Add driver for arm pl353 static memory controller nand interface. This controller is used in Xilinx Zynq SoC for interfacing the NAND flash memory. Reviewed-by: Helmut Grohne <helmut.grohne@xxxxxxxxxx> Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xxxxxxxxxx> --- xilinx zynq TRM link: https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf ARM pl353 smc TRM link: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_r2p1_trm.pdf -> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion S34ML01G1. -> Tested both x8 and x16 bus-widths. -> Tested ubifs, mtd_debug tools and mtd-tests which exists in kernel as modules. -> Tested jffs2 SMC memory controller driver is at drivers/memory/pl353-smc.c Changes in v18: - Modified the driver's ->exec_op() method as per Boris comments Now in this ->exec_op(), no where we are checking any NAND_CMD's - Removed checking of NAND_ROW_ADDR_3 inside ->exec_op() method - Modifed the driver's ->exec_op() PATTERN definitions to support all patterns. now these patterns are not specific to any particular pattern as commented by Boris Changes in v17: - This patch fixes the comments given by Helmut Grohne - Removed struct clk *mclk from struct pl353_nand_controller, as it is required only once during probe, so declare it inside the probe - Merged NAND_OP_DATA_IN_INSTR and NAND_OP_DATA_OUT_INSTR as single case in switch - Added updated Makefile and Kconfig file - Added pl353_nand_wait_ready(), in pl353_nand_write_page_raw() to wait for write to complete Changes in v16: - Removed unnecessary comments Changes in v15: All the comments given by Helmut Grohne to v14 are addressed in this series as mentioned below. - Removed below unused macros PL353_NAND_CMD_PHASE, PL353_NAND_DATA_PHASE and PL353_NAND_ECC_CONFIG - Used cond_resched() instead of cpu_relax() to eleminate the CPU spin for a full second - changed the size of cmnds[4] to cmnds[2] - Removed the unused variable end_cmd in struct pl353_nfc_op - Added new variable u16 addrs_56, instead of u32 addr5 and u32 addr6 - Removed the unused variable cle_ale_delay_ns in struct pl353_nfc_op - Completely changed the nand_offset calculation, taken new varibale called dataphase_addrflags and eleminated the casting with __force just used offset + flags - in pl353_ecc_ooblayout64_free(), removed checking of section with ecc.steps, as section is 0 here - simplified the pl353_wait_for_dev_ready() and pl353_wait_for_ecc_done() - Updated the nfc_op->addrs calculation in pl353_nfc_parse_instructions() - Removed cond_delay(), instead used ndelay(), as it is sufficient - in pl353_nand_exec_op(), instead of assigning end_cmd twice, just assign it once by nfc_op.cmnds[1] - changed if (reading) to else in pl353_nand_exec_op() - Removed int err variable in pl353_nand_ecc_init(), instead just used single variable ret - Changed reading clock value by name rather than index in pl353_nand_probe() - Instead of always calling clk_get_rate(), stored it in the probe to a varaible and use it later Changes in v14: - Removed legacy hooks as per Miquel comments Changes in v13: - Rebased the driver to mtd/next Changes in v12: - Rebased the driver on top of v4.19 nand tree - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops with ->attach_chip() and used nand_scan() instead. - Renamed pl353_nand_info structure to pl353_nand_controller - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr' - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc() - Defined new macro for max ECC blocks - Added return value check for ecc.calculate() - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd() - Added x16 bus-width support - The dependent driver pl353-smc is already reviewed and hence dropped the smc driver Changes in v11: - Removed Documentation patch and added the required info in driver as per Boris comments. - Removed unwanted variables from pl353_nand_info as per Miquel comments - Removed IO_ADDR_R/W. - Replaced onhot() with hweight32() - Defined macros for static values in function pl353_nand_correct_data() - Removed all unnecessary delays - Used nand_wait_ready() where ever is required - Modifed the pl353_setup_data_interface() logic as per Miquel comments. - Taken array instead of 7 values in pl353_setup_data_interface() and pass it to smc driver. - Added check to collect the return value