[v8 1/2] mtd: rawnand: Add new Cadence NAND driver to MTD subsystem

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Add new Cadence NAND driver to MTD subsystem

Signed-off-by: Piotr Sroka <piotrs@xxxxxxxxxxx>
Reported-by: kbuild test robot <lkp@xxxxxxxxx>
Reported-by: Julia Lawall <julia.lawall@xxxxxxx>
---
Changes for v8:
- fix compilation waring in cadence_nand_attach_chip function
- change reallocating DMA common buffer to be done after all chips are
  attached.
Changes for v7:
- replace readls with ioread32_rep and writesl with iowrite32_rep
 to avoid compilation errors on parisc architecture
Changes for v6:
- add support for bank addressing modified in HPNFC R013 version
- change type of data_control_supp and is_phy_type_dll from u8 to bool
- fix writing and reading data for HPNFC slave DMA interface connected 
  directly to AHB/AXI instead of external DMA engine.
- the default value of the board-delay parameter is set to other than 0 
  when it is not defined in the dts file
- put myself as maintainer of the Cadence nand driver
Changes for v5:
- fix "ecc config strength" field size
- remove unused macros
- fix address of timing2 register
- add guard for accessing data_control_size register
- simplify the driver by use the same function 
  for accessing main area and oob area
- add comment to the driver describing main controller modes
- change compatible name from cdns,hpnfc to cdns,hp-nfc
Changes for v4:
- fix comments issues like typos, missing capitals, missing dots etc.
- remove unnecessary PHY options phy_dll_aging and phy_per_bit_deskew
- replace all register access functions to "relaxed" version
- remove all unnecessary variables initializations
- handle error inside cadence_nand_get_ecc_strength_idx function in case 
  correnction strength is not found
- add commit message
Changes for v3:
- remove definitions of unused registers
- remove configuring registers which are not expected to be configured in
  asynchronous mode
- remove not needed function reading timing registers
- remove information about oob size and write size from cdns_nand_chip type
  and use vales from mtd_info directly
- use nand_cleanup instead of nand_release if mtd device is not registered yet
- fix cadence_nand_chips_init function add garbage collection 
  if a chip init fails
- simplify PHY calculations
Changes for v2:
- create one universal wait function for all events instead of one
  function per event.
- split one big function executing nand operations to separate
  functions one per each type of operation.
- add erase atomic operation to nand operation parser
- remove unnecessary includes.
- remove unused register defines 
- add support for multiple nand chips
- remove all code using legacy functions
- remove chip dependents parameters from dts bindings, they were
  attached to the SoC specific compatible at the driver level
- simplify interrupt handling
- simplify timing calculations
- fix calculation of maximum supported cs signals
- simplify ecc size calculation
- remove header file and put whole code to one c file
---
 MAINTAINERS                                    |    6 +
 drivers/mtd/nand/raw/Kconfig                   |    7 +
 drivers/mtd/nand/raw/Makefile                  |    1 +
 drivers/mtd/nand/raw/cadence-nand-controller.c | 3031 ++++++++++++++++++++++++
 4 files changed, 3045 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/cadence-nand-controller.c

diff --git a/MAINTAINERS b/MAINTAINERS
index 783569e3c4b4..16e16445b88b 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -3579,6 +3579,12 @@ S:	Maintained
 F:	Documentation/devicetree/bindings/media/cdns,*.txt
 F:	drivers/media/platform/cadence/cdns-csi2*
 
+CADENCE NAND DRIVER
+M:	Piotr Sroka <piotrs@xxxxxxxxxxx>
+L:	linux-mtd@xxxxxxxxxxxxxxxxxxx
+S:	Maintained
+F:	drivers/mtd/nand/raw/cadence-nand-controller.c
+
 CADET FM/AM RADIO RECEIVER DRIVER
 M:	Hans Verkuil <hverkuil@xxxxxxxxx>
 L:	linux-media@xxxxxxxxxxxxxxx
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index e59de3f60cf6..74fb91adeb46 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -450,6 +450,13 @@ config MTD_NAND_PLATFORM
 	  devices. You will need to provide platform-specific functions
 	  via platform_data.
 
+config MTD_NAND_CADENCE
+	tristate "Support Cadence NAND (HPNFC) controller"
+	depends on OF || COMPILE_TEST
+	help
+	  Enable the driver for NAND flash on platforms using a Cadence NAND
+	  controller.
+
 comment "Misc"
 
 config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index a98721988e61..2d136b158fb7 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_MXIC)		+= mxic_nand.o
 obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
 obj-$(CONFIG_MTD_NAND_STM32_FMC2)	+= stm32_fmc2_nand.o
 obj-$(CONFIG_MTD_NAND_MESON)		+= meson_nand.o
+obj-$(CONFIG_MTD_NAND_CADENCE)		+= cadence-nand-controller.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/cadence-nand-controller.c b/drivers/mtd/nand/raw/cadence-nand-controller.c
new file mode 100644
index 000000000000..91dabff4b09d
--- /dev/null
+++ b/drivers/mtd/nand/raw/cadence-nand-controller.c
@@ -0,0 +1,3031 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ *
+ * Author: Piotr Sroka <piotrs@xxxxxxxxxxx>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_device.h>
+#include <linux/iopoll.h>
+
+/*
+ * HPNFC can work in 3 modes:
+ * -  PIO - can work in master or slave DMA
+ * -  CDMA - needs Master DMA for accessing command descriptors.
+ * -  Generic mode - can use only slave DMA.
+ * CDMA and PIO modes can be used to execute only base commands.
+ * Generic mode can be used to execute any command
+ * on NAND flash memory. Driver uses CDMA mode for
+ * block erasing, page reading, page programing.
+ * Generic mode is used for executing rest of commands.
+ */
+
+#define MAX_OOB_SIZE_PER_SECTOR	32
+#define MAX_ADDRESS_CYC		6
+#define MAX_ERASE_ADDRESS_CYC	3
+#define MAX_DATA_SIZE		0xFFFC
+#define DMA_DATA_SIZE_ALIGN	8
+
+/* Register definition. */
+/*
+ * Command register 0.
+ * Writing data to this register will initiate a new transaction
+ * of the NF controller.
+ */
+#define CMD_REG0			0x0000
+/* Command type field mask. */
+#define		CMD_REG0_CT		GENMASK(31, 30)
+/* Command type CDMA. */
+#define		CMD_REG0_CT_CDMA	0uL
+/* Command type generic. */
+#define		CMD_REG0_CT_GEN		3uL
+/* Command thread number field mask. */
+#define		CMD_REG0_TN		GENMASK(27, 24)
+
+/* Command register 2. */
+#define CMD_REG2			0x0008
+/* Command register 3. */
+#define CMD_REG3			0x000C
+/* Pointer register to select which thread status will be selected. */
+#define CMD_STATUS_PTR			0x0010
+/* Command status register for selected thread. */
+#define CMD_STATUS			0x0014
+
+/* Interrupt status register. */
+#define INTR_STATUS			0x0110
+#define		INTR_STATUS_SDMA_ERR	BIT(22)
+#define		INTR_STATUS_SDMA_TRIGG	BIT(21)
+#define		INTR_STATUS_UNSUPP_CMD	BIT(19)
+#define		INTR_STATUS_DDMA_TERR	BIT(18)
+#define		INTR_STATUS_CDMA_TERR	BIT(17)
+#define		INTR_STATUS_CDMA_IDL	BIT(16)
+
+/* Interrupt enable register. */
+#define INTR_ENABLE				0x0114
+#define		INTR_ENABLE_INTR_EN		BIT(31)
+#define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
+#define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
+#define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
+#define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
+#define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
+#define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
+
+/* Controller internal state. */
+#define CTRL_STATUS				0x0118
+#define		CTRL_STATUS_INIT_COMP		BIT(9)
+#define		CTRL_STATUS_CTRL_BUSY		BIT(8)
+
+/* Command Engine threads state. */
+#define TRD_STATUS				0x0120
+
+/* Command Engine interrupt thread error status. */
+#define TRD_ERR_INT_STATUS			0x0128
+/* Command Engine interrupt thread error enable. */
+#define TRD_ERR_INT_STATUS_EN			0x0130
+/* Command Engine interrupt thread complete status. */
+#define TRD_COMP_INT_STATUS			0x0138
+
+/*
+ * Transfer config 0 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_0				0x0400
+/* Offset value from the beginning of the page. */
+#define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
+/* Numbers of sectors to transfer within singlNF device's page. */
+#define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
+
+/*
+ * Transfer config 1 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_1				0x0404
+/* Size of last data sector. */
+#define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
+/* Size of not-last data sector. */
+#define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
+
+/* ECC engine configuration register 0. */
+#define ECC_CONFIG_0				0x0428
+/* Correction strength. */
+#define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
+/* Enable erased pages detection mechanism. */
+#define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
+/* Enable controller ECC check bits generation and correction. */
+#define		ECC_CONFIG_0_ECC_EN		BIT(0)
+
+/* ECC engine configuration register 1. */
+#define ECC_CONFIG_1				0x042C
+
+/* Multiplane settings register. */
+#define MULTIPLANE_CFG				0x0434
+/* Cache operation settings. */
+#define CACHE_CFG				0x0438
+
+/* DMA settings register. */
+#define DMA_SETINGS				0x043C
+/* Enable SDMA error report on access unprepared slave DMA interface. */
+#define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
+
+/* Transferred data block size for the slave DMA module. */
+#define SDMA_SIZE				0x0440
+
+/* Thread number associated with transferred data block
+ * for the slave DMA module.
