Hi Mathieu, On Thu, 3 Dec 2020 at 19:51, Mathieu Poirier <mathieu.poirier@xxxxxxxxxx> wrote: > > On Thu, Nov 19, 2020 at 03:08:49PM +0100, Grzegorz Jaszczyk wrote: > > From: Suman Anna <s-anna@xxxxxx> > > > > The K3 AM65x family of SoCs have the next generation of the PRU-ICSS > > processor subsystem, commonly referred to as ICSSG. Each ICSSG processor > > subsystem on AM65x SR1.0 contains two primary PRU cores and two new > > auxiliary PRU cores called RTUs. The AM65x SR2.0 SoCs have a revised > > ICSSG IP that is based off the subsequent IP revision used on J721E > > SoCs. This IP instance has two new custom auxiliary PRU cores called > > Transmit PRUs (Tx_PRUs) in addition to the existing PRUs and RTUs. > > > > Each RTU and Tx_PRU cores have their own dedicated IRAM (smaller than > > a PRU), Control and debug feature sets, but is different in terms of > > sub-modules integrated around it and does not have the full capabilities > > associated with a PRU core. The RTU core is typically used to aid a > > PRU core in accelerating data transfers, while the Tx_PRU cores is > > normally used to control the TX L2 FIFO if enabled in Ethernet > > applications. Both can also be used to run independent applications. > > The RTU and Tx_PRU cores though share the same Data RAMs as the PRU > > cores, so the memories have to be partitioned carefully between different > > applications. The new cores also support a new sub-module called Task > > Manager to support two different context thread executions. > > > > Enhance the existing PRU remoteproc driver to support these new PRU, RTU > > and Tx PRU cores by using specific compatibles. The initial names for the > > firmware images for each PRU core are retrieved from DT nodes, and can > > be adjusted through sysfs if required. > > > > The PRU remoteproc driver has to be specifically modified to use a > > custom memcpy function within its ELF loader implementation for these > > new cores in order to overcome a limitation with copying data into each > > of the core's IRAM memories. These memory ports support only 4-byte > > writes, and any sub-word order byte writes clear out the remaining > > bytes other than the bytes being written within the containing word. > > The default ARM64 memcpy also cannot be used as it throws an exception > > when the preferred 8-byte copy operation is attempted. This choice is > > made by using a state flag that is set only on K3 SoCs. > > > > Signed-off-by: Suman Anna <s-anna@xxxxxx> > > Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@xxxxxxxxxx> > > Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@xxxxxxxxxx> > > --- > > v1->v2: > > - Update documentation of pru_rproc_memcpy() according to Suman > > comments. > > - Update documentation of is_k3 flag. > > --- > > drivers/remoteproc/pru_rproc.c | 140 ++++++++++++++++++++++++++++++--- > > 1 file changed, 131 insertions(+), 9 deletions(-) > > > > diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c > > index d5f04d77ad54..48c1c51e0d42 100644 > > --- a/drivers/remoteproc/pru_rproc.c > > +++ b/drivers/remoteproc/pru_rproc.c > > @@ -46,10 +46,14 @@ > > #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) > > #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) > > > > -/* PRU Core IRAM address masks */ > > +/* PRU/RTU/Tx_PRU Core IRAM address masks */ > > #define PRU_IRAM_ADDR_MASK 0x3ffff > > #define PRU0_IRAM_ADDR_MASK 0x34000 > > #define PRU1_IRAM_ADDR_MASK 0x38000 > > +#define RTU0_IRAM_ADDR_MASK 0x4000 > > +#define RTU1_IRAM_ADDR_MASK 0x6000 > > +#define TX_PRU0_IRAM_ADDR_MASK 0xa000 > > +#define TX_PRU1_IRAM_ADDR_MASK 0xc000 > > > > /* PRU device addresses for various type of PRU RAMs */ > > #define PRU_IRAM_DA 0 /* Instruction RAM */ > > @@ -74,12 +78,38 @@ enum pru_iomem { > > PRU_IOMEM_MAX, > > }; > > > > +/** > > + * enum pru_type - PRU core type identifier > > + * > > + * @PRU_TYPE_PRU: Programmable Real-time Unit > > + * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit > > + * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit > > + * @PRU_TYPE_MAX: just keep this one at the end > > + */ > > +enum pru_type { > > + PRU_TYPE_PRU = 0, > > + PRU_TYPE_RTU, > > + PRU_TYPE_TX_PRU, > > + PRU_TYPE_MAX, > > +}; > > + > > +/** > > + * struct pru_private_data - device data for a PRU core > > + * @type: type of the PRU core (PRU, RTU, Tx_PRU) > > + * @is_k3: flag used to identify the need for special load handling > > + */ > > +struct pru_private_data { > > + enum pru_type type; > > + unsigned int is_k3 : 1; > > +}; > > + > > /** > > * struct pru_rproc - PRU remoteproc structure > > * @id: id of the PRU core within the PRUSS > > * @dev: PRU core device pointer > > * @pruss: back-reference to parent PRUSS structure > > * @rproc: remoteproc pointer for this PRU core > > + * @data: PRU core specific data > > * @mem_regions: data for each of the PRU memory regions > > * @fw_name: name of firmware image used during loading > > * @mapped_irq: virtual interrupt numbers of created fw specific mapping > > @@ -94,6 +124,7 @@ struct pru_rproc { > > struct device *dev; > > struct pruss *pruss; > > struct rproc *rproc; > > + const struct pru_private_data *data; > > struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; > > const char *fw_name; > > int *mapped_irq; > > @@ -319,11 +350,12 @@ static int pru_rproc_start(struct rproc *rproc) > > { > > struct device *dev = &rproc->dev; > > struct pru_rproc *pru = rproc->priv; > > + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; > > u32 val; > > int ret; > > > > - dev_dbg(dev, "starting PRU%d: entry-point = 0x%llx\n", > > - pru->id, (rproc->bootaddr >> 2)); > > + dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", > > + names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); > > > > ret = pru_handle_intrmap(rproc); > > /* > > @@ -345,9 +377,10 @@ static int pru_rproc_stop(struct rproc *rproc) > > { > > struct device *dev = &rproc->dev; > > struct pru_rproc *pru = rproc->priv; > > + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; > > u32 val; > > > > - dev_dbg(dev, "stopping PRU%d\n", pru->id); > > + dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); > > > > val = pru_control_read_reg(pru, PRU_CTRL_CTRL); > > val &= ~CTRL_CTRL_EN; > > @@ -459,9 +492,52 @@ static struct rproc_ops pru_rproc_ops = { > > .da_to_va = pru_rproc_da_to_va, > > }; > > > > +/* > > + * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores > > + * > > + * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM > > + * memories, that is not seen on previous generation SoCs. The data is reflected > > + * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned > > + * copies result in all the other pre-existing bytes zeroed out within that > > + * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the > > + * IRAM memory port interface does not allow any 8-byte copies (as commonly used > > + * by ARM64 memcpy implementation) and throws an exception. The DRAM memory > > + * ports do not show this behavior. > > + */ > > +static int pru_rproc_memcpy(void *dest, const void *src, size_t count) > > +{ > > + const int *s = src; > > + int *d = dest; > > + int size = count / 4; > > + int *tmp_src = NULL; > > + > > + /* > > + * TODO: relax limitation of 4-byte aligned dest addresses and copy > > + * sizes > > + */ > > + if ((long)dest % 4 || count % 4) > > + return -EINVAL; > > + > > + /* src offsets in ELF firmware image can be non-aligned */ > > + if ((long)src % 4) { > > + tmp_src = kmemdup(src, count, GFP_KERNEL); > > + if (!tmp_src) > > + return -ENOMEM; > > + s = tmp_src; > > + } > > + > > + while (size--) > > + *d++ = *s++; > > I would have expected *d and *s to be u32 * ... > > It doesn't matter much because the end result will be the same but it seems odd > to me, especially when doing memory manipulations. Ok, I will additionally use u32* for temp_src and size_t for size. > > Regardless: > > Reviewed-by: Mathieu Poirier <mathieu.poirier@xxxxxxxxxx> Thank you, Grzegorz > > > + > > + kfree(tmp_src); > > + > > + return 0; > > +} > > + > > static int > > pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) > > { > > + struct pru_rproc *pru = rproc->priv; > > struct device *dev = &rproc->dev; > > struct elf32_hdr *ehdr; > > struct elf32_phdr *phdr; > > @@ -513,7 +589,17 @@ pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) > > if (!phdr->p_filesz) > > continue; > > > > - memcpy(ptr, elf_data + phdr->p_offset, filesz); > > + if (pru->data->is_k3 && is_iram) { > > + ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, > > + filesz); > > + if (ret) { > > + dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", > > + da, memsz); > > + break; > > + } > > + } else { > > + memcpy(ptr, elf_data + phdr->p_offset, filesz); > > + } > > } > > > > return ret; > > @@ -617,9 +703,17 @@ static int pru_rproc_set_id(struct pru_rproc *pru) > > int ret = 0; > > > > switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { > > + case TX_PRU0_IRAM_ADDR_MASK: > > + fallthrough; > > + case RTU0_IRAM_ADDR_MASK: > > + fallthrough; > > case PRU0_IRAM_ADDR_MASK: > > pru->id = 0; > > break; > > + case TX_PRU1_IRAM_ADDR_MASK: > > + fallthrough; > > + case RTU1_IRAM_ADDR_MASK: > > + fallthrough; > > case PRU1_IRAM_ADDR_MASK: > > pru->id = 1; > > break; > > @@ -640,8 +734,13 @@ static int pru_rproc_probe(struct platform_device *pdev) > > struct rproc *rproc = NULL; > > struct resource *res; > > int i, ret; > > + const struct pru_private_data *data; > > const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; > > > > + data = of_device_get_match_data(&pdev->dev); > > + if (!data) > > + return -ENODEV; > > + > > ret = of_property_read_string(np, "firmware-name", &fw_name); > > if (ret) { > > dev_err(dev, "unable to retrieve firmware-name %d\n", ret); > > @@ -674,6 +773,7 @@ static int pru_rproc_probe(struct platform_device *pdev) > > > > pru = rproc->priv; > > pru->dev = dev; > > + pru->data = data; > > pru->pruss = platform_get_drvdata(ppdev); > > pru->rproc = rproc; > > pru->fw_name = fw_name; > > @@ -725,11 +825,33 @@ static int pru_rproc_remove(struct platform_device *pdev) > > return 0; > > } > > > > +static const struct pru_private_data pru_data = { > > + .type = PRU_TYPE_PRU, > > +}; > > + > > +static const struct pru_private_data k3_pru_data = { > > + .type = PRU_TYPE_PRU, > > + .is_k3 = 1, > > +}; > > + > > +static const struct pru_private_data k3_rtu_data = { > > + .type = PRU_TYPE_RTU, > > + .is_k3 = 1, > > +}; > > + > > +static const struct pru_private_data k3_tx_pru_data = { > > + .type = PRU_TYPE_TX_PRU, > > + .is_k3 = 1, > > +}; > > + > > static const struct of_device_id pru_rproc_match[] = { > > - { .compatible = "ti,am3356-pru", }, > > - { .compatible = "ti,am4376-pru", }, > > - { .compatible = "ti,am5728-pru", }, > > - { .compatible = "ti,k2g-pru", }, > > + { .compatible = "ti,am3356-pru", .data = &pru_data }, > > + { .compatible = "ti,am4376-pru", .data = &pru_data }, > > + { .compatible = "ti,am5728-pru", .data = &pru_data }, > > + { .compatible = "ti,k2g-pru", .data = &pru_data }, > > + { .compatible = "ti,am654-pru", .data = &k3_pru_data }, > > + { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, > > + { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, > > {}, > > }; > > MODULE_DEVICE_TABLE(of, pru_rproc_match); > > -- > > 2.29.0 > >