Add an Arasan NAND controller driver. This work is based on contributions from Naga Sureshkumar Relli. Signed-off-by: Miquel Raynal <miquel.raynal@xxxxxxxxxxx> --- drivers/mtd/nand/raw/Kconfig | 7 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/arasan-nand-controller.c | 1092 +++++++++++++++++ 3 files changed, 1100 insertions(+) create mode 100644 drivers/mtd/nand/raw/arasan-nand-controller.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index a80a46bb5b8b..579474baa75d 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -457,6 +457,13 @@ config MTD_NAND_CADENCE Enable the driver for NAND flash on platforms using a Cadence NAND controller. +config MTD_NAND_ARASAN + tristate "Support for Arasan NAND flash controller" + depends on HAS_IOMEM && HAS_DMA + help + Enables the driver for the Arasan NAND flash controller on + Zynq Ultrascale+ MPSoC. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2d136b158fb7..6f80a205e940 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o +obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/arasan-nand-controller.c b/drivers/mtd/nand/raw/arasan-nand-controller.c new file mode 100644 index 000000000000..aa0146003b7c --- /dev/null +++ b/drivers/mtd/nand/raw/arasan-nand-controller.c @@ -0,0 +1,1092 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Arasan NAND Flash Controller Driver + * + * Copyright (C) 2014 - 2020 Xilinx, Inc. + * Author: + * Miquel Raynal <miquel.raynal@xxxxxxxxxxx> + * Original work (fully rewritten): + * Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx> + * Naga Sureshkumar Relli <nagasure@xxxxxxxxxx> + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand_bch.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#define PKT_REG 0x00 +#define PKT_SIZE(x) ((x) & GENMASK(10, 0)) +#define PKT_STEPS(x) (((x) << 12) & GENMASK(23, 12)) + +#define MEM_ADDR1_REG 0x04 + +#define MEM_ADDR2_REG 0x08 +#define ADDR2_STRENGTH(x) (((x) << 25) & GENMASK(27, 25)) +#define ADDR2_CS(x) (((x) << 30) & GENMASK(31, 30)) + +#define CMD_REG 0x0C +#define CMD_1(x) (x) +#define CMD_2(x) ((x) << 8) +#define CMD_PAGE_SIZE(x) (((x) << 23) & GENMASK(25, 23)) +#define CMD_DMA_ENABLE BIT(27) +#define CMD_NADDRS(x) (((x) << 28) & GENMASK(30, 28)) +#define CMD_ECC_ENABLE BIT(31) + +#define PROG_REG 0x10 +#define PROG_PGRD BIT(0) +#define PROG_ERASE BIT(2) +#define PROG_STATUS BIT(3) +#define PROG_PGPROG BIT(4) +#define PROG_RDID BIT(6) +#define PROG_RDPARAM BIT(7) +#define PROG_RST BIT(8) +#define PROG_GET_FEATURE BIT(9) +#define PROG_SET_FEATURE BIT(10) + +#define INTR_STS_EN_REG 0x14 +#define INTR_SIG_EN_REG 0x18 +#define INTR_STS_REG 0x1C +#define WRITE_READY BIT(0) +#define READ_READY BIT(1) +#define XFER_COMPLETE BIT(2) +#define DMA_BOUNDARY BIT(6) +#define EVENT_MASK GENMASK(7, 0) + +#define READY_STS_REG 0x20 + +#define DMA_ADDR0_REG 0x50 +#define DMA_ADDR1_REG 0x24 + +#define FLASH_STS_REG 0x28 + +#define DATA_PORT_REG 0x30 + +#define ECC_REG 0x34 +#define ECC_BCH_EN BIT(27) +#define ECC_SIZE_SHIFT 16 + +#define ECC_ERR_CNT_REG 0x38 +#define PAGE_ERR_CNT(x) (((x) & GENMASK(16, 8)) >> 8) +#define PKT_ERR_CNT_MASK(x) ((x) & GENMASK(7, 0)) + +#define DATA_INTERFACE_REG 0x6C +#define DIFACE_SDR_MODE(x) ((x) & GENMASK(2, 0)) +#define DIFACE_DDR_MODE(x) (((x) << 3) & GENMASK(5, 3)) +#define DIFACE_SDR 0 +#define DIFACE_NVDDR BIT(9) + +#define ANFC_MAX_CS 2 +#define ANFC_DFLT_TIMEOUT_MS 1000 +#define ANFC_MAX_CHUNK_SIZE SZ_1M +#define ANFC_MAX_PARAM_SIZE SZ_4K +#define ANFC_MAX_PKT_SIZE (SZ_2K - 1) +#define ANFC_MAX_ADDR_CYC 5U + +#define ANFC_SDR_LS_CORE_CLK 100000000 +#define ANFC_SDR_HS_CORE_CLK 80000000 + +/** + * struct anfc_op - Defines how to execute an operation + * @pkt_reg: Packet register + * @addr1_reg: Memory address 1 register + * @addr2_reg: Memory address 2 register + * @cmd_reg: Command register + * @prog_reg: Program register + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @steps: Number of "packets" to read/write + * @len: Data transfer length + * @read: Data transfer direction from the controller point of view + */ +struct anfc_op { + u32 pkt_reg; + u32 addr1_reg; + u32 addr2_reg; + u32 cmd_reg; + u32 prog_reg; + unsigned int rdy_timeout_ms; + unsigned int steps; + unsigned int len; + bool read; + u8 *buf; +}; + +/** + * struct arasan_nand - Defines the NAND chip related information + * @node: Used to store NAND chips into a list + * @chip: NAND chip information structure + * @cs: Chip select line + * @rb: Ready-busy line + * @page_sz: Register value of the page_sz field to use + * @clk: Expected clock frequency to use + * @timing_mode: Data interface timing mode to use + * @ecc_conf: Hardware ECC configuration value + * @strength: Register value of the ECC strength + * @raddr_cycles: Row address cycle information + * @caddr_cycles: Column address cycle information + */ +struct arasan_nand { + struct list_head node; + struct nand_chip chip; + unsigned int cs; + unsigned int rb; + unsigned int page_sz; + unsigned long clk; + u32 timing_mode; + u32 ecc_conf; + u32 strength; + u16 raddr_cycles; + u16 caddr_cycles; +}; + +/** + * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance + * @dev: Pointer to the device structure + * @base: Remapped register area + * @controller_clk: Pointer to the system clock + * @bus_clk: Pointer to the flash clock. + * @controller: Base controller structure + * @chips: List of all NAND chips attached to the controller + * @assigned_cs: Bitmask describing already assigned CS lines + * @cur_cs: Currently selected chip + * @cur_clk: Current clock rate + * @event: Completion event for nand status events. + */ +struct arasan_nfc { + struct device *dev; + void __iomem *base; + struct clk *controller_clk; + struct clk *bus_clk; + struct nand_controller controller; + struct list_head chips; + unsigned long assigned_cs; + unsigned int cur_cs; + unsigned int cur_clk; + struct completion event; +}; + +static struct arasan_nand *to_arasan_nand(struct nand_chip *nand) +{ + return container_of(nand, struct arasan_nand, chip); +} + +static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct arasan_nfc, controller); +} + +static void anfc_enable_int(struct arasan_nfc *nfc, u32 mask) +{ + mask &= EVENT_MASK; + writel(mask, nfc->base + INTR_SIG_EN_REG); +} + +static void anfc_disable_int(struct arasan_nfc *nfc, u32 mask) +{ + mask &= ~EVENT_MASK; + mask &= EVENT_MASK; + writel(mask, nfc->base + INTR_SIG_EN_REG); +} + +static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event, + unsigned int timeout) +{ + int ret; + + if (!timeout) + timeout = ANFC_DFLT_TIMEOUT_MS; + + reinit_completion(&nfc->event); + anfc_enable_int(nfc, event); + ret = wait_for_completion_timeout(&nfc->event, + msecs_to_jiffies(timeout)); + anfc_disable_int(nfc, event); + if (!ret) { + dev_err(nfc->dev, "Timeout waiting event 0x%x\n", event); + return -ETIMEDOUT; + } + + return 0; +} + +static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, + unsigned int timeout) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, + val & BIT(arasan_nand->rb), + 0, ANFC_DFLT_TIMEOUT_MS); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", + readl(nfc->base + READY_STS_REG)); + return -ETIMEDOUT; + } + + return 0; +} + +static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + writel(nfc_op->pkt_reg, nfc->base + PKT_REG); + writel(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); + writel(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); + writel(nfc_op->cmd_reg, nfc->base + CMD_REG); + writel(nfc_op->prog_reg, nfc->base + PROG_REG); +} + +static int anfc_len_to_steps(struct nand_chip *chip, unsigned int len) +{ + unsigned int steps = 1, pktsize = len; + + while (pktsize > ANFC_MAX_PKT_SIZE) { + steps *= 2; + pktsize = DIV_ROUND_UP(len, steps); + } + + return steps; +} + +static int anfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + dma_addr_t paddr; + u32 ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (arasan_nand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + arasan_nand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(arasan_nand->strength) | + ADDR2_CS(arasan_nand->cs), + .cmd_reg = + CMD_1(NAND_CMD_READ0) | + CMD_2(NAND_CMD_READSTART) | + CMD_PAGE_SIZE(arasan_nand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(arasan_nand->caddr_cycles + arasan_nand->raddr_cycles) | + CMD_ECC_ENABLE, + .prog_reg = PROG_PGRD, + }; + + paddr = dma_map_single(nfc->dev, buf, mtd->writesize, DMA_FROM_DEVICE); + if (dma_mapping_error(nfc->dev, paddr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel(paddr, nfc->base + DMA_ADDR0_REG); + writel((paddr >> 32), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + ret = anfc_wait_for_event(nfc, XFER_COMPLETE, 0); + dma_unmap_single(nfc->dev, paddr, mtd->writesize, DMA_FROM_DEVICE); + if (ret) { + dev_err(nfc->dev, "Error reading page %d\n", page); + return ret; + } + + if (oob_required) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + /* TODO: handle bitflips */ + + return 0; +} + +static int anfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + dma_addr_t paddr; + u32 ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (arasan_nand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + arasan_nand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(arasan_nand->strength) | + ADDR2_CS(arasan_nand->cs), + .cmd_reg = + CMD_1(NAND_CMD_SEQIN) | + CMD_2(NAND_CMD_PAGEPROG) | + CMD_PAGE_SIZE(arasan_nand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(arasan_nand->caddr_cycles + arasan_nand->raddr_cycles) | + CMD_ECC_ENABLE, + .prog_reg = PROG_PGPROG, + }; + + paddr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); + if (dma_mapping_error(nfc->dev, paddr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel(paddr, nfc->base + DMA_ADDR0_REG); + writel((paddr >> 32), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + ret = anfc_wait_for_event(nfc, XFER_COMPLETE, 0); + dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE); + if (ret) + dev_err(nfc->dev, "Error writing page %d\n", page); + + return ret; +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void anfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct anfc_op *nfc_op) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + const struct nand_op_instr *instr = NULL; + bool first_cmd = true; + unsigned int op_id; + int i; + + memset(nfc_op, 0, sizeof(*nfc_op)); + nfc_op->addr2_reg = ADDR2_CS(arasan_nand->cs); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs, pktsize; + const u8 *addrs; + u8 *buf; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); + else + nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); + + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + nfc_op->cmd_reg |= CMD_NADDRS(naddrs); + + for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { + if (i < 4) + nfc_op->addr1_reg |= addrs[i] << i * 8; + else + nfc_op->addr2_reg |= addrs[i]; + } + + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op->read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + buf = instr->ctx.data.buf.in; + nfc_op->buf = &buf[offset]; + nfc_op->len = nand_subop_get_data_len(subop, op_id); + nfc_op->steps = anfc_len_to_steps(chip, nfc_op->len); + pktsize = DIV_ROUND_UP(nfc_op->len, nfc_op->steps); + nfc_op->pkt_reg = PKT_SIZE(round_up(pktsize, 4)) | + PKT_STEPS(nfc_op->steps); + break; + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + break; + } + } +} + +static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; + unsigned int last_len = nfc_op->len % 4; + unsigned int offset, dir; + u8 *buf = nfc_op->buf; + int ret, i; + + for (i = 0; i < nfc_op->steps; i++) { + dir = nfc_op->read ? READ_READY : WRITE_READY; + ret = anfc_wait_for_event(nfc, dir, 0); + if (ret) { + dev_err(nfc->dev, "PIO %s ready signal not received\n", + nfc_op->read ? "Read" : "Write"); + return ret; + } + + offset = i * (dwords * 4); + if (nfc_op->read) + ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + else + iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + } + + if (last_len) { + u32 remainder; + + offset = nfc_op->len - last_len; + + if (nfc_op->read) { + remainder = readl(nfc->base + DATA_PORT_REG); + memcpy(&buf[offset], &remainder, last_len); + } else { + memcpy(&remainder, &buf[offset], last_len); + writel(remainder, nfc->base + DATA_PORT_REG); + } + } + + return anfc_wait_for_event(nfc, XFER_COMPLETE, 0); +} + +static int anfc_misc_data_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + anfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + if (nfc_op.rdy_timeout_ms) { + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + return anfc_rw_pio_op(nfc, &nfc_op); +} + +static int anfc_param_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); +} + +static int anfc_data_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_PGRD); +} + +static int anfc_param_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); +} + +static int anfc_data_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); +} + +static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + anfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + ret = anfc_wait_for_event(nfc, XFER_COMPLETE, 0); + if (ret) + return ret; + + if (nfc_op.rdy_timeout_ms) + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + + return ret; +} + +static int anfc_status_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + u32 tmp; + int ret; + + /* + * This controller does not allow to proceed with a CMD+DATA_IN cycle + * manually on the bus by reading data from the data register. Instead, + * the controller abstract the status read operation with its own status + * register after ordering a read status operation. Hence, the following + * hack. + */ + if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) + return -ENOTSUPP; + + ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); + if (ret) + return ret; + + tmp = readl(nfc->base + FLASH_STS_REG); + memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); + + return 0; +} + +static int anfc_reset_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); +} + +static int anfc_erase_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); +} + +static int anfc_wait_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + + anfc_parse_instructions(chip, subop, &nfc_op); + + return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); +} + +static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + anfc_param_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_param_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_reset_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_erase_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_status_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_wait_type_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int anfc_select_target(struct nand_chip *chip, int target) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + int ret; + + if (target < 0) { + nfc->cur_cs = target; + return 0; + } + + if (nfc->cur_cs == arasan_nand->cs) + return 0; + + nfc->cur_cs = target; + + /* Update clock frequency */ + if (nfc->cur_clk != arasan_nand->clk) { + clk_disable_unprepare(nfc->controller_clk); + ret = clk_set_rate(nfc->controller_clk, arasan_nand->clk); + if (ret) { + dev_err(nfc->dev, "Failed to change clock rate\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->controller_clk); + if (ret) { + dev_err(nfc->dev, + "Failed to re-enable the controller clock\n"); + return ret; + } + + nfc->cur_clk = arasan_nand->clk; + } + + /* Update the controller timings and the potential ECC configuration */ + writel(arasan_nand->timing_mode, nfc->base + DATA_INTERFACE_REG); + writel(arasan_nand->ecc_conf, nfc->base + ECC_REG); + + return 0; +} + +static int anfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + int ret; + + ret = anfc_select_target(chip, op->cs); + if (ret) + return ret; + + return nand_op_parser_exec_op(chip, &anfc_op_parser, + op, check_only); +} + +static int anfc_setup_data_interface(struct nand_chip *chip, int target, + const struct nand_data_interface *conf) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct device_node *np = nfc->dev->of_node; + + if (target < 0) + return 0; + + arasan_nand->timing_mode = DIFACE_SDR | + DIFACE_SDR_MODE(conf->timings.mode); + arasan_nand->clk = ANFC_SDR_HS_CORE_CLK; + + /* + * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work + * with f > 90MHz (default clock is 100MHz) but signals are unstable + * with higher modes. Hence we decrease a little bit the clock rate to + * 80MHz when using modes 2-5 with this SoC. + */ + if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && + arasan_nand->timing_mode >= 2) + arasan_nand->clk = ANFC_SDR_LS_CORE_CLK; + + return 0; +} + +static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, + struct nand_chip *chip) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u32 ecc_reg_col, ecc_reg_len; + + switch (mtd->writesize) { + case SZ_512: + case SZ_2K: + case SZ_4K: + case SZ_8K: + case SZ_16K: + break; + default: + dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); + return -EINVAL; + } + + if (!ecc->size || !ecc->strength) { + ecc->size = chip->base.eccreq.step_size; + ecc->strength = chip->base.eccreq.strength; + } + + if (!ecc->size || !ecc->strength) { + dev_err(nfc->dev, + "Missing controller ECC step size/strength\n"); + return -EINVAL; + } + + switch (ecc->strength) { + case 1: + arasan_nand->strength = 0x0; + break; + case 12: + arasan_nand->strength = 0x1; + break; + case 8: + arasan_nand->strength = 0x2; + break; + case 4: + arasan_nand->strength = 0x3; + break; + case 24: + arasan_nand->strength = 0x4; + break; + default: + dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); + return -EINVAL; + } + + switch (ecc->size) { + case SZ_512: + case SZ_1K: + break; + default: + dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + + /* Regular BCH byte number calculation */ + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * ecc->size), 8); + ecc->steps = mtd->writesize / ecc->size; + ecc->total = ecc->bytes * ecc->steps; + + ecc_reg_col = mtd->writesize + mtd->oobsize - ecc->total; + ecc_reg_len = ecc->total << ECC_SIZE_SHIFT; + arasan_nand->ecc_conf = ecc_reg_col | ecc_reg_len; + if (ecc->algo == NAND_ECC_BCH) + arasan_nand->ecc_conf |= ECC_BCH_EN; + + ecc->read_page = anfc_read_page_hwecc; + ecc->write_page = anfc_write_page_hwecc; + + return 0; +} + +static int anfc_nand_attach_chip(struct nand_chip *chip) +{ + struct arasan_nand *arasan_nand = to_arasan_nand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (mtd->writesize <= SZ_512) + arasan_nand->caddr_cycles = 1; + else + arasan_nand->caddr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + arasan_nand->raddr_cycles = 3; + else + arasan_nand->raddr_cycles = 2; + + switch (mtd->writesize) { + case 512: + arasan_nand->page_sz = 0; + break; + case 1024: + arasan_nand->page_sz = 5; + break; + case 2048: + arasan_nand->page_sz = 1; + break; + case 4096: + arasan_nand->page_sz = 2; + break; + case 8192: + arasan_nand->page_sz = 3; + break; + case 16384: + arasan_nand->page_sz = 4; + break; + default: + return -EINVAL; + } + + switch (chip->ecc.mode) { + case NAND_ECC_HW: + ret = anfc_init_hw_ecc_controller(nfc, chip); + case NAND_ECC_NONE: + case NAND_ECC_SOFT: + case NAND_ECC_ON_DIE: + break; + default: + dev_err(nfc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.mode); + return -EINVAL; + } + + return ret; +} + +static const struct nand_controller_ops anfc_ops = { + .exec_op = anfc_exec_op, + .setup_data_interface = anfc_setup_data_interface, + .attach_chip = anfc_nand_attach_chip, +}; + +static int arasan_nand_chip_init(struct arasan_nfc *nfc, + struct device_node *np) +{ + struct arasan_nand *arasan_nand; + struct nand_chip *chip; + struct mtd_info *mtd; + int cs, rb, ret; + + arasan_nand = devm_kzalloc(nfc->dev, sizeof(*arasan_nand), GFP_KERNEL); + if (!arasan_nand) + return -ENOMEM; + + /* Only one CS can be asserted at a time */ + if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) { + dev_err(nfc->dev, "Invalid reg property\n"); + return -EINVAL; + } + + ret = of_property_read_u32(np, "reg", &cs); + if (ret) + return ret; + + ret = of_property_read_u32(np, "nand-rb", &rb); + if (ret) + return