+ */
+#define SDMA_TRD_NUM				0x0444
+/* Thread number mask. */
+#define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
+
+#define CONTROL_DATA_CTRL			0x0494
+/* Thread number mask. */
+#define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
+
+#define CTRL_VERSION				0x800
+#define		CTRL_VERSION_REV		GENMASK(7, 0)
+
+/* Available hardware features of the controller. */
+#define CTRL_FEATURES				0x804
+/* Support for NV-DDR2/3 work mode. */
+#define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
+/* Support for NV-DDR work mode. */
+#define		CTRL_FEATURES_NVDDR		BIT(27)
+/* Support for asynchronous work mode. */
+#define		CTRL_FEATURES_ASYNC		BIT(26)
+/* Support for asynchronous work mode. */
+#define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
+/* Slave and Master DMA data width. */
+#define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
+/* Availability of Control Data feature.*/
+#define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
+
+/* BCH Engine identification register 0 - correction strengths. */
+#define BCH_CFG_0				0x838
+#define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
+#define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
+#define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
+#define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
+
+/* BCH Engine identification register 1 - correction strengths. */
+#define BCH_CFG_1				0x83C
+#define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
+#define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
+#define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
+#define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
+
+/* BCH Engine identification register 2 - sector sizes. */
+#define BCH_CFG_2				0x840
+#define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
+#define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
+
+/* BCH Engine identification register 3. */
+#define BCH_CFG_3				0x844
+
+/* Ready/Busy# line status. */
+#define RBN_SETINGS				0x1004
+
+/* Common settings. */
+#define COMMON_SET				0x1008
+/* 16 bit device connected to the NAND Flash interface. */
+#define		COMMON_SET_DEVICE_16BIT		BIT(8)
+
+/* Skip_bytes registers. */
+#define SKIP_BYTES_CONF				0x100C
+#define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
+#define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
+
+#define SKIP_BYTES_OFFSET			0x1010
+#define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
+
+/* Timings configuration. */
+#define ASYNC_TOGGLE_TIMINGS			0x101c
+#define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
+#define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
+#define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
+#define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
+
+#define	TIMINGS0				0x1024
+#define		TIMINGS0_TADL			GENMASK(31, 24)
+#define		TIMINGS0_TCCS			GENMASK(23, 16)
+#define		TIMINGS0_TWHR			GENMASK(15, 8)
+#define		TIMINGS0_TRHW			GENMASK(7, 0)
+
+#define	TIMINGS1				0x1028
+#define		TIMINGS1_TRHZ			GENMASK(31, 24)
+#define		TIMINGS1_TWB			GENMASK(23, 16)
+#define		TIMINGS1_TVDLY			GENMASK(7, 0)
+
+#define	TIMINGS2				0x102c
+#define		TIMINGS2_TFEAT			GENMASK(25, 16)
+#define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
+#define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
+
+/* Configuration of the resynchronization of slave DLL of PHY. */
+#define DLL_PHY_CTRL				0x1034
+#define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
+#define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
+#define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
+#define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
+#define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
+
+/* Register controlling DQ related timing. */
+#define PHY_DQ_TIMING				0x2000
+/* Register controlling DSQ related timing.  */
+#define PHY_DQS_TIMING				0x2004
+#define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
+#define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
+#define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
+
+/* Register controlling the gate and loopback control related timing. */
+#define PHY_GATE_LPBK_CTRL			0x2008
+#define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
+
+/* Register holds the control for the master DLL logic. */
+#define PHY_DLL_MASTER_CTRL			0x200C
+#define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
+
+/* Register holds the control for the slave DLL logic. */
+#define PHY_DLL_SLAVE_CTRL			0x2010
+
+/* This register handles the global control settings for the PHY. */
+#define PHY_CTRL				0x2080
+#define		PHY_CTRL_SDR_DQS		BIT(14)
+#define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
+
+/*
+ * This register handles the global control settings
+ * for the termination selects for reads.
+ */
+#define PHY_TSEL				0x2084
+
+/* Generic command layout. */
+#define GCMD_LAY_CS			GENMASK_ULL(11, 8)
+/*
+ * This bit informs the minicotroller if it has to wait for tWB
+ * after sending the last CMD/ADDR/DATA in the sequence.
+ */
+#define GCMD_LAY_TWB			BIT_ULL(6)
+/* Type of generic instruction. */
+#define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
+
+/* Generic CMD sequence type. */
+#define		GCMD_LAY_INSTR_CMD	0
+/* Generic ADDR sequence type. */
+#define		GCMD_LAY_INSTR_ADDR	1
+/* Generic data transfer sequence type. */
+#define		GCMD_LAY_INSTR_DATA	2
+
+/* Input part of generic command type of input is command. */
+#define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
+
+/* Generic command address sequence - address fields. */
+#define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
+/* Generic command address sequence - address size. */
+#define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
+
+/* Transfer direction field of generic command data sequence. */
+#define GCMD_DIR			BIT_ULL(11)
+/* Read transfer direction of generic command data sequence. */
+#define		GCMD_DIR_READ		0
+/* Write transfer direction of generic command data sequence. */
+#define		GCMD_DIR_WRITE		1
+
+/* ECC enabled flag of generic command data sequence - ECC enabled. */
+#define GCMD_ECC_EN			BIT_ULL(12)
+/* Generic command data sequence - sector size. */
+#define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
+/* Generic command data sequence - sector count. */
+#define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
+/* Generic command data sequence - last sector size. */
+#define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
+
+/* CDMA descriptor fields. */
+/* Erase command type of CDMA descriptor. */
+#define CDMA_CT_ERASE		0x1000
+/* Program page command type of CDMA descriptor. */
+#define CDMA_CT_WR		0x2100
+/* Read page command type of CDMA descriptor. */
+#define CDMA_CT_RD		0x2200
+
+/* Flash pointer memory shift. */
+#define CDMA_CFPTR_MEM_SHIFT	24
+/* Flash pointer memory mask. */
+#define CDMA_CFPTR_MEM		GENMASK(26, 24)
+
+/*
+ * Command DMA descriptor flags. If set causes issue interrupt after
+ * the completion of descriptor processing.
+ */
+#define CDMA_CF_INT		BIT(8)
+/*
+ * Command DMA descriptor flags - the next descriptor
+ * address field is valid and descriptor processing should continue.
+ */
+#define CDMA_CF_CONT		BIT(9)
+/* DMA master flag of command DMA descriptor. */
+#define CDMA_CF_DMA_MASTER	BIT(10)
+
+/* Operation complete status of command descriptor. */
+#define CDMA_CS_COMP		BIT(15)
+/* Operation complete status of command descriptor. */
+/* Command descriptor status - operation fail. */
+#define CDMA_CS_FAIL		BIT(14)
+/* Command descriptor status - page erased. */
+#define CDMA_CS_ERP		BIT(11)
+/* Command descriptor status - timeout occurred. */
+#define CDMA_CS_TOUT		BIT(10)
+/*
+ * Maximum amount of correction applied to one ECC sector.
+ * It is part of command descriptor status.
+ */
+#define CDMA_CS_MAXERR		GENMASK(9, 2)
+/* Command descriptor status - uncorrectable ECC error. */
+#define CDMA_CS_UNCE		BIT(1)
+/* Command descriptor status - descriptor error. */
+#define CDMA_CS_ERR		BIT(0)
+
+/* Status of operation - OK. */
+#define STAT_OK			0
+/* Status of operation - FAIL. */
+#define STAT_FAIL		2
+/* Status of operation - uncorrectable ECC error. */
+#define STAT_ECC_UNCORR		3
+/* Status of operation - page erased. */
+#define STAT_ERASED		5
+/* Status of operation - correctable ECC error. */
+#define STAT_ECC_CORR		6
+/* Status of operation - unsuspected state. */
+#define STAT_UNKNOWN		7
+/* Status of operation - operation is not completed yet. */
+#define STAT_BUSY		0xFF
+
+#define BCH_MAX_NUM_CORR_CAPS		8
+#define BCH_MAX_NUM_SECTOR_SIZES	2
+
+struct cadence_nand_timings {
+	u32 async_toggle_timings;
+	u32 timings0;
+	u32 timings1;
+	u32 timings2;
+	u32 dll_phy_ctrl;
+	u32 phy_ctrl;
+	u32 phy_dqs_timing;
+	u32 phy_gate_lpbk_ctrl;
+};
+
+/* Command DMA descriptor. */
+struct cadence_nand_cdma_desc {
+	/* Next descriptor address. */
+	u64 next_pointer;
+
+	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
+	u32 flash_pointer;
+	/*field appears in HPNFC version 13*/
+	u16 bank;
+	u16 rsvd0;
+
+	/* Operation the controller needs to perform. */
+	u16 command_type;
+	u16 rsvd1;
+	/* Flags for operation of this command. */
+	u16 command_flags;
+	u16 rsvd2;
+
+	/* System/host memory address required for data DMA commands. */
+	u64 memory_pointer;
+
+	/* Status of operation. */
+	u32 status;
+	u32 rsvd3;
+
+	/* Address pointer to sync buffer location. */
+	u64 sync_flag_pointer;
+
+	/* Controls the buffer sync mechanism. */
+	u32 sync_arguments;
+	u32 rsvd4;
+
+	/* Control data pointer. */
+	u64 ctrl_data_ptr;
+};
+
+/* Interrupt status. */
+struct cadence_nand_irq_status {
+	/* Thread operation complete status. */
+	u32 trd_status;
+	/* Thread operation error. */
+	u32 trd_error;
+	/* Controller status. */
+	u32 status;
+};
+
+/* Cadence NAND flash controller capabilities get from driver data. */
+struct cadence_nand_dt_devdata {
+	/* Skew value of the output signals of the NAND Flash interface. */
+	u32 if_skew;
+	/* It informs if slave DMA interface is connected to DMA engine. */
+	unsigned int has_dma:1;
+};
+
+/* Cadence NAND flash controller capabilities read from registers. */
+struct cdns_nand_caps {
+	/* Maximum number of banks supported by hardware. */
+	u8 max_banks;
+	/* Slave and Master DMA data width in bytes (4 or 8). */
+	u8 data_dma_width;
+	/* Control Data feature supported. */
+	bool data_control_supp;
+	/* Is PHY type DLL. */
+	bool is_phy_type_dll;
+};
+
+struct cdns_nand_ctrl {
+	struct device *dev;
+	struct nand_controller controller;
+	struct cadence_nand_cdma_desc *cdma_desc;
+	/* IP capability. */
+	const struct cadence_nand_dt_devdata *caps1;
+	struct cdns_nand_caps caps2;
+	u8 ctrl_rev;
+	dma_addr_t dma_cdma_desc;
+	u8 *buf;
+	u32 buf_size;
+	u8 curr_corr_str_idx;
+
+	/* Register interface. */
+	void __iomem *reg;
+
+	struct {
+		void __iomem *virt;
+		dma_addr_t dma;
+	} io;
+
+	int irq;
+	/* Interrupts that have happened. */
+	struct cadence_nand_irq_status irq_status;
+	/* Interrupts we are waiting for. */
+	struct cadence_nand_irq_status irq_mask;
+	struct completion complete;
+	/* Protect irq_mask and irq_status. */
+	spinlock_t irq_lock;
+
+	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
+	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
+	struct nand_ecc_caps ecc_caps;
+
+	int curr_trans_type;
+
+	struct dma_chan *dmac;
+
+	u32 nf_clk_rate;
+	/*
+	 * Estimated Board delay. The value includes the total
+	 * round trip delay for the signals and is used for deciding on values
+	 * associated with data read capture.
