Wu Fengguang, on 02/19/2009 05:05 AM wrote:
On Tue, Feb 17, 2009 at 10:01:40PM +0300, Vladislav Bolkhovitin wrote:Wu Fengguang, on 02/13/2009 04:57 AM wrote:See attached. Could you comment the logs, please, so I will also be able to read them in the future?On Thu, Feb 12, 2009 at 09:35:18PM +0300, Vladislav Bolkhovitin wrote:Sorry for such a huge delay. There were many other activities I had to do before + I had to be sure I didn't miss anything.We didn't use NFS, we used SCST (http://scst.sourceforge.net) with iSCSI-SCST target driver. It has similar to NFS architecture, where N threads (N=5 in this case) handle IO from remote initiators (clients) coming from wire using iSCSI protocol. In addition, SCST has patch called export_alloc_io_context (see http://lkml.org/lkml/2008/12/10/282), which allows for the IO threads queue IO using single IO context, so we can see if context RA can replace grouping IO threads in single IO context.Unfortunately, the results are negative. We find neither any advantages of context RA over current RA implementation, nor possibility for context RA to replace grouping IO threads in single IO context.Setup on the target (server) was the following. 2 SATA drives grouped in md RAID-0 with average local read throughput ~120MB/s ("dd if=/dev/zero of=/dev/md0 bs=1M count=20000" outputs "20971520000 bytes (21 GB) copied, 177,742 s, 118 MB/s"). The md device was partitioned on 3 partitions. The first partition was 10% of space in the beginning of the device, the last partition was 10% of space in the end of the device, the middle one was the rest in the middle of the space them. Then the first and the last partitions were exported to the initiator (client). They were /dev/sdb and /dev/sdc on it correspondingly.Vladislav, Thank you for the benchmarks! I'm very interested in optimizing your workload and figuring out what happens underneath. Are the client and server two standalone boxes connected by GBE? When you set readahead sizes in the benchmarks, you are setting them in the server side? I.e. "linux-4dtq" is the SCST server? What's the client side readahead size? It would help a lot to debug readahead if you can provide the server side readahead stats and trace log for the worst case. This will automatically answer the above questions as well as disclose the micro-behavior of readahead: mount -t debugfs none /sys/kernel/debug echo > /sys/kernel/debug/readahead/stats # reset counters # do benchmark cat /sys/kernel/debug/readahead/stats echo 1 > /sys/kernel/debug/readahead/trace_enable # do micro-benchmark, i.e. run the same benchmark for a short time echo 0 > /sys/kernel/debug/readahead/trace_enable dmesg The above readahead trace should help find out how the client side sequential reads convert into server side random reads, and how we can prevent that.Vladislav, thank you for the logs! The printk format for the following lines is: + printk(KERN_DEBUG "readahead-%s(pid=%d(%s), dev=%02x:%02x(%s), " + "ino=%lu(%s), req=%lu+%lu, ra=%lu+%d-%d, async=%d) = %d\n", + ra_pattern_names[pattern], + current->pid, current->comm, + MAJOR(mapping->host->i_sb->s_dev), + MINOR(mapping->host->i_sb->s_dev), + mapping->host->i_sb->s_id, + mapping->host->i_ino, + filp->f_path.dentry->d_name.name, + offset, req_size, + ra->start, ra->size, ra->async_size, + async, + actual); readahead-marker(pid=3838(vdiskd3_3), dev=00:02(bdev), ino=0(raid-1st), req=10596+1, ra=10628+32-32, async=1) = 32 readahead-marker(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=10628+1, ra=10660+32-32, async=1) = 32 readahead-marker(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=10660+1, ra=10692+32-32, async=1) = 32 readahead-marker(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=10692+1, ra=10724+32-32, async=1) = 32 readahead-marker(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=10724+1, ra=10756+32-32, async=1) = 32 readahead-marker(pid=3838(vdiskd3_3), dev=00:02(bdev), ino=0(raid-1st), req=10756+1, ra=10788+32-32, async=1) = 32 