no symbols, but a run of length 0 - doesn't mean anything in this context). - Thus space is saved. */ - t += (runPos << nextSym); - /* +runPos if RUNA; +2*runPos if RUNB */ - - runPos <<= 1; - continue; - } - /* When we hit the first non-run symbol after a run, - we now know how many times to repeat the last - literal, so append that many copies to our buffer - of decoded symbols (dbuf) now. (The last literal - used is the one at the head of the mtfSymbol - array.) */ - if (runPos) { - runPos = 0; - if (dbufCount+t >= dbufSize) - return RETVAL_DATA_ERROR; - - uc = symToByte[mtfSymbol[0]]; - byteCount[uc] += t; - while (t--) - dbuf[dbufCount++] = uc; - } - /* Is this the terminating symbol? */ - if (nextSym > symTotal) - break; - /* At this point, nextSym indicates a new literal - character. Subtract one to get the position in the - MTF array at which this literal is currently to be - found. (Note that the result can't be -1 or 0, - because 0 and 1 are RUNA and RUNB. But another - instance of the first symbol in the mtf array, - position 0, would have been handled as part of a - run above. Therefore 1 unused mtf position minus 2 - non-literal nextSym values equals -1.) */ - if (dbufCount >= dbufSize) - return RETVAL_DATA_ERROR; - i = nextSym - 1; - uc = mtfSymbol[i]; - /* Adjust the MTF array. Since we typically expect to - *move only a small number of symbols, and are bound - *by 256 in any case, using memmove here would - *typically be bigger and slower due to function call - *overhead and other assorted setup costs. */ - do { - mtfSymbol[i] = mtfSymbol[i-1]; - } while (--i); - mtfSymbol[0] = uc; - uc = symToByte[uc]; - /* We have our literal byte. Save it into dbuf. */ - byteCount[uc]++; - dbuf[dbufCount++] = (unsigned int)uc; - } - /* At this point, we've read all the Huffman-coded symbols - (and repeated runs) for this block from the input stream, - and decoded them into the intermediate buffer. There are - dbufCount many decoded bytes in dbuf[]. Now undo the - Burrows-Wheeler transform on dbuf. See - http://dogma.net/markn/articles/bwt/bwt.htm - */ - /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ - j = 0; - for (i = 0; i < 256; i++) { - k = j+byteCount[i]; - byteCount[i] = j; - j = k; - } - /* Figure out what order dbuf would be in if we sorted it. */ - for (i = 0; i < dbufCount; i++) { - uc = (unsigned char)(dbuf[i] & 0xff); - dbuf[byteCount[uc]] |= (i << 8); - byteCount[uc]++; - } - /* Decode first byte by hand to initialize "previous" byte. - Note that it doesn't get output, and if the first three - characters are identical it doesn't qualify as a run (hence - writeRunCountdown = 5). */ - if (dbufCount) { - if (origPtr >= dbufCount) - return RETVAL_DATA_ERROR; - bd->writePos = dbuf[origPtr]; - bd->writeCurrent = (unsigned char)(bd->writePos&0xff); - bd->writePos >>= 8; - bd->writeRunCountdown = 5; - } - bd->writeCount = dbufCount; - - return RETVAL_OK; -} - -/* Undo burrows-wheeler transform on intermediate buffer to produce output. - If start_bunzip was initialized with out_fd =-1, then up to len bytes of - data are written to outbuf. Return value is number of bytes written or - error (all errors are negative numbers). If out_fd!=-1, outbuf and len - are ignored, data is written to out_fd and return is RETVAL_OK or error. -*/ - -static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) -{ - const unsigned int *dbuf; - int pos, xcurrent, previous, gotcount; - - /* If last read was short due to end of file, return last block now */ - if (bd->writeCount < 0) - return bd->writeCount; - - gotcount = 0; - dbuf = bd->dbuf; - pos = bd->writePos; - xcurrent = bd->writeCurrent; - - /* We will always have pending decoded data to write into the output - buffer unless this is the very first call (in which case we haven't - Huffman-decoded a block into the intermediate buffer yet). */ - - if (bd->writeCopies) { - /* Inside the loop, writeCopies means extra copies (beyond 1) */ - --bd->writeCopies; - /* Loop outputting bytes */ - for (;;) { - /* If the output buffer is full, snapshot - * state and return */ - if (gotcount >= len) { - bd->writePos = pos; - bd->writeCurrent = xcurrent; - bd->writeCopies++; - return len; - } - /* Write next byte into output buffer, updating CRC */ - outbuf[gotcount++] = xcurrent; - bd->writeCRC = (((bd->writeCRC) << 8) - ^bd->crc32Table[((bd->writeCRC) >> 24) - ^xcurrent]); - /* Loop now if we're outputting multiple - * copies of this byte */ - if (bd->writeCopies) { - --bd->writeCopies; - continue; - } -decode_next_byte: - if (!bd->writeCount--) - break; - /* Follow sequence vector to undo - * Burrows-Wheeler transform */ - previous = xcurrent; - pos = dbuf[pos]; - xcurrent = pos&0xff; - pos >>= 8; - /* After 3 consecutive copies of the same - byte, the 4th is a repeat count. We count - down from 4 instead *of counting up because - testing for non-zero is faster */ - if (--bd->writeRunCountdown) { - if (xcurrent != previous) - bd->writeRunCountdown = 4; - } else { - /* We have a repeated run, this byte - * indicates the count */ - bd->writeCopies = xcurrent; - xcurrent = previous; - bd->writeRunCountdown = 5; - /* Sometimes there are just 3 bytes - * (run length 0) */ - if (!bd->writeCopies) - goto decode_next_byte; - /* Subtract