+	 */
+	u32 board_delay;
+
+	struct nand_chip *selected_chip;
+
+	unsigned long assigned_cs;
+	struct list_head chips;
+};
+
+struct cdns_nand_chip {
+	struct cadence_nand_timings timings;
+	struct nand_chip chip;
+	u8 nsels;
+	struct list_head node;
+
+	/*
+	 * part of oob area of NAND flash memory page.
+	 * This part is available for user to read or write.
+	 */
+	u32 avail_oob_size;
+
+	/* Sector size. There are few sectors per mtd->writesize */
+	u32 sector_size;
+	u32 sector_count;
+
+	/* Offset of BBM. */
+	u8 bbm_offs;
+	/* Number of bytes reserved for BBM. */
+	u8 bbm_len;
+	/* ECC strength index. */
+	u8 corr_str_idx;
+
+	u8 cs[];
+};
+
+struct ecc_info {
+	int (*calc_ecc_bytes)(int step_size, int strength);
+	int max_step_size;
+};
+
+static inline struct
+cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
+{
+	return container_of(chip, struct cdns_nand_chip, chip);
+}
+
+static inline struct
+cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
+{
+	return container_of(controller, struct cdns_nand_ctrl, controller);
+}
+
+static bool
+cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
+			u32 buf_len)
+{
+	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
+
+	return buf && virt_addr_valid(buf) &&
+		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
+		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
+}
+
+static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
+				       u32 reg_offset, u32 timeout_us,
+				       u32 mask, bool is_clear)
+{
+	u32 val;
+	int ret;
+
+	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
+					 val, !(val & mask) == is_clear,
+					 10, timeout_us);
+
+	if (ret < 0) {
+		dev_err(cdns_ctrl->dev,
+			"Timeout while waiting for reg %x with mask %x is clear %d\n",
+			reg_offset, mask, is_clear);
+	}
+
+	return ret;
+}
+
+static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
+				       bool enable)
+{
+	u32 reg;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+
+	if (enable)
+		reg |= ECC_CONFIG_0_ECC_EN;
+	else
+		reg &= ~ECC_CONFIG_0_ECC_EN;
+
+	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+
+	return 0;
+}
+
+static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
+					  u8 corr_str_idx)
+{
+	u32 reg;
+
+	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
+		return;
+
+	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+	reg &= ~ECC_CONFIG_0_CORR_STR;
+	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
+	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+
+	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
+}
+
+static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
+					     u8 strength)
+{
+	int i, corr_str_idx = -1;
+
+	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+		if (cdns_ctrl->ecc_strengths[i] == strength) {
+			corr_str_idx = i;
+			break;
+		}
+	}
+
+	return corr_str_idx;
+}
+
+static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
+					    u16 marker_value)
+{
+	u32 reg;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
+	reg &= ~SKIP_BYTES_MARKER_VALUE;
+	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
+			  marker_value);
+
+	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
+
+	return 0;
+}
+
+static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
+					    u8 num_of_bytes,
+					    u32 offset_value,
+					    int enable)
+{
+	u32 reg, skip_bytes_offset;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	if (!enable) {
+		num_of_bytes = 0;
+		offset_value = 0;
+	}
+
+	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
+	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
+	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
+			  num_of_bytes);
+	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
+				       offset_value);
+
+	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
+	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
+
+	return 0;
+}
+
+/* Functions enables/disables hardware detection of erased data */
+static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
+					     bool enable,
+					     u8 bitflips_threshold)
+{
+	u32 reg;
+
+	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+
+	if (enable)
+		reg |= ECC_CONFIG_0_ERASE_DET_EN;
+	else
+		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
+
+	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
+}
+
+static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
+					   bool bit_bus16)
+{
+	u32 reg;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
+
+	if (!bit_bus16)
+		reg &= ~COMMON_SET_DEVICE_16BIT;
+	else
+		reg |= COMMON_SET_DEVICE_16BIT;
+	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
+
+	return 0;
+}
+
+static void
+cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
+			     struct cadence_nand_irq_status *irq_status)
+{
+	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
+	writel_relaxed(irq_status->trd_status,
+		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
+	writel_relaxed(irq_status->trd_error,
+		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
+}
+
+static void
+cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
+			     struct cadence_nand_irq_status *irq_status)
+{
+	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
+	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
+					       + TRD_COMP_INT_STATUS);
+	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
+					      + TRD_ERR_INT_STATUS);
+}
+
+static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
+			struct cadence_nand_irq_status *irq_status)
+{
+	cadence_nand_read_int_status(cdns_ctrl, irq_status);
+
+	return irq_status->status || irq_status->trd_status ||
+		irq_status->trd_error;
+}
+
+static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
+	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
+	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
+	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
+}
+
+/*
+ * This is the interrupt service routine. It handles all interrupts
+ * sent to this device.
+ */
+static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
+	struct cadence_nand_irq_status irq_status;
+	irqreturn_t result = IRQ_NONE;
+
+	spin_lock(&cdns_ctrl->irq_lock);
+
+	if (irq_detected(cdns_ctrl, &irq_status)) {
+		/* Handle interrupt. */
+		/* First acknowledge it. */
+		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
+		/* Status in the device context for someone to read. */
+		cdns_ctrl->irq_status.status |= irq_status.status;
+		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
+		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
+		/* Notify anyone who cares that it happened. */
+		complete(&cdns_ctrl->complete);
+		/* Tell the OS that we've handled this. */
+		result = IRQ_HANDLED;
+	}
+	spin_unlock(&cdns_ctrl->irq_lock);
+
+	return result;
+}
+
+static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
+				      struct cadence_nand_irq_status *irq_mask)
+{
+	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
+		       cdns_ctrl->reg + INTR_ENABLE);
+
+	writel_relaxed(irq_mask->trd_error,
+		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
+}
+
+static void
+cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
+			  struct cadence_nand_irq_status *irq_mask,
+			  struct cadence_nand_irq_status *irq_status)
+{
+	unsigned long timeout = msecs_to_jiffies(10000);
+	unsigned long time_left;
+
+	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
+						timeout);
+
+	*irq_status = cdns_ctrl->irq_status;
+	if (time_left == 0) {
+		/* Timeout error. */
+		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
+		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
+			irq_status->status, irq_mask->status);
+		dev_err(cdns_ctrl->dev,
+			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
+			irq_status->trd_status, irq_mask->trd_status);
+		dev_err(cdns_ctrl->dev,
+			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
+			irq_status->trd_error, irq_mask->trd_error);
+	}
+}
+
+/* Execute generic command on NAND controller. */
+static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
+					 u8 chip_nr,
+					 u64 mini_ctrl_cmd)
+{
+	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
+
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
+	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
+	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	cadence_nand_reset_irq(cdns_ctrl);
+
+	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
+	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
+
+	/* Select generic command. */
+	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
+	/* Thread number. */
+	reg |= FIELD_PREP(CMD_REG0_TN, 0);
+
+	/* Issue command. */
+	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
+
+	return 0;
+}
+
+/* Wait for data on slave DMA interface. */
+static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
+				     u8 *out_sdma_trd,
+				     u32 *out_sdma_size)
+{
+	struct cadence_nand_irq_status irq_mask, irq_status;
+
+	irq_mask.trd_status = 0;
+	irq_mask.trd_error = 0;
+	irq_mask.status = INTR_STATUS_SDMA_TRIGG
+		| INTR_STATUS_SDMA_ERR
+		| INTR_STATUS_UNSUPP_CMD;
+
+	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
+	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
+	if (irq_status.status == 0) {
+		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
+		return -ETIMEDOUT;
+	}
+
+	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
+		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
+		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
+		*out_sdma_trd =
+			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
+	} else {
+		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
+			irq_status.status);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	u32  reg;
+
+	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
+
+	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
+
+	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
+		cdns_ctrl->caps2.data_dma_width = 8;
+	else
+		cdns_ctrl->caps2.data_dma_width = 4;
+
+	if (reg & CTRL_FEATURES_CONTROL_DATA)
+		cdns_ctrl->caps2.data_control_supp = true;
+
+	if (reg & (CTRL_FEATURES_NVDDR_2_3
+		   | CTRL_FEATURES_NVDDR))
+		cdns_ctrl->caps2.is_phy_type_dll = true;
+}
+
+/* Prepare CDMA descriptor. */
+static void
+cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
+			       char nf_mem, u32 flash_ptr, char *mem_ptr,
+			       char *ctrl_data_ptr, u16 ctype)
+{
+	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
+
+	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
+
+	/* Set fields for one descriptor. */
+	cdma_desc->flash_pointer = flash_ptr;
+	if (cdns_ctrl->ctrl_rev >= 13)
+		cdma_desc->bank = nf_mem;
+	else
+		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
+
+	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
+	cdma_desc->command_flags  |= CDMA_CF_INT;
+
+	cdma_desc->memory_pointer = (uintptr_t)mem_ptr;
+	cdma_desc->status = 0;
+	cdma_desc->sync_flag_pointer = 0;
+	cdma_desc->sync_arguments = 0;
+
+	cdma_desc->command_type = ctype;
+	cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr;
+}
+
+static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
+					u32 desc_status)
+{
+	if (desc_status & CDMA_CS_ERP)
+		return STAT_ERASED;
+
+	if (desc_status & CDMA_CS_UNCE)
+		return STAT_ECC_UNCORR;
+
+	if (desc_status & CDMA_CS_ERR) {
+		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
+		return STAT_FAIL;
+	}
+
+	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
+		return STAT_ECC_CORR;
+
+	return STAT_FAIL;
+}
+
+static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
+	u8 status = STAT_BUSY;
+
+	if (desc_ptr->status & CDMA_CS_FAIL) {
+		status = cadence_nand_check_desc_error(cdns_ctrl,
+						       desc_ptr->status);
+		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
+	} else if (desc_ptr->status & CDMA_CS_COMP) {
+		/* Descriptor finished with no errors. */
+		if (desc_ptr->command_flags & CDMA_CF_CONT) {
+			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
+			status = STAT_UNKNOWN;
+		} else {
+			/* Last descriptor.  */
+			status = STAT_OK;
+		}
+	}
+
+	return status;
+}
+
+static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
+				  u8 thread)
+{
+	u32 reg;
+	int status;
+
+	/* Wait for thread ready. */
+	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
+					     1000000,
+					     BIT(thread), true);
+	if (status)
+		return status;
+
+	cadence_nand_reset_irq(cdns_ctrl);
+
+	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
+		       cdns_ctrl->reg + CMD_REG2);
+	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
+
+	/* Select CDMA mode. */
+	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
+	/* Thread number. */
+	reg |= FIELD_PREP(CMD_REG0_TN, thread);
+	/* Issue command. */
+	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
+
+	return 0;
+}
+
+/* Send SDMA command and wait for finish. */
+static u32
+cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
+				u8 thread)
+{
+	struct cadence_nand_irq_status irq_mask, irq_status = {0};
+	int status;
+
+	irq_mask.trd_status = BIT(thread);
+	irq_mask.trd_error = BIT(thread);
+	irq_mask.status = INTR_STATUS_CDMA_TERR;
+
+	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
+
+	status = cadence_nand_cdma_send(cdns_ctrl, thread);
+	if (status)
+		return status;
+
+	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
+
+	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
+	    irq_status.trd_error == 0) {
+		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
+		return -ETIMEDOUT;
+	}
+	if (irq_status.status & irq_mask.status) {
+		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/*
+ * ECC size depends on configured ECC strength and on maximum supported
+ * ECC step size.