readahead-marker(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=10788+1, ra=10820+32-32, async=1) = 32 readahead-marker(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=10820+1, ra=10852+32-32, async=1) = 32 readahead-marker(pid=3838(vdiskd3_3), dev=00:02(bdev), ino=0(raid-1st), req=10852+1, ra=10884+32-32, async=1) = 32 readahead-marker(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=10884+1, ra=10916+32-32, async=1) = 32 readahead-marker(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=10916+1, ra=10948+32-32, async=1) = 32 readahead-marker(pid=3836(vdiskd3_1), dev=00:02(bdev), ino=0(raid-1st), req=10948+1, ra=10980+32-32, async=1) = 32 readahead-marker(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=10980+1, ra=11012+32-32, async=1) = 32 readahead-marker(pid=3838(vdiskd3_3), dev=00:02(bdev), ino=0(raid-1st), req=11012+1, ra=11044+32-32, async=1) = 32 readahead-marker(pid=3836(vdiskd3_1), dev=00:02(bdev), ino=0(raid-1st), req=11044+1, ra=11076+32-32, async=1) = 32 readahead-subsequent(pid=3836(vdiskd3_1), dev=00:02(bdev), ino=0(raid-1st), req=11076+1, ra=11108+32-32, async=1) = 32 readahead-marker(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=11108+1, ra=11140+32-32, async=1) = 32 readahead-subsequent(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=11140+1, ra=11172+32-32, async=1) = 32 readahead-marker(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=11172+1, ra=11204+32-32, async=1) = 32 readahead-subsequent(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=11204+1, ra=11236+32-32, async=1) = 32 readahead-marker(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=11236+1, ra=11268+32-32, async=1) = 32 readahead-subsequent(pid=3837(vdiskd3_2), dev=00:02(bdev), ino=0(raid-1st), req=11268+1, ra=11300+32-32, async=1) = 32 readahead-marker(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=11300+1, ra=11332+32-32, async=1) = 32 readahead-subsequent(pid=3835(vdiskd3_0), dev=00:02(bdev), ino=0(raid-1st), req=11332+1, ra=11364+32-32, async=1) = 32 readahead-marker(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=11364+1, ra=11396+32-32, async=1) = 32 readahead-subsequent(pid=3839(vdiskd3_4), dev=00:02(bdev), ino=0(raid-1st), req=11396+1, ra=11428+32-32, async=1) = 32 The above trace shows that the readahead logic is working pretty well, however the max readahead size(32 pages) is way too small. This can also be confirmed in the following table, where the average readahead request size/async_size and actual readahead I/O size are all 30. linux-4dtq:/ # cat /sys/kernel/debug/readahead/stats pattern count sync_count eof_count size async_size actual none 0 0 0 0 0 0 initial0 71 71 41 4 3 2 initial 23 23 0 4 3 4 subsequent 3845 4 21 31 31 31 marker 4222 0 1 31 31 31 trail 0 0 0 0 0 0 oversize 0 0 0 0 0 0 reverse 0 0 0 0 0 0 stride 0 0 0 0 0 0 thrash 0 0 0 0 0 0 mmap 135 135 15 32 0 17 fadvise 180 180 180 0 0 1 random 23 23 2 1 0 1 all 8499 436 260 30 30 30 ^^^^^^^^^^^^^^^^^^^^^^^^ I suspect that your main performance problem comes from the small read/readahead size. If larger values are used, even the vanilla 2.6.27 kernel will perform well.
Yes, it was misconfiguration on our side: readahead size was not set correctly on all devices. In the correct configuration context based RA shows constant advantage over the current vanilla algorithm, but not as much as I would expect. It still performs considerably worse, than in case when all the IO threads work in the same IO context. To remind, our setup and tests described in http://lkml.org/lkml/2009/2/12/277.
Here are the conclusions from tests:1. Making all IO threads work in the same IO context with CFQ (vanilla RA and default RA size) brings near 100% link utilization on single stream reads (100MB/s) and with deadline about 50% (50MB/s). I.e. there is 100% improvement of CFQ over deadline. With 2 read streams CFQ has ever more advantage: >400% (23MB/s vs 5MB/s).
2. All IO threads work in different IO contexts. With vanilla RA and default RA size CFQ performs 50% worse (48MB/s), even worse than deadline.
