This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308, RK3368, RKPX30, RV1108 and other SOCs. The driver has been tested using 8-bit NAND interface on the ARM based RK3308 platform. Support Rockchip NFC versions: - V6: ECC 16, 24, 40 and 60 bits per 1KB data. Found on RK3066, RK3368, RK3229, RK3188, RK3288, RK3128, RKPX3SE, RKPx3, RKPX5, RK3036 and RK3126. - V8: ECC 16 bits per 1KB data. Found on RV1108/7, RK3308. - V9: ECC 16, 40, 60 and 70 bits per 1KB data. Found on RK3326, RKPX30. Support feature: - Read full page data by DMA. - Support HW ECC(one step is 1KB). - Support 2 - 32K page size. - Support 4 CS(depend on Soc) Limitations: - Unsupport 512B ecc step. - Raw page read and write without ecc redundancy code. So could not support raw data dump and restore. - Untested on some SOCs. - Unsupport subpage. - Unsupport randomizer. - The original bad block mask is not supported. It is recommended to use the BBT(bad block table). Signed-off-by: Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx> --- Changes in v3: None Changes in v2: - Fix compile error. - Include header files sorted by file name drivers/mtd/nand/raw/Kconfig | 7 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/rockchip_nand.c | 1229 ++++++++++++++++++++++++++ 3 files changed, 1237 insertions(+) create mode 100644 drivers/mtd/nand/raw/rockchip_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index a80a46bb5b8b..8313b12a9d85 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -433,6 +433,13 @@ config MTD_NAND_MESON Enables support for NAND controller on Amlogic's Meson SoCs. This controller is found on Meson SoCs. +config MTD_NAND_ROCKCHIP + tristate "Rockchip NAND controller" + depends on ARCH_ROCKCHIP || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND controller on Rockchip SoCs. + config MTD_NAND_GPIO tristate "GPIO assisted NAND controller" depends on GPIOLIB || COMPILE_TEST diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2d136b158fb7..8bafa59b8940 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o +obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/rockchip_nand.c b/drivers/mtd/nand/raw/rockchip_nand.c new file mode 100644 index 000000000000..efeda609fbf2 --- /dev/null +++ b/drivers/mtd/nand/raw/rockchip_nand.c @@ -0,0 +1,1229 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Rockchip NAND Flash controller driver. + * Copyright (C) 2020 Rockchip Inc. + * Authors: Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx> + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/mtd.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> + +/* + * NFC Page Data Layout: + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + + * 1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc + + * ...... + * NAND Page Data Layout: + * 1024 * n Data + m Bytes oob + * Original Bad Block Mask Location: + * first byte of oob(spare) + * nand_chip->oob_poi data layout: + * 4Bytes sys data + .... + 4Bytes sys data + ecc data + */ + +/* NAND controller register definition */ +#define NFC_VERSION_9 0x56393030 +#define NFC_READ (0) +#define NFC_WRITE (1) +#define NFC_FMCTL (0x00) +#define FMCTL_CE_SEL_M 0xFF +#define FMCTL_CE_SEL(x) (1 << (x)) +#define FMCTL_WP BIT(8) +#define FMCTL_RDY BIT(9) +#define NFC_FMWAIT (0x04) +#define NFC_FLCTL_V6 (0x08) +#define NFC_FLCTL_V9 (0x10) +#define FLCTL_RST BIT(0) +#define FLCTL_WR (1) /* 0: read, 1: write */ +#define FLCTL_XFER_ST BIT(2) +#define FLCTL_XFER_EN BIT(3) +#define FLCTL_ACORRECT BIT(10) /* auto correct error bits */ +#define FLCTL_XFER_READY BIT(20) +#define FLCTL_XFER_SECTOR (22) +#define FLCTL_TOG_FIX BIT(29) +#define NFC_BCHCTL_V6 (0x0C) +#define BCHCTL_BANK_M (7 << 5) +#define BCHCTL_BANK (5) +#define NFC_BCHCTL_V9 (0x20) +#define NFC_DMA_CFG_V6 (0x10) +#define NFC_DMA_CFG_V9 (0x30) +#define DMA_ST BIT(0) +#define DMA_WR (1) /* 0: write, 1: read */ +#define DMA_EN BIT(2) +#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */ +#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */ +#define DMA_INC_NUM (9) /* 1 - 16 */ +#define NFC_DMA_DATA_BUF_V6 (0x14) +#define NFC_DMA_DATA_BUF_V9 (0x34) +#define NFC_DMA_OOB_BUF_V6 (0x18) +#define NFC_DMA_OOB_BUF_V9 (0x38) +#define NFC_DMA_ST_V6 (0x1C) +#define NFC_DMA_ST_V9 (0x3C) +#define NFC_BCH_ST_V6 (0x20) +#define NFC_BCH_ST_V9 (0x150) +#define BCH_ST_ERR0_V6 BIT(2) +#define BCH_ST_ERR1_V6 BIT(15) +#define BCH_ST_ERR0_V9 BIT(2) +#define BCH_ST_ERR1_V9 BIT(18) +#define ECC_ERR_CNT0_V6(x) (((((x) & (0x1F << 3)) >> 3) \ + | (((x) & (1 << 27)) >> 22)) & 0x3F) +#define ECC_ERR_CNT1_V6(x) (((((x) & (0x1F << 16)) >> 16) \ + | (((x) & (1 << 29)) >> 24)) & 0x3F) +#define ECC_ERR_CNT0_V9(x) (((x) & (0x7F << 3)) >> 3) +#define ECC_ERR_CNT1_V9(x) (((x) & (0x7F << 19)) >> 19) +#define NFC_RANDMZ_V6 (0x150) +#define NFC_RANDMZ_V9 (0x208) +#define NFC_VER_V6 (0x160) +#define NFC_VER_V9 (0x80) +#define NFC_INTEN_V6 (0x16C) +#define NFC_INTEN_V9 (0x120) +#define NFC_INTCLR_V6 (0x170) +#define NFC_INTCLR_V9 (0x124) +#define NFC_INTST_V6 (0x174) +#define NFC_INTST_V9 (0x128) +#define INT_DMA BIT(0) +#define NFC_OOB0_V6 (0x200) +#define NFC_OOB0_V9 (0x200) +#define NFC_OOB1_V6 (0x230) +#define NFC_OOB1_V9 (0x204) +#define NFC_BANK (0x800) +#define BANK_DATA (0x00) +#define BANK_ADDR (0x04) +#define BANK_CMD (0x08) +#define NFC_SRAM0 (0x1000) +#define NFC_SRAM1 (0x1400) + +#define THIS_NAME "rk-nand" + +#define RK_TIMEOUT (500000) +#define RK_NAND_MAX_NSELS (4) /* Some Soc only has 1 or 2 CSs */ +#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data */ +#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz*/ +#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs)) + +struct rk_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + + u32 spare_per_sector; + u32 oob_buf_per_sector; + + int nsels; + u8 sels[0]; + /* nothing after this field */ +}; + +struct rk_nfc_clk { + int nfc_rate; + struct clk *nfc_clk; + struct clk *ahb_clk; +}; + +struct rk_nfc { + struct nand_controller controller; + struct rk_nfc_clk clk; + + struct device *dev; + void __iomem *regs; + int nfc_version; + int max_ecc_strength; + int selected_bank; + int band_offset; + + struct completion done; + struct list_head chips; + + u8 *buffer; + u8 *page_buf; + u32 *oob_buf; + + unsigned long assigned_cs; +}; + +static inline struct rk_nfc_nand_chip *to_rk_nand(struct nand_chip *nand) +{ + return container_of(nand, struct rk_nfc_nand_chip, nand); +} + +static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *oob_ptr(struct nand_chip *chip, int i) +{ + u8 *poi; + + poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + + return poi; +} + +static inline int rk_data_len(struct nand_chip *chip) +{ + struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip); + + return chip->ecc.size + rk_nand->spare_per_sector; +} + +static inline u8 *rk_data_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * rk_data_len(chip); +} + +static inline u8 *rk_oob_ptr(struct nand_chip *chip, int i) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * rk_data_len(chip) + chip->ecc.size; +} + +static inline void nfc_writel(struct rk_nfc *nfc, u32 val, u32 reg) +{ + writel(val, nfc->regs + reg); +} + +static inline void nfc_writew(struct rk_nfc *nfc, u16 val, u32 reg) +{ + writew(val, nfc->regs + reg); +} + +static inline void nfc_writeb(struct rk_nfc *nfc, u8 val, u32 reg) +{ + writeb(val, nfc->regs + reg); +} + +static inline u32 nfc_readl(struct rk_nfc *nfc, u32 reg) +{ + return