+ */
+static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
+{
+	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
+
+	return ALIGN(nbytes, 2);
+}
+
+#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
+	static int \
+	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
+						    int strength)\
+	{\
+		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
+	}
+
+CADENCE_NAND_CALC_ECC_BYTES(256)
+CADENCE_NAND_CALC_ECC_BYTES(512)
+CADENCE_NAND_CALC_ECC_BYTES(1024)
+CADENCE_NAND_CALC_ECC_BYTES(2048)
+CADENCE_NAND_CALC_ECC_BYTES(4096)
+
+/* Function reads BCH capabilities. */
+static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
+	int max_step_size = 0, nstrengths, i;
+	u32 reg;
+
+	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
+	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
+	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
+	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
+	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
+
+	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
+	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
+	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
+	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
+	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
+
+	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
+	cdns_ctrl->ecc_stepinfos[0].stepsize =
+		FIELD_GET(BCH_CFG_2_SECT_0, reg);
+
+	cdns_ctrl->ecc_stepinfos[1].stepsize =
+		FIELD_GET(BCH_CFG_2_SECT_1, reg);
+
+	nstrengths = 0;
+	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+		if (cdns_ctrl->ecc_strengths[i] != 0)
+			nstrengths++;
+	}
+
+	ecc_caps->nstepinfos = 0;
+	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
+		/* ECC strengths are common for all step infos. */
+		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
+		cdns_ctrl->ecc_stepinfos[i].strengths =
+			cdns_ctrl->ecc_strengths;
+
+		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
+			ecc_caps->nstepinfos++;
+
+		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
+			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
+	}
+	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
+
+	switch (max_step_size) {
+	case 256:
+		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
+		break;
+	case 512:
+		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
+		break;
+	case 1024:
+		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
+		break;
+	case 2048:
+		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
+		break;
+	case 4096:
+		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
+		break;
+	default:
+		dev_err(cdns_ctrl->dev,
+			"Unsupported sector size(ecc step size) %d\n",
+			max_step_size);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/* Hardware initialization. */
+static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	int status;
+	u32 reg;
+
+	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					     1000000,
+					     CTRL_STATUS_INIT_COMP, false);
+	if (status)
+		return status;
+
+	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
+	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
+
+	dev_info(cdns_ctrl->dev,
+		 "%s: cadence nand controller version reg %x\n",
+		 __func__, reg);
+
+	/* Disable cache and multiplane. */
+	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
+	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
+
+	/* Clear all interrupts. */
+	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
+
+	cadence_nand_get_caps(cdns_ctrl);
+	cadence_nand_read_bch_caps(cdns_ctrl);
+
+	/*
+	 * Set IO width access to 8.
+	 * It is because during SW device discovering width access
+	 * is expected to be 8.
+	 */
+	status = cadence_nand_set_access_width16(cdns_ctrl, false);
+
+	return status;
+}
+
+#define TT_MAIN_OOB_AREAS	2
+#define TT_RAW_PAGE		3
+#define TT_BBM			4
+#define TT_MAIN_OOB_AREA_EXT	5
+
+/* Prepare size of data to transfer. */
+static void
+cadence_nand_prepare_data_size(struct nand_chip *chip,
+			       int transfer_type)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 sec_size = 0, offset = 0, sec_cnt = 1;
+	u32 last_sec_size = cdns_chip->sector_size;
+	u32 data_ctrl_size = 0;
+	u32 reg = 0;
+
+	if (cdns_ctrl->curr_trans_type == transfer_type)
+		return;
+
+	switch (transfer_type) {
+	case TT_MAIN_OOB_AREA_EXT:
+		sec_cnt = cdns_chip->sector_count;
+		sec_size = cdns_chip->sector_size;
+		data_ctrl_size = cdns_chip->avail_oob_size;
+		break;
+	case TT_MAIN_OOB_AREAS:
+		sec_cnt = cdns_chip->sector_count;
+		last_sec_size = cdns_chip->sector_size
+			+ cdns_chip->avail_oob_size;
+		sec_size = cdns_chip->sector_size;
+		break;
+	case TT_RAW_PAGE:
+		last_sec_size = mtd->writesize + mtd->oobsize;
+		break;
+	case TT_BBM:
+		offset = mtd->writesize + cdns_chip->bbm_offs;
+		last_sec_size = 8;
+		break;
+	}
+
+	reg = 0;
+	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
+	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
+	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
+
+	reg = 0;
+	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
+	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
+	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
+
+	if (cdns_ctrl->caps2.data_control_supp) {
+		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
+		reg &= ~CONTROL_DATA_CTRL_SIZE;
+		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
+		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
+	}
+
+	cdns_ctrl->curr_trans_type = transfer_type;
+}
+
+static int
+cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
+			   int page, void *buf, void *ctrl_dat, u32 buf_size,
+			   u32 ctrl_dat_size, enum dma_data_direction dir,
+			   bool with_ecc)
+{
+	dma_addr_t dma_buf, dma_ctrl_dat = 0;
+	u8 thread_nr = chip_nr;
+	int status;
+	u16 ctype;
+
+	if (dir == DMA_FROM_DEVICE)
+		ctype = CDMA_CT_RD;
+	else
+		ctype = CDMA_CT_WR;
+
+	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
+
+	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
+	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
+		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+		return -EIO;
+	}
+
+	if (ctrl_dat && ctrl_dat_size) {
+		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
+					      ctrl_dat_size, dir);
+		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
+			dma_unmap_single(cdns_ctrl->dev, dma_buf,
+					 buf_size, dir);
+			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+			return -EIO;
+		}
+	}
+
+	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
+				       (void *)dma_buf, (void *)dma_ctrl_dat,
+				       ctype);
+
+	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
+
+	dma_unmap_single(cdns_ctrl->dev, dma_buf,
+			 buf_size, dir);
+
+	if (ctrl_dat && ctrl_dat_size)
+		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
+				 ctrl_dat_size, dir);
+	if (status)
+		return status;
+
+	return cadence_nand_cdma_finish(cdns_ctrl);
+}
+
+static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
+				     struct cadence_nand_timings *t)
+{
+	writel_relaxed(t->async_toggle_timings,
+		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
+	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
+	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
+	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
+
+	if (cdns_ctrl->caps2.is_phy_type_dll)
+		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
+
+	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
+
+	if (cdns_ctrl->caps2.is_phy_type_dll) {
+		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
+		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
+		writel_relaxed(t->phy_dqs_timing,
+			       cdns_ctrl->reg + PHY_DQS_TIMING);
+		writel_relaxed(t->phy_gate_lpbk_ctrl,
+			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
+		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
+			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
+		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
+	}
+}
+
+static int cadence_nand_select_target(struct nand_chip *chip)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+	if (chip == cdns_ctrl->selected_chip)
+		return 0;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
+
+	cadence_nand_set_ecc_strength(cdns_ctrl,
+				      cdns_chip->corr_str_idx);
+
+	cadence_nand_set_erase_detection(cdns_ctrl, true,
+					 chip->ecc.strength);
+
+	cdns_ctrl->curr_trans_type = -1;
+	cdns_ctrl->selected_chip = chip;
+
+	return 0;
+}
+
+static int cadence_nand_erase(struct nand_chip *chip, u32 page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	int status;
+	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
+
+	cadence_nand_cdma_desc_prepare(cdns_ctrl,
+				       cdns_chip->cs[chip->cur_cs],
+				       page, NULL, NULL,
+				       CDMA_CT_ERASE);
+	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
+	if (status) {
+		dev_err(cdns_ctrl->dev, "erase operation failed\n");
+		return -EIO;
+	}
+
+	status = cadence_nand_cdma_finish(cdns_ctrl);
+	if (status)
+		return status;
+
+	return 0;
+}
+
+static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
+{
+	int status;
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	cadence_nand_prepare_data_size(chip, TT_BBM);
+
+	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+	/*
+	 * Read only bad block marker from offset
+	 * defined by a memory manufacturer.
