From: Suman Anna <s-anna@xxxxxx> The K3 AM65x family of SoCs have the next generation of the PRU-ICSS processor subsystem, commonly referred to as ICSSG. Each ICSSG processor subsystem on AM65x SR1.0 contains two primary PRU cores and two new auxiliary PRU cores called RTUs. The AM65x SR2.0 SoCs have a revised ICSSG IP that is based off the subsequent IP revision used on J721E SoCs. This IP instance has two new custom auxiliary PRU cores called Transmit PRUs (Tx_PRUs) in addition to the existing PRUs and RTUs. Each RTU and Tx_PRU cores have their own dedicated IRAM (smaller than a PRU), Control and debug feature sets, but is different in terms of sub-modules integrated around it and does not have the full capabilities associated with a PRU core. The RTU core is typically used to aid a PRU core in accelerating data transfers, while the Tx_PRU cores is normally used to control the TX L2 FIFO if enabled in Ethernet applications. Both can also be used to run independent applications. The RTU and Tx_PRU cores though share the same Data RAMs as the PRU cores, so the memories have to be partitioned carefully between different applications. The new cores also support a new sub-module called Task Manager to support two different context thread executions. Enhance the existing PRU remoteproc driver to support these new PRU, RTU and Tx PRU cores by using specific compatibles. The initial names for the firmware images for each PRU core are retrieved from DT nodes, and can be adjusted through sysfs if required. The PRU remoteproc driver has to be specifically modified to use a custom memcpy function within its ELF loader implementation for these new cores in order to overcome a limitation with copying data into each of the core's IRAM memories. These memory ports support only 4-byte writes, and any sub-word order byte writes clear out the remaining bytes other than the bytes being written within the containing word. The default ARM64 memcpy also cannot be used as it throws an exception when the preferred 8-byte copy operation is attempted. This choice is made by using a state flag that is set only on K3 SoCs. Signed-off-by: Suman Anna <s-anna@xxxxxx> Co-developed-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@xxxxxxxxxx> Signed-off-by: Grzegorz Jaszczyk <grzegorz.jaszczyk@xxxxxxxxxx> --- drivers/remoteproc/pru_rproc.c | 141 ++++++++++++++++++++++++++++++--- 1 file changed, 132 insertions(+), 9 deletions(-) diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c index 33806ddcbd5d..04c9f07799e2 100644 --- a/drivers/remoteproc/pru_rproc.c +++ b/drivers/remoteproc/pru_rproc.c @@ -46,9 +46,13 @@ #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) -/* PRU Core IRAM address masks */ +/* PRU/RTU/Tx_PRU Core IRAM address masks */ #define PRU0_IRAM_ADDR_MASK 0x34000 #define PRU1_IRAM_ADDR_MASK 0x38000 +#define RTU0_IRAM_ADDR_MASK 0x4000 +#define RTU1_IRAM_ADDR_MASK 0x6000 +#define TX_PRU0_IRAM_ADDR_MASK 0xa000 +#define TX_PRU1_IRAM_ADDR_MASK 0xc000 /* PRU device addresses for various type of PRU RAMs */ #define PRU_IRAM_DA 0 /* Instruction RAM */ @@ -73,12 +77,38 @@ enum pru_iomem { PRU_IOMEM_MAX, }; +/** + * enum pru_type - PRU core type identifier + * + * @PRU_TYPE_PRU: Programmable Real-time Unit + * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit + * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit + * @PRU_TYPE_MAX: just keep this one at the end + */ +enum pru_type { + PRU_TYPE_PRU = 0, + PRU_TYPE_RTU, + PRU_TYPE_TX_PRU, + PRU_TYPE_MAX, +}; + +/** + * struct pru_private_data - device data for a PRU core + * @type: type of the PRU core (PRU, RTU, Tx_PRU) + * @is_k3: flag used to identify the need for special load & event handling + */ +struct pru_private_data { + enum pru_type type; + unsigned int is_k3 : 1; +}; + /** * struct pru_rproc - PRU remoteproc structure * @id: id of the PRU core within the PRUSS * @dev: PRU core device pointer * @pruss: back-reference to parent PRUSS structure * @rproc: remoteproc pointer for this PRU core + * @data: PRU core specific data * @mem_regions: data for each of the PRU memory regions * @fw_name: name of firmware image used during loading * @mapped_irq: virtual interrupt numbers of created fw specific mapping @@ -93,6 +123,7 @@ struct pru_rproc { struct device *dev; struct pruss *pruss; struct rproc *rproc; + const struct pru_private_data *data; struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; const char *fw_name; int *mapped_irq; @@ -318,11 +349,12 @@ static int pru_rproc_start(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; int ret; - dev_dbg(dev, "starting PRU%d: entry-point = 0x%llx\n", - pru->id, (rproc->bootaddr >> 