3. All IO threads work in different IO contexts. With default RA size context RA brings on single stream 40% improvement with deadline (71MB/s vs 51MB/s), no improvement with cfq (48MB/s).
4. All IO threads work in different IO contexts. With higher RA sizes there is stable 6% improvement with context RA over vanilla RA with CFQ starting from 20%. Deadline performs similarly. In parallel reads improvement is bigger: 30% on 4M RA size with deadline (39MB/s vs 27MB/s)
5. All IO threads work in different IO contexts. The best performance achieved with RA maximum size 4M on both RA algorithms, but starting from size 1M it starts growing very slowly.
6. Unexpected result. In case, when ll IO threads work in the same IO context with CFQ increasing RA size *decreases* throughput. I think this is, because RA requests performed as single big READ requests, while requests coming from remote clients are much smaller in size (up to 256K), so, when the read by RA data transferred to the remote client on 100MB/s speed, the backstorage media gets rotated a bit, so the next read request must wait the rotation latency (~0.1ms on 7200RPM). This is well conforms with (3) above, when context RA has 40% advantage over vanilla RA with default RA, but much smaller with higher RA.
Bottom line IMHO conclusions:1. Context RA should be considered after additional examination to replace current RA algorithm in the kernel
2. It would be better to increase default RA size to 1024K *AND* one of the following:3.1. All RA requests should be split in smaller requests with size up to 256K, which should not be merged with any other request
OR3.2. New RA requests should be sent before the previous one completed to don't let the storage device rotate too far to need full rotation to serve the next request.
I like suggestion 3.1 a lot more, since it should be simple to implement and has the following 2 positive side effects:
1. It would allow to minimize negative effect of higher RA size on the I/O delay latency by allowing CFQ to switch to too long waiting requests, when necessary.
2. It would allow better requests pipelining, which is very important to minimize uplink latency for synchronous requests (i.e. with only one IO request at time, next request issued, when the previous one completed). You can see in http://www.3ware.com/kb/article.aspx?id=11050 that 3ware recommends for maximum performance set max_sectors_kb as low as *64K* with 16MB RA. It allows to maximize serving commands pipelining. And this suggestion really works allowing to improve throughput in 50-100%!
Here are the raw numbers. I also attached context RA debug output for 2MB RA size case for your viewing pleasure.
--------------------------------------------------------------------Performance baseline: all IO threads work in the same IO context, current vanilla RA, default RA size:
CFQ scheduler: #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 102 MB/s b) 102 MB/s c) 102 MB/s Run at the same time: #while true; do dd if=/dev/sdc of=/dev/null bs=64K; done #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 21,6 MB/s b) 22,8 MB/s c) 24,1 MB/s d) 23,1 MB/s Deadline scheduler: #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 51,1 MB/s b) 51,4 MB/s c) 51,1 MB/s Run at the same time: #while true; do dd if=/dev/sdc of=/dev/null bs=64K; done #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 4,7 MB/s b) 4,6 MB/s c) 4,8 MB/s --------------------------------------------------------------------RA performance baseline: all IO threads work in different IO contexts, current vanilla RA, default RA size:
CFQ: #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 48,6 MB/s b) 49,2 MB/s c) 48,9 MB/s Run at the same time: #while true; do dd if=/dev/sdc of=/dev/null bs=64K; done #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 4,2 MB/s b) 3,9 MB/s c) 4,1 MB/s Deadline: 1) dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 53,2 MB/s b) 51,8 MB/s c) 51,6 MB/s Run at the same time: #while true; do dd if=/dev/sdc of=/dev/null bs=64K; done #dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 5,1 MB/s b) 4,6 MB/s c) 4,8 MB/s -------------------------------------------------------------------- Context RA, all IO threads work in different IO contexts, default RA size: CFQ: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 47,9 MB/s b) 48,2 MB/s c) 48,1 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 3,5 MB/s b) 3,6 MB/s c) 3,8 MB/s Deadline: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 72,4 MB/s b) 68,3 MB/s c) 71,3 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 4,3 MB/s b) 5,0 MB/s c) 4,8 MB/s -------------------------------------------------------------------- Vanilla RA, all IO threads