+	 */
+	status = cadence_nand_cdma_transfer(cdns_ctrl,
+					    cdns_chip->cs[chip->cur_cs],
+					    page, cdns_ctrl->buf, NULL,
+					    mtd->oobsize,
+					    0, DMA_FROM_DEVICE, false);
+	if (status) {
+		dev_err(cdns_ctrl->dev, "read BBM failed\n");
+		return -EIO;
+	}
+
+	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
+
+	return 0;
+}
+
+static int cadence_nand_write_page(struct nand_chip *chip,
+				   const u8 *buf, int oob_required,
+				   int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int status;
+	u16 marker_val = 0xFFFF;
+
+	status = cadence_nand_select_target(chip);
+	if (status)
+		return status;
+
+	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
+					 mtd->writesize
+					 + cdns_chip->bbm_offs,
+					 1);
+
+	if (oob_required) {
+		marker_val = *(u16 *)(chip->oob_poi
+				      + cdns_chip->bbm_offs);
+	} else {
+		/* Set oob data to 0xFF. */
+		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
+		       cdns_chip->avail_oob_size);
+	}
+
+	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
+
+	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
+
+	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
+	    cdns_ctrl->caps2.data_control_supp) {
+		u8 *oob;
+
+		if (oob_required)
+			oob = chip->oob_poi;
+		else
+			oob = cdns_ctrl->buf + mtd->writesize;
+
+		status = cadence_nand_cdma_transfer(cdns_ctrl,
+						    cdns_chip->cs[chip->cur_cs],
+						    page, (void *)buf, oob,
+						    mtd->writesize,
+						    cdns_chip->avail_oob_size,
+						    DMA_TO_DEVICE, true);
+		if (status) {
+			dev_err(cdns_ctrl->dev, "write page failed\n");
+			return -EIO;
+		}
+
+		return 0;
+	}
+
+	if (oob_required) {
+		/* Transfer the data to the oob area. */
+		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
+		       cdns_chip->avail_oob_size);
+	}
+
+	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
+
+	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
+
+	return cadence_nand_cdma_transfer(cdns_ctrl,
+					  cdns_chip->cs[chip->cur_cs],
+					  page, cdns_ctrl->buf, NULL,
+					  mtd->writesize
+					  + cdns_chip->avail_oob_size,
+					  0, DMA_TO_DEVICE, true);
+}
+
+static int cadence_nand_write_oob(struct nand_chip *chip, int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
+
+	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
+}
+
+static int cadence_nand_write_page_raw(struct nand_chip *chip,
+				       const u8 *buf, int oob_required,
+				       int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = cdns_ctrl->buf;
+	int oob_skip = cdns_chip->bbm_len;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+	int status = 0;
+
+	status = cadence_nand_select_target(chip);
+	if (status)
+		return status;
+
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(tmp_buf, 0xff, size);
+
+	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+	/* Arrange the buffer for syndrome payload/ecc layout. */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(tmp_buf + writesize + oob_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		const u8 *oob = chip->oob_poi;
+		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+			(cdns_chip->sector_size + chip->ecc.bytes)
+			+ cdns_chip->sector_size + oob_skip;
+
+		/* BBM at the beginning of the OOB area. */
+		memcpy(tmp_buf + writesize, oob, oob_skip);
+
+		/* OOB free. */
+		memcpy(tmp_buf + oob_data_offset, oob,
+		       cdns_chip->avail_oob_size);
+		oob += cdns_chip->avail_oob_size;
+
+		/* OOB ECC. */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			if (i == (ecc_steps - 1))
+				pos += cdns_chip->avail_oob_size;
+
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(tmp_buf + writesize + oob_skip, oob,
+				       len);
+				oob += len;
+			}
+		}
+	}
+
+	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
+
+	return cadence_nand_cdma_transfer(cdns_ctrl,
+					  cdns_chip->cs[chip->cur_cs],
+					  page, cdns_ctrl->buf, NULL,
+					  mtd->writesize +
+					  mtd->oobsize,
+					  0, DMA_TO_DEVICE, false);
+}
+
+static int cadence_nand_write_oob_raw(struct nand_chip *chip,
+				      int page)
+{
+	return cadence_nand_write_page_raw(chip, NULL, true, page);
+}
+
+static int cadence_nand_read_page(struct nand_chip *chip,
+				  u8 *buf, int oob_required, int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int status = 0;
+	int ecc_err_count = 0;
+
+	status = cadence_nand_select_target(chip);
+	if (status)
+		return status;
+
+	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
+					 mtd->writesize
+					 + cdns_chip->bbm_offs, 1);
+
+	/*
+	 * If data buffer can be accessed by DMA and data_control feature
+	 * is supported then transfer data and oob directly.
+	 */
+	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
+	    cdns_ctrl->caps2.data_control_supp) {
+		u8 *oob;
+
+		if (oob_required)
+			oob = chip->oob_poi;
+		else
+			oob = cdns_ctrl->buf + mtd->writesize;
+
+		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
+		status = cadence_nand_cdma_transfer(cdns_ctrl,
+						    cdns_chip->cs[chip->cur_cs],
+						    page, buf, oob,
+						    mtd->writesize,
+						    cdns_chip->avail_oob_size,
+						    DMA_FROM_DEVICE, true);
+	/* Otherwise use bounce buffer. */
+	} else {
+		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
+		status = cadence_nand_cdma_transfer(cdns_ctrl,
+						    cdns_chip->cs[chip->cur_cs],
+						    page, cdns_ctrl->buf,
+						    NULL, mtd->writesize
+						    + cdns_chip->avail_oob_size,
+						    0, DMA_FROM_DEVICE, true);
+
+		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
+		if (oob_required)
+			memcpy(chip->oob_poi,
+			       cdns_ctrl->buf + mtd->writesize,
+			       mtd->oobsize);
+	}
+
+	switch (status) {
+	case STAT_ECC_UNCORR:
+		mtd->ecc_stats.failed++;
+		ecc_err_count++;
+		break;
+	case STAT_ECC_CORR:
+		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
+					  cdns_ctrl->cdma_desc->status);
+		mtd->ecc_stats.corrected += ecc_err_count;
+		break;
+	case STAT_ERASED:
+	case STAT_OK:
+		break;
+	default:
+		dev_err(cdns_ctrl->dev, "read page failed\n");
+		return -EIO;
+	}
+
+	if (oob_required)
+		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
+			return -EIO;
+
+	return ecc_err_count;
+}
+
+/* Reads OOB data from the device. */
+static int cadence_nand_read_oob(struct nand_chip *chip, int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+
+	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
+}
+
+static int cadence_nand_read_page_raw(struct nand_chip *chip,
+				      u8 *buf, int oob_required, int page)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int oob_skip = cdns_chip->bbm_len;
+	int writesize = mtd->writesize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = cdns_ctrl->buf;
+	int i, pos, len;
+	int status = 0;
+
+	status = cadence_nand_select_target(chip);
+	if (status)
+		return status;
+
+	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
+	status = cadence_nand_cdma_transfer(cdns_ctrl,
+					    cdns_chip->cs[chip->cur_cs],
+					    page, cdns_ctrl->buf, NULL,
+					    mtd->writesize
+					    + mtd->oobsize,
+					    0, DMA_FROM_DEVICE, false);
+
+	switch (status) {
+	case STAT_ERASED:
+	case STAT_OK:
+		break;
+	default:
+		dev_err(cdns_ctrl->dev, "read raw page failed\n");
+		return -EIO;
+	}
+
+	/* Arrange the buffer for syndrome payload/ecc layout. */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(buf, tmp_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, tmp_buf + writesize + oob_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		u8 *oob = chip->oob_poi;
+		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+			(cdns_chip->sector_size + chip->ecc.bytes)
+			+ cdns_chip->sector_size + oob_skip;
+
+		/* OOB free. */
+		memcpy(oob, tmp_buf + oob_data_offset,
+		       cdns_chip->avail_oob_size);
+
+		/* BBM at the beginning of the OOB area. */
+		memcpy(oob, tmp_buf + writesize, oob_skip);
+
+		oob += cdns_chip->avail_oob_size;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (i == (ecc_steps - 1))
+				pos += cdns_chip->avail_oob_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, tmp_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, tmp_buf + writesize + oob_skip,
+				       len);
+				oob += len;
+			}
+		}
+	}
+
+	return 0;
+}
+
+static int cadence_nand_read_oob_raw(struct nand_chip *chip,
+				     int page)
+{
+	return cadence_nand_read_page_raw(chip, NULL, true, page);
+}
+
+static void cadence_nand_slave_dma_transfer_finished(void *data)
+{
+	struct completion *finished = data;
+
+	complete(finished);
+}
+
+static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
+					   void *buf,
+					   dma_addr_t dev_dma, size_t len,
+					   enum dma_data_direction dir)
+{
+	DECLARE_COMPLETION_ONSTACK(finished);
+	struct dma_chan *chan;
+	struct dma_device *dma_dev;
+	dma_addr_t src_dma, dst_dma, buf_dma;
+	struct dma_async_tx_descriptor *tx;
+	dma_cookie_t cookie;
+
+	chan = cdns_ctrl->dmac;
+	dma_dev = chan->device;
+
+	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
+	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
+		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+		goto err;
+	}
+
+	if (dir == DMA_FROM_DEVICE) {
+		src_dma = cdns_ctrl->io.dma;
+		dst_dma = buf_dma;
+	} else {
+		src_dma = buf_dma;
+		dst_dma = cdns_ctrl->io.dma;
+	}
+
+	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
+				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+	if (!tx) {
+		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
+		goto err_unmap;
+	}
+
+	tx->callback = cadence_nand_slave_dma_transfer_finished;
+	tx->callback_param = &finished;
+
+	cookie = dmaengine_submit(tx);
+	if (dma_submit_error(cookie)) {
+		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
+		goto err_unmap;
+	}
+
+	dma_async_issue_pending(cdns_ctrl->dmac);
+	wait_for_completion(&finished);
+
+	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
+
+	return 0;
+
+err_unmap:
+	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
+
+err:
+	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
+
+	return -EIO;
+}
+
+static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
+				 u8 *buf, int len)
+{
+	u8 thread_nr = 0;
+	u32 sdma_size;
+	int status;
+
+	/* Wait until slave DMA interface is ready to data transfer. */
+	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
+	if (status)
+		return status;
+
+	if (!cdns_ctrl->caps1->has_dma) {
+		int len_in_words = len >> 2;
+
+		/* read alingment data */
+		ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
+		if (sdma_size > len) {
+			/* read rest data from slave DMA interface if any */
+			ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
+				     sdma_size / 4 - len_in_words);
+			/* copy rest of data */
+			memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
+			       len - (len_in_words << 2));
+		}
+		return 0;
+	}
+
+	if (cdns_ctrl->dmac && cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
