PA-RISC is interesting; integer multiplies are implemented in the FPU, so are painful in the kernel. But it tries to be friendly to shift-and-add sequences. __hash_32 is implemented using the same shift-and-add sequence as Microblaze, just scheduled for the PA7100. (It's 2-way superscalar but in-order, like the Pentium.) hash_64 was tricky, but a suggestion from Jason Thong allowed a good solution by breaking up the multiplier. After an embarrassing amount of fiddling about, I found a 19-instruction sequence for the multiply that can be executed in 10 cycles using only 4 temporaries. (The PA8xxx can issue 4 instructions per cycle, but 2 must be ALU ops and 2 must be loads/stores. And the final add can't be paired.) An alternative implementation is included, but not enabled by default: Thomas Wang's 64-to-32-bit hash. This is more compact than the multiply, but has a slightly longer dependency chain. Signed-off-by: George Spelvin <linux@xxxxxxxxxxxxxxxxxxx> Cc: Helge Deller <deller@xxxxxx> Cc: linux-parisc@xxxxxxxxxxxxxxx --- Okay, I'm happy with this one. Helge, could you test it whenever you get a chance? I've left the alternate hash_64 path in for now, but the one not chosen should be deleted before sending to Linus. arch/parisc/Kconfig | 1 + arch/parisc/include/asm/hash.h | 182 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 183 insertions(+) create mode 100644 arch/parisc/include/asm/hash.h diff --git a/arch/parisc/Kconfig b/arch/parisc/Kconfig index 88cfaa8a..8ed2a444 100644 --- a/arch/parisc/Kconfig +++ b/arch/parisc/Kconfig @@ -30,6 +30,7 @@ config PARISC select TTY # Needed for pdc_cons.c select HAVE_DEBUG_STACKOVERFLOW select HAVE_ARCH_AUDITSYSCALL + select HAVE_ARCH_HASH select HAVE_ARCH_SECCOMP_FILTER select ARCH_NO_COHERENT_DMA_MMAP diff --git a/arch/parisc/include/asm/hash.h b/arch/parisc/include/asm/hash.h new file mode 100644 index 00000000..a21b3d2f --- /dev/null +++ b/arch/parisc/include/asm/hash.h @@ -0,0 +1,182 @@ +#ifndef _ASM_HASH_H +#define _ASM_HASH_H + +/* + * HP-PA only implements integer multiply in the FPU. However, for + * integer multiplies by constant, it has a number of shift-and-add + * (but no shift-and-subtract, sigh!) instructions that a compiler + * can synthesize a code sequence with. + * + * Unfortunately, GCC isn't very efficient at using them. For example + * it uses three instructions for "x *= 21" when only two are needed. + * But we can find a sequence manually. + */ + +#define HAVE_ARCH__HASH_32 1 + +/* + * This is a multiply by GOLDEN_RATIO_32 = 0x61C88647 optimized for the + * PA7100 pairing rules. This is an in-order 2-way superscalar processor. + * Only one instruction in a pair may be a shift (by more than 3 bits), + * but other than that, simple ALU ops (including shift-and-add by up + * to 3 bits) may be paired arbitrarily. + * + * PA8xxx processors are out of order and don't need such careful + * scheduling. + * + * This 6-step sequence was found by Yevgen Voronenko's implementation + * of the Hcub algorithm at http://spiral.ece.cmu.edu/mcm/gen.html. + */ +static inline u32 __attribute_const__ __hash_32(u32 x) +{ + u32 a, b, c; + + /* + * Phase 1: Compute a = (x << 19) + x, + * b = (x << 9) + a, c = (x << 23) + b. + */ + a = x << 19; /* Two shifts can't be paired */ + b = x << 9; a += x; + c = x << 23; b += a; + c += b; + /* Phase 2: Return (b<<11) + (c<<6) + (a<<3) - c */ + b <<= 11; + a += c << 3; b -= c; + return (a << 3) + b; +} + +#if BITS_PER_LONG == 64 + +#define HAVE_ARCH_HASH_64 1 + +#if HAVE_ARCH_HASH_64 == 1 +/* + * Multiply by GOLDEN_RATIO_64. Finding a good shift-and-add chain for + * this is tricky, because available software for the purpose chokes on + * constants this large. (It's mostly used for compiling FIR filter + * coefficients into FPGAs.) + * + * However, Jason Thong pointed out a work-around. The Hcub software + * (http://spiral.ece.cmu.edu/mcm/gen.html) is designed for *multiple* + * constant multiplication, and is good at finding shift-and-add