the 1 copy we'd output - * anyway to get extras */ - --bd->writeCopies; - } - } - /* Decompression of this block completed successfully */ - bd->writeCRC = ~bd->writeCRC; - bd->totalCRC = ((bd->totalCRC << 1) | - (bd->totalCRC >> 31)) ^ bd->writeCRC; - /* If this block had a CRC error, force file level CRC error. */ - if (bd->writeCRC != bd->headerCRC) { - bd->totalCRC = bd->headerCRC+1; - return RETVAL_LAST_BLOCK; - } - } - - /* Refill the intermediate buffer by Huffman-decoding next - * block of input */ - /* (previous is just a convenient unused temp variable here) */ - previous = get_next_block(bd); - if (previous) { - bd->writeCount = previous; - return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; - } - bd->writeCRC = 0xffffffffUL; - pos = bd->writePos; - xcurrent = bd->writeCurrent; - goto decode_next_byte; -} - -static long INIT nofill(void *buf, unsigned long len) -{ - return -1; -} - -/* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain - a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are - ignored, and data is read from file handle into temporary buffer. */ -static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len, - long (*fill)(void*, unsigned long)) -{ - struct bunzip_data *bd; - unsigned int i, j, c; - const unsigned int BZh0 = - (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) - +(((unsigned int)'h') << 8)+(unsigned int)'0'; - - /* Figure out how much data to allocate */ - i = sizeof(struct bunzip_data); - - /* Allocate bunzip_data. Most fields initialize to zero. */ - bd = *bdp = malloc(i); - if (!bd) - return RETVAL_OUT_OF_MEMORY; - memset(bd, 0, sizeof(struct bunzip_data)); - /* Setup input buffer */ - bd->inbuf = inbuf; - bd->inbufCount = len; - if (fill != NULL) - bd->fill = fill; - else - bd->fill = nofill; - - /* Init the CRC32 table (big endian) */ - for (i = 0; i < 256; i++) { - c = i << 24; - for (j = 8; j; j--) - c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1); - bd->crc32Table[i] = c; - } - - /* Ensure that file starts with "BZh['1'-'9']." */ - i = get_bits(bd, 32); - if (((unsigned int)(i-BZh0-1)) >= 9) - return RETVAL_NOT_BZIP_DATA; - - /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of - uncompressed data. Allocate intermediate buffer for block. */ - bd->dbufSize = 100000*(i-BZh0); - - bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); - if (!bd->dbuf) - return RETVAL_OUT_OF_MEMORY; - return RETVAL_OK; -} - -/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, - not end of file.) */ -STATIC int INIT bunzip2(unsigned char *buf, long len, - long (*fill)(void*, unsigned long), - long (*flush)(void*, unsigned long), - unsigned char *outbuf, - long *pos, - void(*error)(char *x)) -{ - struct bunzip_data *bd; - int i = -1; - unsigned char *inbuf; - - if (flush) - outbuf = malloc(BZIP2_IOBUF_SIZE); - - if (!outbuf) { - error("Could not allocate output buffer"); - return RETVAL_OUT_OF_MEMORY; - } - if (buf) - inbuf = buf; - else - inbuf = malloc(BZIP2_IOBUF_SIZE); - if (!inbuf) { - error("Could not allocate input buffer"); - i = RETVAL_OUT_OF_MEMORY; - goto exit_0; - } - i = start_bunzip(&bd, inbuf, len, fill); - if (!i) { - for (;;) { - i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); - if (i <= 0) - break; - if (!flush) - outbuf += i; - else - if (i != flush(outbuf, i)) { - i = RETVAL_UNEXPECTED_OUTPUT_EOF; - break; - } - } - } - /* Check CRC and release memory */ - if (i == RETVAL_LAST_BLOCK) { - if (bd->headerCRC != bd->totalCRC) - error("Data integrity error when decompressing."); - else - i = RETVAL_OK; - } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { - error("Compressed file ends unexpectedly"); - } - if (!bd) - goto exit_1; - if (bd->dbuf) - large_free(bd->dbuf); - if (pos) - *pos = bd->inbufPos; - free(bd); -exit_1: - if (!buf) - free(inbuf); -exit_0: - if (flush) - free(outbuf); - return i; -} - -#ifdef PREBOOT -STATIC int INIT __decompress(unsigned char *buf, long len, - long (*fill)(void*, unsigned long), - long (*flush)(void*, unsigned long), - unsigned char *outbuf, long olen, - long *pos, - void (*error)(char *x)) -{ - return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error); -} -#endif diff --git a/scripts/Makefile.lib b/scripts/Makefile.lib index e79bb1444b29..b7b55cc4d743 100644 --- a/scripts/Makefile.lib +++ b/scripts/Makefile.lib @@ -294,10 +294,10 @@ $(obj)/%.dtb: $(src)/%.dts $(DTC) FORCE dtc-tmp = $(subst $(comma),_,$(dot-target).dts.tmp) -# Bzip2 +# Lzma # --------------------------------------------------------------------------- -# Bzip2 and LZMA do not include size in file... so we have to fake that; +# LZMA does not include size in file... so we have to fake that; # append the size as a 32-bit littleendian number as gzip does. size_append = printf $(shell \ dec_size=0; \ @@ -314,14 +314,6 @@ printf "%08x\n" $$dec_size | \ } \ ) -quiet_cmd_bzip2 = BZIP2 $@ -cmd_bzip2 = (cat $(filter-out FORCE,$^) | \ - bzip2 -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \ - (rm -f $@ ; false) - -# Lzma -# --------------------------------------------------------------------------- - quiet_cmd_lzma = LZMA $@ cmd_lzma = (cat $(filter-out FORCE,$^) | \ lzma -9 && $(call size_append, $(filter-out FORCE,$^))) > $@ || \ -- 2.19.1