readl_relaxed(nfc->regs + reg); +} + +static inline u16 nfc_readw(struct rk_nfc *nfc, u32 reg) +{ + return readw_relaxed(nfc->regs + reg); +} + +static inline u8 nfc_readb(struct rk_nfc *nfc, u32 reg) +{ + return readb_relaxed(nfc->regs + reg); +} + +static void rk_nfc_select_chip(struct nand_chip *nand, int chip) +{ + struct rk_nfc *nfc = nand_get_controller_data(nand); + struct rk_nfc_nand_chip *rk_nand = to_rk_nand(nand); + u32 val; + + if (chip < 0) { + nfc->selected_bank = -1; + return; + } + + nfc->selected_bank = rk_nand->sels[chip]; + nfc->band_offset = NFC_BANK + nfc->selected_bank * 0x100; + + val = nfc_readl(nfc, NFC_FMCTL); + val &= ~FMCTL_CE_SEL_M; + val |= FMCTL_CE_SEL(nfc->selected_bank); + + nfc_writel(nfc, val, NFC_FMCTL); +} + +static int rk_nfc_dev_ready(struct nand_chip *nand) +{ + struct rk_nfc *nfc = nand_get_controller_data(nand); + + if (nfc_readl(nfc, NFC_FMCTL) & FMCTL_RDY) + return 1; + + return 0; +} + +static void rk_nfc_cmd_ctrl(struct nand_chip *chip, int dat, + unsigned int ctrl) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + int reg_offset = nfc->band_offset; + + if (ctrl & NAND_ALE) + reg_offset += BANK_ADDR; + else if (ctrl & NAND_CLE) + reg_offset += BANK_CMD; + + if (dat != NAND_CMD_NONE) + nfc_writeb(nfc, dat & 0xFF, reg_offset); +} + +static inline void rk_nfc_wait_ioready(struct rk_nfc *nfc) +{ + int rc; + u32 val; + + rc = readl_poll_timeout_atomic(nfc->regs + NFC_FMCTL, val, + val & FMCTL_RDY, 10, RK_TIMEOUT); + if (rc < 0) + dev_err(nfc->dev, "data not ready\n"); +} + +static inline u8 rk_nfc_read_byte(struct nand_chip *chip) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + return nfc_readb(nfc, nfc->band_offset + BANK_DATA); +} + +static void rk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = rk_nfc_read_byte(chip); +} + +static void rk_nfc_write_byte(struct nand_chip *chip, u8 byte) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + + nfc_writeb(nfc, byte, nfc->band_offset + BANK_DATA); +} + +static void rk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + rk_nfc_write_byte(chip, buf[i]); +} + +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline, + const struct nand_data_interface *conf) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + const struct nand_sdr_timings *timings; + u32 rate, tc2rw, trwpw, trw2c; + u32 temp; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* not onfi nand flash */ + if (!chip->parameters.onfi) + return 0; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + rate = clk_get_rate(nfc->clk.nfc_clk); + + /* turn clock rate into KHZ */ + rate /= 1000; + + tc2rw = trw2c = 1; + + trwpw = max(timings->tWC_min, timings->tRC_min) / 1000; + trwpw = DIV_ROUND_UP(trwpw * rate, 1000000); + + temp = timings->tREA_max / 1000; + temp = DIV_ROUND_UP(temp * rate, 1000000); + + if (trwpw < temp) + trwpw = temp; + + if (trwpw > 6) { + tc2rw++; + trw2c++; + trwpw -= 2; + } + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:18: reserved + * 17:12: csrw, clock cycles from the falling edge of CSn to the + falling edge of RDn or WRn + * 11:11: reserved + * 10:05: rwpw, the width of RDn or WRn in processor clock cycles + * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the + rising edge of CSn + */ + temp = ACCTIMING(tc2rw, trwpw, trw2c); + nfc_writel(nfc, temp, NFC_FMWAIT); + + return 0; +} + +static void rk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(chip); + u32 i; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + swap(chip->oob_poi[0], chip->oob_poi[7]); + for (i = 0; i < chip->ecc.steps; i++) { + if (buf) + memcpy(rk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + memcpy(rk_oob_ptr(chip, i), oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + } +} + +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB, + dma_addr_t dma_data, dma_addr_t dma_oob) +{ + u32 dma_reg, fl_reg, bch_reg; + + dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) | + (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM); + + fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT | + (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX; + + if (nfc->nfc_version == 6) { + bch_reg = nfc_readl(nfc, NFC_BCHCTL_V6); + bch_reg = (bch_reg & (~BCHCTL_BANK_M)) | + (nfc->selected_bank << BCHCTL_BANK); + nfc_writel(nfc, bch_reg, NFC_BCHCTL_V6); + + nfc_writel(nfc, dma_reg, NFC_DMA_CFG_V6); + nfc_writel(nfc, (u32)dma_data, NFC_DMA_DATA_BUF_V6); + nfc_writel(nfc, (u32)dma_oob, NFC_DMA_OOB_BUF_V6); + nfc_writel(nfc, fl_reg, NFC_FLCTL_V6); + fl_reg |= FLCTL_XFER_ST; + nfc_writel(nfc, fl_reg, NFC_FLCTL_V6); + } else { + nfc_writel(nfc, dma_reg, NFC_DMA_CFG_V9); + nfc_writel(nfc, (u32)dma_data, NFC_DMA_DATA_BUF_V9); + nfc_writel(nfc, (u32)dma_oob, NFC_DMA_OOB_BUF_V9); + nfc_writel(nfc, fl_reg, NFC_FLCTL_V9); + fl_reg |= FLCTL_XFER_ST; + nfc_writel(nfc, fl_reg, NFC_FLCTL_V9); + } +} + +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc) +{ + u32 reg; + int ret = 0; + void __iomem *ptr; + + if (nfc->nfc_version == 6) + ptr = nfc->regs + NFC_FLCTL_V6; + else + ptr = nfc->regs + NFC_FLCTL_V9; + + ret = readl_poll_timeout_atomic(ptr, reg, + reg & FLCTL_XFER_READY, + 10, RK_TIMEOUT); + if (ret) + dev_err(nfc->dev, "timeout reg=%x\n", reg); + + return ret; +} + +static int rk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int raw) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *oob; + dma_addr_t dma_data, dma_oob; + int oob_step = (ecc->bytes > 60) ? 128 : 64; + int pages_per_blk = mtd->erasesize / mtd->writesize; + u32 reg; + int ret = 0, i; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (!raw) { + memcpy(nfc->page_buf, buf, mtd->writesize); + memset(nfc->oob_buf, 0xff, oob_step * ecc->steps); + /* + * The first 8 blocks is stored loader, the first + * 32 bits of oob need link to next page address + * in the same block for Bootrom. + * Swap the first oob with the seventh oob, + * and bad block mask save at seventh oob. + */ + swap(chip->oob_poi[0], chip->oob_poi[7]); + for (i = 0; i < ecc->steps; i++) { + oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + reg = (oob[2] << 16) | (oob[3] << 24); + if (!i && page < pages_per_blk * 8) + reg |= (page & (pages_per_blk - 1)) * 4; + else + reg |= oob[0] | (oob[1] << 8); + + if (nfc->nfc_version == 6) + nfc->oob_buf[i * oob_step / 4] = reg; + else + nfc->oob_buf[i] = reg; + } + + dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf, + mtd->writesize, DMA_TO_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_TO_DEVICE); + + init_completion(&nfc->done); + if (nfc->nfc_version == 6) + nfc_writel(nfc, INT_DMA, NFC_INTEN_V6); + else + nfc_writel(nfc, INT_DMA, NFC_INTEN_V9); + + rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + ret = -ETIMEDOUT; + ret = rk_nfc_wait_for_xfer_done(nfc); + + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_TO_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_TO_DEVICE); + } else { + rk_nfc_write_buf(chip, buf, mtd->writesize + + mtd->oobsize); + } + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + + rk_nfc_format_page(mtd, buf); + return rk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); +} + +static int rk_nfc_write_oob_std(struct nand_chip *chip, int page) +{ + return rk_nfc_write_page_raw(chip, NULL, 1, page); +} + +static int rk_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *buf, int page, int raw) +{ + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + dma_addr_t dma_data, dma_oob; + int oob_step = (ecc->bytes > 60) ? 