chains + * which share common terms. + * + * Looking at 0x0x61C8864680B583EB in binary: + * 0110000111001000100001100100011010000000101101011000001111101011 + * \______________/ \__________/ \_______/ \________/ + * \____________________________/ \____________________/ + * you can see the non-zero bits are divided into several well-separated + * blocks. Hcub can find algorithms for those terms separately, which + * can then be shifted and added together. + * + * Various combinations all work, but using just two large blocks, + * 0xC3910C8D << 31 in the high bits, and 0xB583EB in the low bits, + * produces as good an algorithm as any, and with one more small shift + * than alternatives. + * + * The high bits are a larger number and more work to compute, as well + * as needing one extra cycle to shift left 31 bits before the final + * addition, so they are the critical path for scheduling. The low bits + * can fit into the scheduling slots left over. + * + * This is scheduled for the PA-8xxx series, which can issue up to + * 2 ALU operations (of any type, adds or shifts) per cycle. + * + * In several places, the construction asm("" : (=r) (dest) : "0" (src)); + * is used. This basically performs "dest = src", but prevents gcc from + * inferring anything about the value assigned to "dest". This blocks it + * from some mistaken optimizations like rearranging "y += z; x -= y;" + * into "x -= z; x -= y;", or "x <<= 23; y += x; z += x << 1;" into + * "y += x << 23; z += x << 24;". + * + * Because the actual assembly generated is empty, this construct is + * usefully portable across all GCC platforms, and so can be test-compiled + * on non-PA systems. + * + * In two places, additional unused input dependencies are added. This + * forces GCC's scheduling so it does not rearrange instructions too much. + */ +static __always_inline u32 __attribute_const__ +hash_64(u64 a, unsigned int bits) +{ + u64 b, c, d; + + asm("" : "=r" (b) : "0" (a * 5)); // b = a * 5 + c = a << 13; + + b = (b << 2) + a; // b = a * 21 + asm("" : "=r" (d) : "0" (a << 17)); // d = a << 17 + + a = b + (a << 1); // a = a * 23 + c += d; + + d = a << 10; + asm("" : "=r" (a) : "0" (a << 19)); // a <<= 19 + + d = a - d; + asm("" : "=r" (a) : "0" (a << 4), // a <<= 4; + "X" (d)); // Force dependency, damn it! + + a += b; + c += b; + + d -= c; + c += a << 1; + + asm("" : "=r" (b) : "0" (b << 7+31), // b <<= 7+31; + "X" (c), "X" (d)); // Force dependency, damn it! + a += c << 3; + + b += d; + a <<= 31; + + a += b; + return a >> (64 - bits); +} + +#else /* HAVE_ARCH_HASH_64 != 1 */ +/* + * If we don't care about matching the generic function, here's an + * alternative hash function; Thomas Wang's 64-to-32 bit hash function. + * https://web.archive.org/web/2011/http://www.concentric.net/~Ttwang/tech/inthash.htm + * http://burtleburtle.net/bob/hash/integer.html + * + * This algorithm concentrates the entropy in the low bits of the output, + * so they are returned. + * + * Compared to the multiply, this uses 2 registers (rather than 4), and + * 12 instructions (rather than 20), but each instruction in sequentially + * dependent, so it's 10 cycles (rather than 8). + * + * (In both cases, I'm not counting the final extract of the desired bits.) + */ +static __always_inline u32 __attribute_const__ +hash_64(u64 x, unsigned int bits) +{ + u64 y; + + if (!__builtin_constant_p(bits)) + asm("mtsarcm %1" : "=q" (bits) : "r" (bits)); + + x = ~x + (x << 18); + x ^= x >> 31; + y = x * 5; /* GCC uses 3 instructions for "x *= 21" */ + x += y << 2; + x ^= x >> 11; + x += x << 6; + x ^= x >> 22; + + if (__builtin_constant_p(bits)) { + x = x >> (64 - bits) << (64 - bits); + } else { + asm("depdi,z -1,%%sar,64,%0" : "=r" (y) : "q" (bits)); + x &= ~y; + } + + return x; +} + +#endif /* HAVE_ARCH_HASH_64 */ +#endif /* BITS_PER_LONG == 64 */ + +#endif /* _ASM_HASH_H */ -- 2.8.1 -- To unsubscribe from this list: send the line "unsubscribe linux-parisc" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html