ret; + + if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) { + dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "Already assigned CS %d\n", cs); + return -EINVAL; + } + + arasan_nand->cs = cs; + arasan_nand->rb = rb; + + chip = &arasan_nand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + chip->controller = &nfc->controller; + chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USE_BOUNCE_BUFFER; + + nand_set_flash_node(chip, np); + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + ret = nand_scan(chip, 1); + if (ret) { + dev_err(nfc->dev, "Scan operation failed\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_release(chip); + return ret; + } + + list_add_tail(&arasan_nand->node, &nfc->chips); + + return 0; +} + +static void arasan_nand_chips_cleanup(struct arasan_nfc *nfc) +{ + struct arasan_nand *arasan_nand, *tmp; + + list_for_each_entry_safe(arasan_nand, tmp, &nfc->chips, node) { + nand_release(&arasan_nand->chip); + list_del(&arasan_nand->node); + } +} + +static int arasan_nand_chips_init(struct arasan_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > ANFC_MAX_CS) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = arasan_nand_chip_init(nfc, nand_np); + if (ret) { + of_node_put(nand_np); + arasan_nand_chips_cleanup(nfc); + break; + } + } + + return ret; +} + +static void anfc_reset(struct arasan_nfc *nfc) +{ + anfc_disable_int(nfc, EVENT_MASK); + + /* Enable all interrupt status */ + writel(EVENT_MASK, nfc->base + INTR_STS_EN_REG); +} + +static irqreturn_t anfc_irq_handler(int irq, void *dev_id) +{ + struct arasan_nfc *nfc = dev_id; + u32 st = readl_relaxed(nfc->base + INTR_STS_REG); + u32 ien = readl_relaxed(nfc->base + INTR_SIG_EN_REG) & EVENT_MASK; + u32 active = st & ien; + + if (!active) + return IRQ_NONE; + + anfc_disable_int(nfc, active); + writel(st, nfc->base + INTR_STS_REG); + complete(&nfc->event); + + return IRQ_HANDLED; +} + +static int anfc_probe(struct platform_device *pdev) +{ + struct arasan_nfc *nfc; + int irq; + int ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &anfc_ops; + INIT_LIST_HEAD(&nfc->chips); + + init_completion(&nfc->event); + + nfc->base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->base)) + return PTR_ERR(nfc->base); + + anfc_reset(nfc); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + ret = devm_request_irq(&pdev->dev, irq, anfc_irq_handler, + 0, "arasan-nfc", nfc); + if (ret) + return ret; + + nfc->controller_clk = devm_clk_get(&pdev->dev, "controller"); + if (IS_ERR(nfc->controller_clk)) + return PTR_ERR(nfc->controller_clk); + + nfc->bus_clk = devm_clk_get(&pdev->dev, "bus"); + if (IS_ERR(nfc->bus_clk)) + return PTR_ERR(nfc->bus_clk); + + ret = clk_prepare_enable(nfc->controller_clk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->bus_clk); + if (ret) + goto disable_controller_clk; + + ret = arasan_nand_chips_init(nfc); + if (ret) + goto disable_bus_clk; + + platform_set_drvdata(pdev, nfc); + + return 0; + +disable_bus_clk: + clk_disable_unprepare(nfc->bus_clk); + +disable_controller_clk: + clk_disable_unprepare(nfc->controller_clk); + + return ret; +} + +static int anfc_remove(struct platform_device *pdev) +{ + struct arasan_nfc *nfc = platform_get_drvdata(pdev); + + arasan_nand_chips_cleanup(nfc); + + clk_disable_unprepare(nfc->bus_clk); + clk_disable_unprepare(nfc->controller_clk); + + return 0; +} + +static const struct of_device_id anfc_ids[] = { + { + .compatible = "xlnx,zynqmp-nand-controller", + }, + { + .compatible = "arasan,nfc-v3p10", + }, + {} +}; +MODULE_DEVICE_TABLE(of, anfc_ids); + +static struct platform_driver anfc_driver = { + .driver = { + .name = "arasan-nand-controller", + .of_match_table = anfc_ids, + }, + .probe = anfc_probe, + .remove = anfc_remove, +}; +module_platform_driver(anfc_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx>"); +MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xxxxxxxxxx>"); +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@xxxxxxxxxxx>"); +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); -- 2.20.1 ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/