+		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
+							 cdns_ctrl->io.dma,
+							 len, DMA_FROM_DEVICE);
+		if (status == 0)
+			return 0;
+
+		dev_warn(cdns_ctrl->dev,
+			 "Slave DMA transfer failed. Try again using bounce buffer.");
+	}
+
+	/* If DMA transfer is not possible or failed then use bounce buffer. */
+	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
+						 cdns_ctrl->io.dma,
+						 sdma_size, DMA_FROM_DEVICE);
+
+	if (status) {
+		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
+		return status;
+	}
+
+	memcpy(buf, cdns_ctrl->buf, len);
+
+	return 0;
+}
+
+static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
+				  const u8 *buf, int len)
+{
+	u8 thread_nr = 0;
+	u32 sdma_size;
+	int status;
+
+	/* Wait until slave DMA interface is ready to data transfer. */
+	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
+	if (status)
+		return status;
+
+	if (!cdns_ctrl->caps1->has_dma) {
+		int len_in_words = len >> 2;
+
+		iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
+		if (sdma_size > len) {
+			/* copy rest of data */
+			memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
+			       len - (len_in_words << 2));
+			/* write all expected by nand controller data */
+			iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
+				      sdma_size / 4 - len_in_words);
+		}
+
+		return 0;
+	}
+
+	if (cdns_ctrl->dmac && cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
+		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
+							 cdns_ctrl->io.dma,
+							 len, DMA_TO_DEVICE);
+		if (status == 0)
+			return 0;
+
+		dev_warn(cdns_ctrl->dev,
+			 "Slave DMA transfer failed. Try again using bounce buffer.");
+	}
+
+	/* If DMA transfer is not possible or failed then use bounce buffer. */
+	memcpy(cdns_ctrl->buf, buf, len);
+
+	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
+						 cdns_ctrl->io.dma,
+						 sdma_size, DMA_TO_DEVICE);
+
+	if (status)
+		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
+
+	return status;
+}
+
+static int cadence_nand_force_byte_access(struct nand_chip *chip,
+					  bool force_8bit)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	int status;
+
+	/*
+	 * Callers of this function do not verify if the NAND is using a 16-bit
+	 * an 8-bit bus for normal operations, so we need to take care of that
+	 * here by leaving the configuration unchanged if the NAND does not have
+	 * the NAND_BUSWIDTH_16 flag set.
+	 */
+	if (!(chip->options & NAND_BUSWIDTH_16))
+		return 0;
+
+	status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
+
+	return status;
+}
+
+static int cadence_nand_cmd_opcode(struct nand_chip *chip,
+				   const struct nand_subop *subop)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	const struct nand_op_instr *instr;
+	unsigned int op_id = 0;
+	u64 mini_ctrl_cmd = 0;
+	int ret;
+
+	instr = &subop->instrs[op_id];
+
+	if (instr->delay_ns > 0)
+		mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+				    GCMD_LAY_INSTR_CMD);
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
+				    instr->ctx.cmd.opcode);
+
+	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+					    cdns_chip->cs[chip->cur_cs],
+					    mini_ctrl_cmd);
+	if (ret)
+		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
+			instr->ctx.cmd.opcode);
+
+	return ret;
+}
+
+static int cadence_nand_cmd_address(struct nand_chip *chip,
+				    const struct nand_subop *subop)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	const struct nand_op_instr *instr;
+	unsigned int op_id = 0;
+	u64 mini_ctrl_cmd = 0;
+	unsigned int offset, naddrs;
+	u64 address = 0;
+	const u8 *addrs;
+	int ret;
+	int i;
+
+	instr = &subop->instrs[op_id];
+
+	if (instr->delay_ns > 0)
+		mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+				    GCMD_LAY_INSTR_ADDR);
+
+	offset = nand_subop_get_addr_start_off(subop, op_id);
+	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+	addrs = &instr->ctx.addr.addrs[offset];
+
+	for (i = 0; i < naddrs; i++)
+		address |= (u64)addrs[i] << (8 * i);
+
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
+				    address);
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
+				    naddrs - 1);
+
+	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+					    cdns_chip->cs[chip->cur_cs],
+					    mini_ctrl_cmd);
+	if (ret)
+		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
+
+	return ret;
+}
+
+static int cadence_nand_cmd_erase(struct nand_chip *chip,
+				  const struct nand_subop *subop)
+{
+	unsigned int op_id;
+
+	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
+		int i;
+		const struct nand_op_instr *instr = NULL;
+		unsigned int offset, naddrs;
+		const u8 *addrs;
+		u32 page = 0;
+
+		instr = &subop->instrs[1];
+		offset = nand_subop_get_addr_start_off(subop, 1);
+		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
+		addrs = &instr->ctx.addr.addrs[offset];
+
+		for (i = 0; i < naddrs; i++)
+			page |= (u32)addrs[i] << (8 * i);
+
+		return cadence_nand_erase(chip, page);
+	}
+
+	/*
+	 * If it is not an erase operation then handle operation
+	 * by calling exec_op function.
+	 */
+	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+		int ret;
+		const struct nand_operation nand_op = {
+			.cs = chip->cur_cs,
+			.instrs =  &subop->instrs[op_id],
+			.ninstrs = 1};
+		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+static int cadence_nand_cmd_data(struct nand_chip *chip,
+				 const struct nand_subop *subop)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	const struct nand_op_instr *instr;
+	unsigned int offset, op_id = 0;
+	u64 mini_ctrl_cmd = 0;
+	int len = 0;
+	int ret;
+
+	instr = &subop->instrs[op_id];
+
+	if (instr->delay_ns > 0)
+		mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+				    GCMD_LAY_INSTR_DATA);
+
+	if (instr->type == NAND_OP_DATA_OUT_INSTR)
+		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
+					    GCMD_DIR_WRITE);
+
+	len = nand_subop_get_data_len(subop, op_id);
+	offset = nand_subop_get_data_start_off(subop, op_id);
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
+	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
+	if (instr->ctx.data.force_8bit) {
+		ret = cadence_nand_force_byte_access(chip, true);
+		if (ret) {
+			dev_err(cdns_ctrl->dev,
+				"cannot change byte access generic data cmd failed\n");
+			return ret;
+		}
+	}
+
+	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+					    cdns_chip->cs[chip->cur_cs],
+					    mini_ctrl_cmd);
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
+		return ret;
+	}
+
+	if (instr->type == NAND_OP_DATA_IN_INSTR) {
+		void *buf = instr->ctx.data.buf.in + offset;
+
+		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
+	} else {
+		const void *buf = instr->ctx.data.buf.out + offset;
+
+		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
+	}
+
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
+		return ret;
+	}
+
+	if (instr->ctx.data.force_8bit) {
+		ret = cadence_nand_force_byte_access(chip, false);
+		if (ret) {
+			dev_err(cdns_ctrl->dev,
+				"cannot change byte access generic data cmd failed\n");
+		}
+	}
+
+	return ret;
+}
+
+static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
+				    const struct nand_subop *subop)
+{
+	int status;
+	unsigned int op_id = 0;
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	const struct nand_op_instr *instr = &subop->instrs[op_id];
+	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
+
+	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
+					     timeout_us,
+					     BIT(cdns_chip->cs[chip->cur_cs]),
+					     false);
+	return status;
+}
+
+static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_erase,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_opcode,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_address,
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_data,
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_data,
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
+	NAND_OP_PARSER_PATTERN(
+		cadence_nand_cmd_waitrdy,
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
+	);
+
+static int cadence_nand_exec_op(struct nand_chip *chip,
+				const struct nand_operation *op,
+				bool check_only)
+{
+	int status = cadence_nand_select_target(chip);
+
+	if (status)
+		return status;
+
+	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
+				      check_only);
+}
+
+static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = cdns_chip->bbm_len;
+	oobregion->length = cdns_chip->avail_oob_size
+		- cdns_chip->bbm_len;
+
+	return 0;
+}
+
+static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = cdns_chip->avail_oob_size;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
+	.free = cadence_nand_ooblayout_free,
+	.ecc = cadence_nand_ooblayout_ecc,
+};
+
+static int calc_cycl(u32 timing, u32 clock)
+{
+	if (timing == 0 || clock == 0)
+		return 0;
+
+	if ((timing % clock) > 0)
+		return timing / clock;
+	else
+		return timing / clock - 1;
+}
+
+/* Calculate max data valid window. */
+static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+				u32 board_delay_skew_min, u32 ext_mode)
+{
+	if (ext_mode == 0)
+		clk_period /= 2;
+
+	return (trp_cnt + 1) * clk_period + trhoh_min +
+		board_delay_skew_min;
+}
+
+/* Calculate data valid window. */
+static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+			    u32 trea_max, u32 ext_mode)
+{
+	if (ext_mode == 0)
+		clk_period /= 2;
+
+	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
+}
+
+static int
+cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
+				  const struct nand_data_interface *conf)
+{
+	const struct nand_sdr_timings *sdr;
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	struct cadence_nand_timings *t = &cdns_chip->timings;
+	u32 reg;
+	u32 board_delay = cdns_ctrl->board_delay;
+	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
+					    cdns_ctrl->nf_clk_rate);
+	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
+	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
+	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
+	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
+	u32 if_skew = cdns_ctrl->caps1->if_skew;
+	u32 board_delay_skew_min = board_delay - if_skew;
+	u32 board_delay_skew_max = board_delay + if_skew;
+	u32 dqs_sampl_res, phony_dqs_mod;
+	u32 tdvw, tdvw_min, tdvw_max;
+	u32 ext_rd_mode, ext_wr_mode;
+	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
+	u32 sampling_point;
+
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	memset(t, 0, sizeof(*t));
+	/* Sampling point calculation. */
+
+	if (cdns_ctrl->caps2.is_phy_type_dll)
+		phony_dqs_mod = 2;
+	else
+		phony_dqs_mod = 1;
+
+	dqs_sampl_res = clk_period / phony_dqs_mod;
+
+	tdvw_min = sdr->tREA_max + board_delay_skew_max;
+	/*
+	 * The idea of those calculation is to get the optimum value
+	 * for tRP and tRH timings. If it is NOT possible to sample data
+	 * with optimal tRP/tRH settings, the parameters will be extended.