work in different IO contexts, various RA sizes: CFQ: RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 60,5 MB/s b) 59,3 MB/s c) 59,7 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 9,4 MB/s b) 9,4 MB/s c) 9,1 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 74,7 MB/s b) 73,2 MB/s c) 74,1 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 13,7 MB/s b) 13,6 MB/s c) 13,1 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 76,7 MB/s b) 76,8 MB/s c) 76,6 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 21,8 MB/s b) 22,1 MB/s c) 20,3 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 80,8 MB/s b) 80.8 MB/s c) 80,3 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 29,6 MB/s b) 29,4 MB/s c) 27,2 MB/s === Deadline: RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 68,4 MB/s b) 67,0 MB/s c) 67,6 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 8,8 MB/s b) 8,9 MB/s c) 8,7 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 81,0 MB/s b) 82,4 MB/s c) 81,7 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 13,5 MB/s b) 13,1 MB/s c) 12,9 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 81,1 MB/s b) 80,1 MB/s c) 81,8 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 21,9 MB/s b) 20,7 MB/s c) 21,3 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,1 MB/s b) 82,7 MB/s c) 82,9 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 27,9 MB/s b) 23,5 MB/s c) 27,6 MB/s -------------------------------------------------------------------- Context RA, all IO threads work in different IO contexts, various RA sizes: CFQ: RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 63,7 MB/s b) 63,5 MB/s c) 62,8 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 7,1 MB/s b) 6,7 MB/s c) 7,0 MB/s d) 6,9 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 81,1 MB/s b) 81,8 MB/s c) MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 14,1 MB/s b) 14,0 MB/s c) 14,1 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 81,6 MB/s b) 81,4 MB/s c) 86,0 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 22,3 MB/s b) 21,5 MB/s c) 21,7 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,1 MB/s b) 83,5 MB/s c) 82,9 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 32,8 MB/s b) 32,7 MB/s c) 30,2 MB/s === Deadline: RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 68,8 MB/s b) 68,9 MB/s c) 69,0 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 8,7 MB/s b) 9,0 MB/s c) 8,9 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,5 MB/s b) 83,1 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 14,0 MB/s b) 13.9 MB/s c) 13,8 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 82,6 MB/s b) 82,4 MB/s c) 81,9 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 21,9 MB/s b) 23,1 MB/s c) 17,8 MB/s d) 21,1 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 84,5 MB/s b) 83,7 MB/s c) 83,8 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 39,9 MB/s b) 39,5 MB/s c) 38,4 MB/s -------------------------------------------------------------------- all IO threads work in the same IO context, context RA, various RA sizes: === CFQ: --- RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 86,4 MB/s b) 87,9 MB/s c) 86,7 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 17,8 MB/s b) 18,3 MB/s c) 17,7 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,3 MB/s b) 81,6 MB/s c) 81,9 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 22,1 MB/s b) 21,5 MB/s c) 21,2 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 81,1 MB/s b) 81,0 MB/s c) 81,6 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 22,2 MB/s b) 20,2 MB/s c) 20,9 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,4 MB/s b) 82,8 MB/s c) 83,3 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 22,6 MB/s b) 23,4 MB/s c) 21,8 MB/s === Deadline: --- RA 512K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 70,0 MB/s b) 70,7 MB/s c) 69,7 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 9,1 MB/s b) 8,3 MB/s c) 8,4 MB/s --- RA 1024K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 84,3 MB/s b) 83,2 MB/s c) 83,3 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 13,9 MB/s b) 13,1 MB/s c) 13,4 MB/s --- RA 2048K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 82,6 MB/s b) 82,1 MB/s c) 82,3 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 21,6 MB/s b) 22,4 MB/s c) 21,3 MB/s --- RA 4096K: dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 83,8 MB/s b) 83,8 MB/s c) 83,1 MB/s Run at the same time: linux-4dtq:~ # while true; do dd if=/dev/sdc of=/dev/null bs=64K; done linux-4dtq:~ # dd if=/dev/sdb of=/dev/null bs=64K count=80000 a) 39,5 MB/s b) 39,6 MB/s c) 37,0 MB/s Thanks, Vlad
Attachment:
ra.tar.bz2
Description: application/bzip