128 : 64; + int bitflips = 0; + int ret, i, bch_st; + u8 *oob; + u32 tmp; + + nand_read_page_op(chip, page, 0, NULL, 0); + if (!raw) { + dma_data = dma_map_single(nfc->dev, nfc->page_buf, + mtd->writesize, + DMA_FROM_DEVICE); + dma_oob = dma_map_single(nfc->dev, nfc->oob_buf, + ecc->steps * oob_step, + DMA_FROM_DEVICE); + init_completion(&nfc->done); + if (nfc->nfc_version == 6) + nfc_writel(nfc, INT_DMA, NFC_INTEN_V6); + else + nfc_writel(nfc, INT_DMA, NFC_INTEN_V9); + rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data, + dma_oob); + ret = wait_for_completion_timeout(&nfc->done, + msecs_to_jiffies(100)); + if (!ret) + dev_warn(nfc->dev, "read ahb/dma done timeout\n"); + rk_nfc_wait_for_xfer_done(nfc); + dma_unmap_single(nfc->dev, dma_data, mtd->writesize, + DMA_FROM_DEVICE); + dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step, + DMA_FROM_DEVICE); + + for (i = 0; i < ecc->steps; i++) { + oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE; + if (nfc->nfc_version == 6) + tmp = nfc->oob_buf[i * oob_step / 4]; + else + tmp = nfc->oob_buf[i]; + *oob++ = (u8)tmp; + *oob++ = (u8)(tmp >> 8); + *oob++ = (u8)(tmp >> 16); + *oob++ = (u8)(tmp >> 24); + } + swap(chip->oob_poi[0], chip->oob_poi[7]); + if (nfc->nfc_version == 6) { + for (i = 0; i < ecc->steps / 2; i++) { + bch_st = nfc_readl(nfc, NFC_BCH_ST_V6 + i * 4); + if (bch_st & BCH_ST_ERR0_V6 || + bch_st & BCH_ST_ERR1_V6) { + mtd->ecc_stats.failed++; + bitflips = -1; + } else { + ret = ECC_ERR_CNT0_V6(bch_st); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + + ret = ECC_ERR_CNT1_V6(bch_st); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + } + } + } else { + for (i = 0; i < ecc->steps / 2; i++) { + bch_st = nfc_readl(nfc, NFC_BCH_ST_V9 + i * 4); + if (bch_st & BCH_ST_ERR0_V9 || + bch_st & BCH_ST_ERR0_V9) { + mtd->ecc_stats.failed++; + bitflips = -1; + } else { + ret = ECC_ERR_CNT0_V9(bch_st); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + + ret = ECC_ERR_CNT1_V9(bch_st); + mtd->ecc_stats.corrected += ret; + bitflips = max_t(u32, bitflips, ret); + } + } + } + memcpy(buf, nfc->page_buf, mtd->writesize); + + if (bitflips == -1) + dev_err(nfc->dev, "read_page %x %x %x %x %x %x\n", + page, bitflips, bch_st, ((u32 *)buf)[0], + ((u32 *)buf)[1], (u32)dma_data); + } else { + rk_nfc_read_buf(chip, buf, mtd->writesize + mtd->oobsize); + } + return bitflips; +} + +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + return rk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0); +} + +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on, + int pg) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + return rk_nfc_read_page(mtd, chip, 0, mtd->writesize, p, pg, 0); +} + +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct rk_nfc *nfc = nand_get_controller_data(chip); + int i, ret; + + ret = rk_nfc_read_page(mtd, chip, 0, mtd->writesize, nfc->buffer, + page, 1); + if (ret < 0) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(oob_ptr(chip, i), rk_oob_ptr(chip, i), + NFC_SYS_DATA_SIZE); + + if (buf) + memcpy(data_ptr(chip, buf, i), rk_data_ptr(chip, i), + chip->ecc.size); + } + swap(chip->oob_poi[0], chip->oob_poi[7]); + + return ret; +} + +static int rk_nfc_read_oob_std(struct nand_chip *chip, int page) +{ + return rk_nfc_read_page_raw(chip, NULL, 1, page); +} + +static inline void rk_nfc_hw_init(struct rk_nfc *nfc) +{ + u32 val; + + val = nfc_readl(nfc, NFC_VER_V9); + if (val == NFC_VERSION_9) { + nfc->nfc_version = 9; + nfc->max_ecc_strength = 70; + } else { + nfc->nfc_version = 6; + val = nfc_readl(nfc, NFC_VER_V6); + if (val == 0x801) + nfc->max_ecc_strength = 16; + else + nfc->max_ecc_strength = 60; + } + + /* disable flash wp */ + nfc_writel(nfc, FMCTL_WP, NFC_FMCTL); + /* config default timing */ + nfc_writel(nfc, 0x1081, NFC_FMWAIT); + /* disable randomizer and dma */ + + if (nfc->nfc_version == 6) { + nfc_writel(nfc, 0, NFC_RANDMZ_V6); + nfc_writel(nfc, 0, NFC_DMA_CFG_V6); + nfc_writel(nfc, FLCTL_RST, NFC_FLCTL_V6); + } else { + nfc_writel(nfc, 0, NFC_RANDMZ_V9); + nfc_writel(nfc, 0, NFC_DMA_CFG_V9); + nfc_writel(nfc, FLCTL_RST, NFC_FLCTL_V9); + } +} + +static irqreturn_t rk_nfc_irq(int irq, void *id) +{ + struct rk_nfc *nfc = id; + u32 sta, ien; + + if (nfc->nfc_version == 6) { + sta = nfc_readl(nfc, NFC_INTST_V6); + ien = nfc_readl(nfc, NFC_INTEN_V6); + } else { + sta = nfc_readl(nfc, NFC_INTST_V9); + ien = nfc_readl(nfc, NFC_INTEN_V9); + } + + if (!(sta & ien)) + return IRQ_NONE; + if (nfc->nfc_version == 6) { + nfc_writel(nfc, sta, NFC_INTCLR_V6); + nfc_writel(nfc, ~sta & ien, NFC_INTEN_V6); + } else { + nfc_writel(nfc, sta, NFC_INTCLR_V9); + nfc_writel(nfc, ~sta & ien, NFC_INTEN_V9); + } + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc_clk *clk) +{ + int ret; + + ret = clk_prepare_enable(clk->nfc_clk); + if (ret) { + dev_err(dev, "failed to enable nfc clk\n"); + return ret; + } + + ret = clk_prepare_enable(clk->ahb_clk); + if (ret) { + dev_err(dev, "failed to enable ahb clk\n"); + clk_disable_unprepare(clk->nfc_clk); + return ret; + } + + return 0; +} + +static void rk_nfc_disable_clk(struct rk_nfc_clk *clk) +{ + clk_disable_unprepare(clk->nfc_clk); + clk_disable_unprepare(clk->ahb_clk); +} + +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + if (!section) { + /* The first byte is bad block mask flag */ + oob_region->length = NFC_SYS_DATA_SIZE - 1; + oob_region->offset = 1; + } else { + oob_region->length = NFC_SYS_DATA_SIZE; + oob_region->offset = section * NFC_SYS_DATA_SIZE; + } + + return 0; +} + +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oob_region->offset = NFC_SYS_DATA_SIZE * chip->ecc.steps; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = { + .free = rk_nfc_ooblayout_free, + .ecc = rk_nfc_ooblayout_ecc, +}; + +static int rk_nfc_hw_ecc_setup(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, + uint32_t strength) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(nand); + u32 reg; + + ecc->strength = strength; + ecc->steps = mtd->writesize / ecc->size; + ecc->bytes = DIV_ROUND_UP(ecc->strength * 14, 8); + /* HW ECC always work with even numbers of ECC bytes */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + if (nfc->nfc_version == 6) { + switch (ecc->strength) { + case 60: + reg = 0x00040010; + break; + case 40: + reg = 0x00040000; + break; + case 24: + reg = 0x00000010; + break; + case 16: + reg = 0x00000000; + break; + default: + return -EINVAL; + } + nfc_writel(nfc, reg, NFC_BCHCTL_V6); + } else { + switch (ecc->strength) { + case 70: + reg = 0x00000001; + break; + case 60: + reg = 0x06000001; + break; + case 40: + reg = 0x04000001; + break; + case 16: + reg = 0x02000001; + break; + default: + return -EINVAL; + } + nfc_writel(nfc, reg, NFC_BCHCTL_V9); + } + + return 0; +} + +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct rk_nfc *nfc = nand_get_controller_data(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + static u8 strengths_v9[4] = {70, 60, 40, 16}; + static u8 strengths_v6[4] = {60, 40, 24, 16}; + u8 *strengths; + u32 max_strength; + int i; + + /* support only ecc hw mode */ + if (ecc->mode != NAND_ECC_HW) { + dev_err(dev, "ecc.mode not supported\n"); + return -EINVAL; + } + + /* if optional dt settings not present */ + if (!ecc->size || !ecc->strength || + ecc->strength > nfc->max_ecc_strength) { + /* use datasheet requirements */ + ecc->strength = nand->base.eccreq.strength; + ecc->size = nand->base.eccreq.step_size; + + /* + * align