+	 * If clk_period is 50ns (the lowest value) this condition is met
+	 * for asynchronous timing modes 1, 2, 3, 4 and 5.
+	 * If clk_period is 20ns the condition is met only
+	 * for asynchronous timing mode 5.
+	 */
+	if (sdr->tRC_min <= clk_period &&
+	    sdr->tRP_min <= (clk_period / 2) &&
+	    sdr->tREH_min <= (clk_period / 2)) {
+		/* Performance mode. */
+		ext_rd_mode = 0;
+		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+				 sdr->tREA_max, ext_rd_mode);
+		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
+					 board_delay_skew_min,
+					 ext_rd_mode);
+		/*
+		 * Check if data valid window and sampling point can be found
+		 * and is not on the edge (ie. we have hold margin).
+		 * If not extend the tRP timings.
+		 */
+		if (tdvw > 0) {
+			if (tdvw_max <= tdvw_min ||
+			    (tdvw_max % dqs_sampl_res) == 0) {
+				/*
+				 * No valid sampling point so the RE pulse need
+				 * to be widen widening by half clock cycle.
+				 */
+				ext_rd_mode = 1;
+			}
+		} else {
+			/*
+			 * There is no valid window
+			 * to be able to sample data the tRP need to be widen.
+			 * Very safe calculations are performed here.
+			 */
+			trp_cnt = (sdr->tREA_max + board_delay_skew_max
+				   + dqs_sampl_res) / clk_period;
+			ext_rd_mode = 1;
+		}
+
+	} else {
+		/* Extended read mode. */
+		u32 trh;
+
+		ext_rd_mode = 1;
+		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
+		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
+		if (sdr->tREH_min >= trh)
+			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
+		else
+			trh_cnt = calc_cycl(trh, clk_period);
+
+		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+				 sdr->tREA_max, ext_rd_mode);
+		/*
+		 * Check if data valid window and sampling point can be found
+		 * or if it is at the edge check if previous is valid
+		 * - if not extend the tRP timings.
+		 */
+		if (tdvw > 0) {
+			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+						 sdr->tRHOH_min,
+						 board_delay_skew_min,
+						 ext_rd_mode);
+
+			if ((((tdvw_max / dqs_sampl_res)
+			      * dqs_sampl_res) <= tdvw_min) ||
+			    (((tdvw_max % dqs_sampl_res) == 0) &&
+			     (((tdvw_max / dqs_sampl_res - 1)
+			       * dqs_sampl_res) <= tdvw_min))) {
+				/*
+				 * Data valid window width is lower than
+				 * sampling resolution and do not hit any
+				 * sampling point to be sure the sampling point
+				 * will be found the RE low pulse width will be
+				 *  extended by one clock cycle.
+				 */
+				trp_cnt = trp_cnt + 1;
+			}
+		} else {
+			/*
+			 * There is no valid window to be able to sample data.
+			 * The tRP need to be widen.
+			 * Very safe calculations are performed here.
+			 */
+			trp_cnt = (sdr->tREA_max + board_delay_skew_max
+				   + dqs_sampl_res) / clk_period;
+		}
+	}
+
+	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+				 sdr->tRHOH_min,
+				 board_delay_skew_min, ext_rd_mode);
+
+	if (sdr->tWC_min <= clk_period &&
+	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
+	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
+		ext_wr_mode = 0;
+	} else {
+		u32 twh;
+
+		ext_wr_mode = 1;
+		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
+		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
+			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
+					    clk_period);
+
+		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
+		if (sdr->tWH_min >= twh)
+			twh = sdr->tWH_min;
+
+		twh_cnt = calc_cycl(twh + if_skew, clk_period);
+	}
+
+	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
+	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
+	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
+	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
+	t->async_toggle_timings = reg;
+	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
+
+	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
+	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
+	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
+	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
+	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
+
+	/*
+	 * If timing exceeds delay field in timing register
+	 * then use maximum value.
+	 */
+	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
+		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
+	else
+		reg |= TIMINGS0_TCCS;
+
+	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
+	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
+	t->timings0 = reg;
+	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
+
+	/* The following is related to single signal so skew is not needed. */
+	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
+	trhz_cnt = trhz_cnt + 1;
+	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
+	/*
+	 * Because of the two stage syncflop the value must be increased by 3
+	 * first value is related with sync, second value is related
+	 * with output if delay.
+	 */
+	twb_cnt = twb_cnt + 3 + 5;
+	/*
+	 * The following is related to the we edge of the random data input
+	 * sequence so skew is not needed.
+	 */
+	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
+	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
+	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
+	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
+	t->timings1 = reg;
+	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
+
+	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
+	if (tfeat_cnt < twb_cnt)
+		tfeat_cnt = twb_cnt;
+
+	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
+	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
+
+	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
+	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
+	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
+	t->timings2 = reg;
+	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
+
+	if (cdns_ctrl->caps2.is_phy_type_dll) {
+		reg = DLL_PHY_CTRL_DLL_RST_N;
+		if (ext_wr_mode)
+			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
+		if (ext_rd_mode)
+			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
+
+		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
+		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
+		t->dll_phy_ctrl = reg;
+		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
+	}
+
+	/* Sampling point calculation. */
+	if ((tdvw_max % dqs_sampl_res) > 0)
+		sampling_point = tdvw_max / dqs_sampl_res;
+	else
+		sampling_point = (tdvw_max / dqs_sampl_res - 1);
+
+	if (sampling_point * dqs_sampl_res > tdvw_min) {
+		dll_phy_dqs_timing =
+			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
+		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
+		phony_dqs_timing = sampling_point / phony_dqs_mod;
+
+		if ((sampling_point % 2) > 0) {
+			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
+			if ((tdvw_max % dqs_sampl_res) == 0)
+				/*
+				 * Calculation for sampling point at the edge
+				 * of data and being odd number.