2)); + dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", + names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); ret = pru_handle_intrmap(rproc); /* @@ -344,9 +376,10 @@ static int pru_rproc_stop(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; - dev_dbg(dev, "stopping PRU%d\n", pru->id); + dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); val = pru_control_read_reg(pru, PRU_CTRL_CTRL); val &= ~CTRL_CTRL_EN; @@ -458,9 +491,53 @@ static struct rproc_ops pru_rproc_ops = { .da_to_va = pru_rproc_da_to_va, }; +/* + * Custom memory copy implementation for ICSSG PRU/RTU Cores + * + * The ICSSG PRU/RTU cores have a memory copying issue with IRAM memories, that + * is not seen on previous generation SoCs. The data is reflected properly in + * the IRAM memories only for integer (4-byte) copies. Any unaligned copies + * result in all the other pre-existing bytes zeroed out within that 4-byte + * boundary, thereby resulting in wrong text/code in the IRAMs. Also, the + * IRAM memory port interface does not allow any 8-byte copies (as commonly + * used by ARM64 memcpy implementation) and throws an exception. The DRAM + * memory ports do not show this behavior. Use this custom copying function + * to properly load the PRU/RTU firmware images on all memories for simplicity. + */ +static int pru_rproc_memcpy(void *dest, const void *src, size_t count) +{ + const int *s = src; + int *d = dest; + int size = count / 4; + int *tmp_src = NULL; + + /* + * TODO: relax limitation of 4-byte aligned dest addresses and copy + * sizes + */ + if ((long)dest % 4 || count % 4) + return -EINVAL; + + /* src offsets in ELF firmware image can be non-aligned */ + if ((long)src % 4) { + tmp_src = kmemdup(src, count, GFP_KERNEL); + if (!tmp_src) + return -ENOMEM; + s = tmp_src; + } + + while (size--) + *d++ = *s++; + + kfree(tmp_src); + + return 0; +} + static int pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) { + struct pru_rproc *pru = rproc->priv; struct device *dev = &rproc->dev; struct elf32_hdr *ehdr; struct elf32_phdr *phdr; @@ -512,7 +589,17 @@ pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) if (!phdr->p_filesz) continue; - memcpy(ptr, elf_data + phdr->p_offset, filesz); + if (pru->data->is_k3 && is_iram) { + ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, + filesz); + if (ret) { + dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", + da, memsz); + break; + } + } else { + memcpy(ptr, elf_data + phdr->p_offset, filesz); + } } return ret; @@ -619,9 +706,17 @@ static int pru_rproc_set_id(struct pru_rproc *pru) int ret = 0; switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & 0x3ffff) { + case TX_PRU0_IRAM_ADDR_MASK: + fallthrough; + case RTU0_IRAM_ADDR_MASK: + fallthrough; case PRU0_IRAM_ADDR_MASK: pru->id = 0; break; + case TX_PRU1_IRAM_ADDR_MASK: + fallthrough; + case RTU1_IRAM_ADDR_MASK: + fallthrough; case PRU1_IRAM_ADDR_MASK: pru->id = 1; break; @@ -642,8 +737,13 @@ static int pru_rproc_probe(struct platform_device *pdev) struct rproc *rproc = NULL; struct resource *res; int i, ret; + const struct pru_private_data *data; const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; + data = of_device_get_match_data(&pdev->dev); + if (!data) + return -ENODEV; + ret = of_property_read_string(np, "firmware-name", &fw_name); if (ret) { dev_err(dev, "unable to retrieve firmware-name %d\n", ret); @@ -676,6 +776,7 @@ static int pru_rproc_probe(struct platform_device *pdev) pru = rproc->priv; pru->dev = dev; + pru->data = data; pru->pruss = platform_get_drvdata(ppdev); pru->rproc = rproc; pru->fw_name = fw_name; @@ -727,11 +828,33 @@ static int pru_rproc_remove(struct platform_device *pdev) return 0; } +static const struct pru_private_data pru_data = { + .type = PRU_TYPE_PRU, +}; + +static const struct pru_private_data k3_pru_data = { + .type = PRU_TYPE_PRU, + .is_k3 = 1, +}; + +static const struct pru_private_data k3_rtu_data = { + .type = PRU_TYPE_RTU, + .is_k3 = 1, +}; + +static const struct pru_private_data k3_tx_pru_data = { + .type = PRU_TYPE_TX_PRU, + .is_k3 = 1, +}; + static const struct of_device_id pru_rproc_match[] = { - { .compatible = "ti,am3356-pru", }, - { .compatible = "ti,am4376-pru", }, - { .compatible = "ti,am5728-pru", }, - { .compatible = "ti,k2g-pru", }, + { .compatible = "ti,am3356-pru", .data = &pru_data }, + { .compatible = "ti,am4376-pru", .data = &pru_data }, + { .compatible = "ti,am5728-pru", .data = &pru_data }, + { .compatible = "ti,k2g-pru", .data = &pru_data }, + { .compatible = "ti,am654-pru", .data = &k3_pru_data }, + { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, + { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, {}, }; MODULE_DEVICE_TABLE(of, pru_rproc_match); -- 2.29.0