eccstrength and eccsize + * this controller only supports 512 and 1024 sizes + */ + if (nand->ecc.size < 1024) { + if (mtd->writesize > 512) { + nand->ecc.size = 1024; + nand->ecc.strength <<= 1; + } else { + dev_err(dev, "ecc.size not supported\n"); + return -EINVAL; + } + } else { + nand->ecc.size = 1024; + } + + ecc->steps = mtd->writesize / ecc->size; + max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / 14; + if (max_strength > nfc->max_ecc_strength) + max_strength = nfc->max_ecc_strength; + + strengths = strengths_v9; + if (nfc->nfc_version == 6) + strengths = strengths_v6; + + for (i = 0; i < 4; i++) { + if (max_strength >= strengths[i]) + break; + } + + if (i >= 4) { + dev_err(nfc->dev, "unsupported strength\n"); + return -ENOTSUPP; + } + + ecc->strength = strengths[i]; + } + rk_nfc_hw_ecc_setup(mtd, ecc, ecc->strength); + dev_info(dev, "eccsize %d eccstrength %d\n", + nand->ecc.size, nand->ecc.strength); + return 0; +} + +static int rk_nfc_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = mtd->dev.parent; + struct rk_nfc *nfc = nand_get_controller_data(chip); + struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int len; + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16bits buswidth not supported"); + return -EINVAL; + } + + ret = rk_nfc_ecc_init(dev, mtd); + if (ret) + return ret; + rk_nand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE; + + /* Check buffer first, avoid duplicate alloc buffer */ + if (nfc->buffer) + return 0; + + len = mtd->writesize + mtd->oobsize; + nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA); + if (!nfc->buffer) + return -ENOMEM; + + nfc->page_buf = nfc->buffer; + len = ecc->steps * 128; + nfc->oob_buf = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA); + if (!nfc->oob_buf) { + devm_kfree(dev, nfc->buffer); + nfc->buffer = NULL; + nfc->oob_buf = NULL; + return -ENOMEM; + } + + return 0; +} + +static const struct nand_controller_ops rk_nfc_controller_ops = { + .attach_chip = rk_nfc_attach_chip, + .setup_data_interface = rk_nfc_setup_data_interface, +}; + +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc, + struct device_node *np) +{ + struct rk_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int nsels; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + nsels /= sizeof(u32); + if (!nsels || nsels > RK_NAND_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), + GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + + if (tmp >= RK_NAND_MAX_NSELS) { + dev_err(dev, "invalid CS: %u\n", tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %u already assigned\n", tmp); + return -EINVAL; + } + + chip->sels[i] = tmp; + } + + nand = &chip->nand; + nand->controller = &nfc->controller; + + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE; + nand->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + nand->legacy.dev_ready = rk_nfc_dev_ready; + nand->legacy.select_chip = rk_nfc_select_chip; + nand->legacy.write_byte = rk_nfc_write_byte; + nand->legacy.write_buf = rk_nfc_write_buf; + nand->legacy.read_byte = rk_nfc_read_byte; + nand->legacy.read_buf = rk_nfc_read_buf; + nand->legacy.cmd_ctrl = rk_nfc_cmd_ctrl; + + /* set default mode in case dt entry is missing */ + nand->ecc.mode = NAND_ECC_HW; + + nand->ecc.write_page_raw = rk_nfc_write_page_raw; + nand->ecc.write_page = rk_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = rk_nfc_write_oob_std; + nand->ecc.write_oob = rk_nfc_write_oob_std; + + nand->ecc.read_page_raw = rk_nfc_read_page_raw; + nand->ecc.read_page = rk_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = rk_nfc_read_oob_std; + nand->ecc.read_oob = rk_nfc_read_oob_std; + + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + mtd->name = THIS_NAME; + mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops); + rk_nfc_hw_init(nfc); + ret = nand_scan(nand, nsels); + if (ret) + return ret; + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "mtd parse partition error\n"); + nand_release(nand); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret = -EINVAL; + int tmp; + + for_each_child_of_node(np, nand_np) { + tmp = rk_nfc_nand_chip_init(dev, nfc, nand_np); + if (tmp) { + of_node_put(nand_np); + return ret; + } + /* At least one nand chip is initialized */ + ret = 0; + } + return ret; +} + +static const struct of_device_id rk_nfc_id_table[] = { + {.compatible = "rockchip,nfc"}, + {} +}; +MODULE_DEVICE_TABLE(of, rk_nfc_id_table); + +static int rk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rk_nfc *nfc; + struct resource *res; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + nfc->controller.ops = &rk_nfc_controller_ops; + nfc->dev = dev; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_nfc; + } + nfc->clk.nfc_clk = devm_clk_get(dev, "clk_nfc"); + if (IS_ERR(nfc->clk.nfc_clk)) { + dev_err(dev, "no clk\n"); + ret = PTR_ERR(nfc->clk.nfc_clk); + goto release_nfc; + } + nfc->clk.ahb_clk = devm_clk_get(dev, "clk_ahb"); + if (IS_ERR(nfc->clk.ahb_clk)) { + dev_err(dev, "no pad clk\n"); + ret = PTR_ERR(nfc->clk.ahb_clk); + goto release_nfc; + } + if (of_property_read_u32(dev->of_node, "clock-rates", + &nfc->clk.nfc_rate)) + nfc->clk.nfc_rate = RK_DEFAULT_CLOCK_RATE; + clk_set_rate(nfc->clk.nfc_clk, nfc->clk.nfc_rate); + + ret = rk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + goto release_nfc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no nfc irq resource\n"); + ret = -EINVAL; + goto clk_disable; + } + + if (nfc->nfc_version == 6) + nfc_writel(nfc, 0, NFC_INTEN_V6); + else + nfc_writel(nfc, 0, NFC_INTEN_V9); + ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request nfc irq\n"); + goto clk_disable; + } + + platform_set_drvdata(pdev, nfc); + + ret = rk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto clk_disable; + } + return 0; + +clk_disable: + rk_nfc_disable_clk(&nfc->clk); +release_nfc: + return ret; +} + +static int rk_nfc_remove(struct platform_device *pdev) +{ + struct rk_nfc *nfc = platform_get_drvdata(pdev); + struct rk_nfc_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct rk_nfc_nand_chip, + node); + nand_release(&chip->nand); + list_del(&chip->node); + } + + rk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int rk_nfc_suspend(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + + rk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +static int rk_nfc_resume(struct device *dev) +{ + struct rk_nfc *nfc = dev_get_drvdata(dev); + struct rk_nfc_nand_chip *chip; + struct nand_chip *nand; + int ret; + u32 i; + + udelay(200); + + ret = rk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + return ret; + + /* reset NAND chip if VCC was powered off */ + list_for_each_entry(chip, &nfc->chips, node) { + nand = &chip->nand; + for (i = 0; i < chip->nsels; i++) + nand_reset(nand, i); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(rk_nfc_pm_ops, rk_nfc_suspend, rk_nfc_resume); +#endif + +static struct platform_driver rk_nfc_driver = { + .probe = rk_nfc_probe, + .remove = rk_nfc_remove, + .driver = { + .name = THIS_NAME, + .of_match_table = rk_nfc_id_table, +#ifdef CONFIG_PM_SLEEP + .pm = &rk_nfc_pm_ops, +#endif + }, +}; + +module_platform_driver(rk_nfc_driver); + +MODULE_LICENSE("Dual MIT/GPL"); +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@xxxxxxxxxxxxxx>"); +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver"); +MODULE_ALIAS("platform:rockchip_nand"); -- 2.17.1 ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/