+				 */
+				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
+					/ phony_dqs_mod - 1;
+
+			if (!cdns_ctrl->caps2.is_phy_type_dll)
+				phony_dqs_timing--;
+
+		} else {
+			phony_dqs_timing--;
+		}
+		rd_del_sel = phony_dqs_timing + 3;
+	} else {
+		dev_warn(cdns_ctrl->dev,
+			 "ERROR : cannot find valid sampling point\n");
+	}
+
+	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
+	if (cdns_ctrl->caps2.is_phy_type_dll)
+		reg  |= PHY_CTRL_SDR_DQS;
+	t->phy_ctrl = reg;
+	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
+
+	if (cdns_ctrl->caps2.is_phy_type_dll) {
+		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
+		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
+		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
+			dll_phy_dqs_timing);
+		t->phy_dqs_timing = dll_phy_dqs_timing;
+
+		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
+		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
+			reg);
+		t->phy_gate_lpbk_ctrl = reg;
+
+		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
+			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
+		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
+	}
+
+	return 0;
+}
+
+int cadence_nand_attach_chip(struct nand_chip *chip)
+{
+	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+	u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 max_oob_data_size;
+	int ret;
+
+	if (chip->options & NAND_BUSWIDTH_16) {
+		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
+		if (ret)
+			return ret;
+	}
+
+	chip->bbt_options |= NAND_BBT_USE_FLASH;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+	chip->ecc.mode = NAND_ECC_HW;
+
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	cdns_chip->bbm_offs = chip->badblockpos;
+	if (chip->options & NAND_BUSWIDTH_16) {
+		cdns_chip->bbm_offs &= ~0x01;
+		cdns_chip->bbm_len = 2;
+	} else {
+		cdns_chip->bbm_len = 1;
+	}
+
+	ret = nand_ecc_choose_conf(chip,
+				   &cdns_ctrl->ecc_caps,
+				   mtd->oobsize - cdns_chip->bbm_len);
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
+		return ret;
+	}
+
+	dev_dbg(cdns_ctrl->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	/* Error correction configuration. */
+	cdns_chip->sector_size = chip->ecc.size;
+	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
+
+	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
+
+	max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
+
+	if (cdns_chip->avail_oob_size > max_oob_data_size)
+		cdns_chip->avail_oob_size = max_oob_data_size;
+
+	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
+	    > mtd->oobsize)
+		cdns_chip->avail_oob_size -= 4;
+
+	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
+	if (ret < 0)
+		return -EINVAL;
+
+	cdns_chip->corr_str_idx = (u8)ret;
+
+	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+					1000000,
+					CTRL_STATUS_CTRL_BUSY, true))
+		return -ETIMEDOUT;
+
+	cadence_nand_set_ecc_strength(cdns_ctrl,
+				      cdns_chip->corr_str_idx);
+
+	cadence_nand_set_erase_detection(cdns_ctrl, true,
+					 chip->ecc.strength);
+
+	/* Override the default read operations. */
+	chip->ecc.read_page = cadence_nand_read_page;
+	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
+	chip->ecc.write_page = cadence_nand_write_page;
+	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
+	chip->ecc.read_oob = cadence_nand_read_oob;
+	chip->ecc.write_oob = cadence_nand_write_oob;
+	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
+	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
+
+	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
+		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
+
+	/* Is 32-bit DMA supported? */
+	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
+		return ret;
+	}
+
+	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
+
+	return 0;
+}
+
+static const struct nand_controller_ops cadence_nand_controller_ops = {
+	.attach_chip = cadence_nand_attach_chip,
+	.exec_op = cadence_nand_exec_op,
+	.setup_data_interface = cadence_nand_setup_data_interface,
+};
+
+static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
+				  struct device_node *np)
+{
+	struct cdns_nand_chip *cdns_chip;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int nsels, ret, i;
+	u32 cs;
+
+	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
+	if (nsels <= 0) {
+		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
+		return -EINVAL;
+	}
+
+	/* Allocate the nand chip structure. */
+	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
+				 (nsels * sizeof(u8)),
+				 GFP_KERNEL);
+	if (!cdns_chip) {
+		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
+		return -ENOMEM;
+	}
+
+	cdns_chip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++) {
+		/* Retrieve CS id. */
+		ret = of_property_read_u32_index(np, "reg", i, &cs);
+		if (ret) {
+			dev_err(cdns_ctrl->dev,
+				"could not retrieve reg property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (cs >= cdns_ctrl->caps2.max_banks) {
+			dev_err(cdns_ctrl->dev,
+				"invalid reg value: %u (max CS = %d)\n",
+				cs, cdns_ctrl->caps2.max_banks);
+			return -EINVAL;
+		}
+
+		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
+			dev_err(cdns_ctrl->dev,
+				"CS %d already assigned\n", cs);
+			return -EINVAL;
+		}
+
+		cdns_chip->cs[i] = cs;
+	}
+
+	chip = &cdns_chip->chip;
+	chip->controller = &cdns_ctrl->controller;
+	nand_set_flash_node(chip, np);
+
+	mtd = nand_to_mtd(chip);
+	mtd->dev.parent = cdns_ctrl->dev;
+
+	/*
+	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
+	 * in the DT node, this entry will be overwritten in nand_scan_ident().
+	 */
+	chip->ecc.mode = NAND_ECC_HW;
+
+	ret = nand_scan(chip, cdns_chip->nsels);
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
+		return ret;
+	}
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(cdns_ctrl->dev,
+			"failed to register mtd device: %d\n", ret);
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
+
+	return 0;
+}
+
+static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	struct cdns_nand_chip *entry, *temp;
+
+	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
+		nand_release(&entry->chip);
+		list_del(&entry->node);
+	}
+}
+
+static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	struct device_node *np = cdns_ctrl->dev->of_node;
+	struct device_node *nand_np;
+	int max_cs = cdns_ctrl->caps2.max_banks;
+	int nchips, ret;
+
+	nchips = of_get_child_count(np);
+
+	if (nchips > max_cs) {
+		dev_err(cdns_ctrl->dev,
+			"too many NAND chips: %d (max = %d CS)\n",
+			nchips, max_cs);
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(np, nand_np) {
+		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
+		if (ret) {
+			of_node_put(nand_np);
+			cadence_nand_chips_cleanup(cdns_ctrl);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static void
+cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
+{
+	/* Disable interrupts. */
+	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
+}
+
+static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	dma_cap_mask_t mask;
+	int ret;
+
+	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
+						  sizeof(*cdns_ctrl->cdma_desc),
+						  &cdns_ctrl->dma_cdma_desc,
+						  GFP_KERNEL);
+	if (!cdns_ctrl->dma_cdma_desc)
+		return -ENOMEM;
+
+	cdns_ctrl->buf_size = SZ_16K;
+	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
+	if (!cdns_ctrl->buf) {
+		ret = -ENOMEM;
+		goto free_buf_desc;
+	}
+
+	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
+			     IRQF_SHARED, "cadence-nand-controller",
+			     cdns_ctrl)) {
+		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
+		ret = -ENODEV;
+		goto free_buf;
+	}
+
+	spin_lock_init(&cdns_ctrl->irq_lock);
+	init_completion(&cdns_ctrl->complete);
+
+	ret = cadence_nand_hw_init(cdns_ctrl);
+	if (ret)
+		goto disable_irq;
+
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_MEMCPY, mask);
+
+	if (cdns_ctrl->caps1->has_dma) {
+		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
+		if (!cdns_ctrl->dmac) {
+			dev_err(cdns_ctrl->dev,
+				"Unable to get a DMA channel\n");
+			ret = -EBUSY;
+			goto disable_irq;
+		}
+	}
+
+	nand_controller_init(&cdns_ctrl->controller);
+	INIT_LIST_HEAD(&cdns_ctrl->chips);
+
+	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
+	cdns_ctrl->curr_corr_str_idx = 0xFF;
+
+	ret = cadence_nand_chips_init(cdns_ctrl);
+	if (ret) {
+		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
+			ret);
+		goto dma_release_chnl;
+	}
+
+	kfree(cdns_ctrl->buf);
+	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
+	if (!cdns_ctrl->buf) {
+		ret = -ENOMEM;
+		goto dma_release_chnl;
+	}
+
+	return 0;
+
+dma_release_chnl:
+	if (cdns_ctrl->dmac)
+		dma_release_channel(cdns_ctrl->dmac);
+
+disable_irq:
+	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
+
+free_buf:
+	kfree(cdns_ctrl->buf);
+
+free_buf_desc:
+	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
+			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
+
+	return ret;
+}
+
+/* Driver exit point. */
+static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
+{
+	cadence_nand_chips_cleanup(cdns_ctrl);
+	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
+	kfree(cdns_ctrl->buf);
+	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
+			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
+
+	if (cdns_ctrl->dmac)
+		dma_release_channel(cdns_ctrl->dmac);
+}
+
+struct cadence_nand_dt {
+	struct cdns_nand_ctrl cdns_ctrl;
+	struct clk *clk;
+};
+
+static const struct cadence_nand_dt_devdata cadence_nand_default = {
+	.if_skew = 0,
+	.has_dma = 1,
+};
+
+static const struct of_device_id cadence_nand_dt_ids[] = {
+	{
+		.compatible = "cdns,hp-nfc",
+		.data = &cadence_nand_default
+	}, {}
+};
+
+MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
+
+static int cadence_nand_dt_probe(struct platform_device *ofdev)
+{
+	struct resource *res;
+	struct cadence_nand_dt *dt;
+	struct cdns_nand_ctrl *cdns_ctrl;
+	int ret;
+	const struct of_device_id *of_id;
+	const struct cadence_nand_dt_devdata *devdata;
+	u32 val;
+
+	of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
+	if (of_id) {
+		ofdev->id_entry = of_id->data;
+		devdata = of_id->data;
+	} else {
+		pr_err("Failed to find the right device id.\n");
+		return -ENOMEM;
+	}
+
+	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
+	if (!dt)
+		return -ENOMEM;
+
+	cdns_ctrl = &dt->cdns_ctrl;
+	cdns_ctrl->caps1 = devdata;
+
+	cdns_ctrl->dev = &ofdev->dev;
+	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
+	if (cdns_ctrl->irq < 0) {
+		dev_err(&ofdev->dev, "no irq defined\n");
+		return cdns_ctrl->irq;
+	}
+	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
+
+	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
+	if (IS_ERR(cdns_ctrl->reg)) {
+		dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
+		return PTR_ERR(cdns_ctrl->reg);
+	}
+
+	res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
+	cdns_ctrl->io.dma = res->start;
+	cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
+	if (IS_ERR(cdns_ctrl->io.virt)) {
+		dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
+		return PTR_ERR(cdns_ctrl->io.virt);
+	}
+
+	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
+	if (IS_ERR(dt->clk))
+		return PTR_ERR(dt->clk);
+
+	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
+
+	ret = of_property_read_u32(ofdev->dev.of_node,
+				   "cdns,board-delay-ps", &val);
+	if (ret) {
+		val = 4830;
+		dev_info(cdns_ctrl->dev,
+			 "missing cdns,board-delay-ps property, %d was set\n",
+			 val);
+	}
+	cdns_ctrl->board_delay = val;
+
+	ret = cadence_nand_init(cdns_ctrl);
+	if (ret)
+		return ret;
+
+	platform_set_drvdata(ofdev, dt);
+	return 0;
+}
+
+static int cadence_nand_dt_remove(struct platform_device *ofdev)
+{
+	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
+
+	cadence_nand_remove(&dt->cdns_ctrl);
+
+	return 0;
+}
+
+static struct platform_driver cadence_nand_dt_driver = {
+	.probe		= cadence_nand_dt_probe,
+	.remove		= cadence_nand_dt_remove,
+	.driver		= {
+		.name	= "cadence-nand-controller",
+		.of_match_table = cadence_nand_dt_ids,
+	},
+};
+
+module_platform_driver(cadence_nand_dt_driver);
+
+MODULE_AUTHOR("Piotr Sroka <piotrs@xxxxxxxxxxx>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
+
-- 
2.15.0


______________________________________________________
Linux MTD discussion mailing list
http://lists.infradead.org/mailman/listinfo/linux-mtd/




[Index of Archives]     [LARTC]     [Bugtraq]     [Yosemite Forum]     [Photo]

  Powered by Linux