of mtd_device_register(). Changes in 10: - Typos correction like nand to NAND and soc to SOC etc.. - Defined macros for the values in pl353_nand_calculate_hwecc() - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc() - Changed the return type form int to bool to the function onehot() - Removed udelay(1000) in pl353_cmd_function, as it is not required - Dropped ecc->hwctl = NULL in pl353_ecc_init() - Added an error message in pl353_ecc_init(), when there is no matching oobsize - Changed the variable from xnand to xnfc - Added logic to get mtd->name from DT, if it is specified in DT Changes in v9: - Addressed the below comments given by Miquel - instead of using pl353_nand_write32, use directly writel_relaxed - Fixed check patch warnings - Renamed write_buf/read_buf to write_data_op/read_data_op - use BIT macro instead of 1 << nr - Use NAND_ROW_ADDR_3 flag - Use nand_wait_ready() - Removed swecc functions - Use address cycles as per size, instead of reading it from Parameter page - Instead of writing too many patterns, use optional property Changes in v8: - Added exec_op() implementation - Fixed the below v7 review comments - removed mtd_info from pl353_nand_info struct - Corrected ecc layout offsets - Added on-die ecc support Changes in v7: - Currently not implemented the memclk rate adjustments. I will look into this later and once the basic driver is accepted. - Fixed GPL licence ident Changes in v6: - Fixed the checkpatch.pl reported warnings - Using the address cycles information from the onfi param page earlier it is hardcoded to 5 in driver Changes in v5: - Configure the nand timing parameters as per the onfi spec Changes in v4: - Updated the driver to sync with pl353_smc driver APIs Changes in v3: - implemented the proper error codes - further breakdown this patch to multiple sets - added the controller and driver details to Documentation section - updated the licenece to GPLv2 - reorganized the pl353_nand_ecc_init function Changes in v2: - use "depends on" rather than "select" option in kconfig - remove unused variable parts --- drivers/mtd/nand/raw/Kconfig | 7 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/pl353_nand.c | 1228 +++++++++++++++++++++++++++++ 3 files changed, 1236 insertions(+) create mode 100644 drivers/mtd/nand/raw/pl353_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 0500c42f31cb..5781b422e818 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -545,4 +545,11 @@ config MTD_NAND_DISKONCHIP_BBTWRITE load time (assuming you build diskonchip as a module) with the module parameter "inftl_bbt_write=1". +config MTD_NAND_PL353 + tristate "ARM Pl353 NAND flash driver" + depends on MTD_RAW_NAND && ARM + depends on PL353_SMC + help + Enables support for PrimeCell Static Memory Controller PL353 + endif # MTD_RAW_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index efaf5cd25edc..b43af6a442b2 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c new file mode 100644 index 000000000000..fb24ca18b38e --- /dev/null +++ b/drivers/mtd/nand/raw/pl353_nand.c @@ -0,0 +1,1228 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ARM PL353 NAND flash controller driver + * + * Copyright (C) 2017 Xilinx, Inc + * Author: Punnaiah chowdary kalluri <punnaiah@xxxxxxxxxx> + * Author: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx> + * + */ + +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/irq.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/partitions.h> +#include <linux/of_address.h> +#include <linux/of_device.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/pl353-smc.h> +#include <linux/clk.h> + +#define PL353_NAND_DRIVER_NAME "pl353-nand" + +/* NAND flash driver defines */ +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ + +/* AXI Address definitions */ +#define START_CMD_SHIFT 3 +#define END_CMD_SHIFT 11 +#define END_CMD_VALID_SHIFT 20 +#define ADDR_CYCLES_SHIFT 21 +#define CLEAR_CS_SHIFT 21 +#define ECC_LAST_SHIFT 10 +#define COMMAND_PHASE (0 << 19) +#define DATA_PHASE BIT(19) +#define GET_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) + +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ + +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 +#define PL353_NAND_ECC_VALID_SHIFT 24 +#define PL353_NAND_ECC_VALID_MASK 0x40 +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF +#define PL353_ECC_BITS_BITOFF_MASK 0x7 +#define PL353_ECC_BIT_MASK 0xFFF +#define PL353_TREA_MAX_VALUE 1 +#define PL353_MAX_ECC_CHUNKS 4 +#define PL353_MAX_ECC_BYTES 3 + +struct pl353_nfc_op { + u32 cmnds[2]; + u32 addrs; + unsigned int data_instr_idx; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + const struct nand_op_instr *data_instr; +}; + +/** + * struct pl353_nand_controller - Defines the NAND flash controller driver + * instance + * @controller: NAND controller structure + * @chip: NAND chip information structure + * @dev: Parent device (used to print error messages) + * @regs: Virtual address of the NAND flash device + * @dataphase_addrflags:Flags required for data phase transfers + * @addr_cycles: Address cycles + * @mclk_rate: Clock rate of the Memory controller + * @buswidth: Bus width 8 or 16 + */ +struct pl353_nand_controller { + struct nand_controller controller; + struct nand_chip chip; + struct device *dev; + void __iomem *regs; + u32 dataphase_addrflags; + u8 addr_cycles; + ulong mclk_rate; + u32 buswidth; +}; + +static inline struct pl353_nand_controller * + to_pl353_nand(struct nand_chip *chip) +{ + return container_of(chip, struct pl353_nand_controller, chip); +} + +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { + .ecc = pl353_ecc_ooblayout16_ecc, + .free = pl353_ecc_ooblayout16_free, +}; + +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 52; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = 50; + + return 0; +} + +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { + .ecc = pl353_ecc_ooblayout64_ecc, + .free = pl353_ecc_ooblayout64_free, +}; + +/* Generic flash bbt decriptors */ +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +static void pl353_nfc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + int ret; + struct pl353_nand_controller *xnfc = + container_of(chip, struct pl353_nand_controller, chip); + + if (xnfc->buswidth == 8) + return; + + if (force_8bit) + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8); + else + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); + + if (ret) + dev_err(xnfc->dev, "Error in Buswidth\n"); +} + +static inline int pl353_wait_for_dev_ready(struct nand_chip *chip) +{ + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; + + while (!pl353_smc_get_nand_int_status_raw()) { + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; + } + cond_resched(); + } + + pl353_smc_clr_nand_int(); + + return 0; +} + +/** + * pl353_nand_read_data_op - read chip data into buffer + * @chip: Pointer to the NAND chip info structure + * @in: Pointer to the buffer to store read data + * @len: Number of bytes to read + * @force_8bit: Force 8-bit bus access + * Return: Always return zero + */ +static void pl353_nand_read_data_op(struct nand_chip *chip, u8 *in, + unsigned int len, bool force_8bit) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + int i; + + if (force_8bit) + pl353_nfc_force_byte_access(chip, true); + + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { + u32 *ptr = (u32 *)in; + + len /= 4; + for (i = 0; i < len; i++) + ptr[i] = readl(xnfc->regs + xnfc->dataphase_addrflags); + } else { + for (i = 0; i < len; i++) + in[i] = readb(xnfc->regs + xnfc->dataphase_addrflags); + } + + if (force_8bit) + pl353_nfc_force_byte_access(chip, false); +} + +/** + * pl353_nand_write_data_op - write buffer to chip + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the buffer to store write data + * @len: Number of bytes to write + * @force_8bit: Force 8-bit bus access + */ +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf, + int len, bool force_8bit) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + int i; + + if (force_8bit) + pl353_nfc_force_byte_access(chip, true); + + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { + u32 *ptr = (u32 *)buf; + + len /= 4; + for (i = 0; i < len; i++) + writel(ptr[i], xnfc->regs + xnfc->dataphase_addrflags); + } else { + for (i = 0; i < len; i++) + writeb(buf[i], xnfc->regs + xnfc->dataphase_addrflags); + } + + if (force_8bit) + pl353_nfc_force_byte_access(chip, false); +} + +static inline int pl353_wait_for_ecc_done(void) +{ + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; + + while (pl353_smc_ecc_is_busy()) { + if (time_after_eq(jiffies, timeout)) { + pr_err("%s timed out\n", __func__); + return -ETIMEDOUT; + } + cond_resched(); + } + + return 0; +} + +/** + * pl353_nand_calculate_hwecc - Calculate Hardware ECC + * @chip: Pointer to the nand_chip structure + * @data: Pointer to the page data + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored + * + * This function retrieves the Hardware ECC data from the controller and returns + * ECC data back to the MTD subsystem. + * It operates on a number of 512 byte blocks of NAND memory and can be + * programmed to store the ECC codes after the data in memory. For writes, + * the ECC is written to the spare area of the page. For reads, the result of + * a block ECC check are made available to the device driver. + * + * ------------------------------------------------------------------------ + * | n * 512 blocks | extra | ecc | | + * | | block | codes | | + * ------------------------------------------------------------------------ + * + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit + * detection. It starts when a valid read or write command with a 512 byte + * aligned address is detected on the memory interface. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_calculate_hwecc(struct nand_chip *chip, + const u8 *data, u8 *ecc) +{ + u32 ecc_value; + u8 chunk, ecc_byte, ecc_status; + + for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) { + /* Read ECC value for each block */ + ecc_value = pl353_smc_get_ecc_val(chunk); + ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT); + + /* ECC value valid */ + if (ecc_status & PL353_NAND_ECC_VALID_MASK) { + for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES; + ecc_byte++) { + /* Copy ECC bytes to MTD buffer */ + *ecc = ~ecc_value & 0xFF; + ecc_value = ecc_value >> 8; + ecc++; + } + } else { + pr_warn("%s status failed\n", __func__); + return -1; + } + } + + return 0; +} + +/** + * pl353_nand_correct_data - ECC correction function + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the page data + * @read_ecc: Pointer to the ECC value read from spare data area + * @calc_ecc: Pointer to the calculated ECC value + * + * This function corrects the ECC single bit errors & detects 2-bit errors. + * + * Return: 0 if no ECC errors found + * 1 if single bit error found and corrected. + * -1 if multiple uncorrectable ECC errors found. + */ +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned char bit_addr; + unsigned int byte_addr; + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & + PL353_ECC_BIT_MASK; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & + PL353_ECC_BIT_MASK; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & + PL353_ECC_BIT_MASK; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & + PL353_ECC_BIT_MASK; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + /* no error */ + if (!ecc_odd && !ecc_even) + return 0; + + if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) { + /* bits [11:3] of error code is byte offset */ + byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK; + /* bits [2:0] of error code is bit offset */ + bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK; + /* Toggling error bit */ + buf[byte_addr] ^= (BIT(bit_addr)); + return 1; + } + + /* one error in parity */ + if (hweight32(ecc_odd | ecc_even) == 1) + return 1; + + /* Uncorrectable error */ + return -1; +} + +static void pl353_prepare_cmd(struct nand_chip *chip, + int page, int column, int start_cmd, int end_cmd, + bool read) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + unsigned long cmd_phase_data = 0; + u32 end_cmd_valid = 0, cmdphase_addrflags; + + end_cmd_valid = read ? 1 : 0; + cmdphase_addrflags = ((xnfc->addr_cycles + << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (start_cmd << START_CMD_SHIFT)); + + /* Get the data phase address */ + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) | + (0 << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (end_cmd << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + + if (chip->options & NAND_BUSWIDTH_16) + column /= 2; + + cmd_phase_data = column; + if (mtd->writesize > PL353_NAND_ECC_SIZE) { + cmd_phase_data |= page << 16; + + /* Another address cycle for devices > 128MiB */ + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(cmd_phase_data, + xnfc->regs + cmdphase_addrflags); + cmd_phase_data = (page >> 16); + } + } else { + cmd_phase_data |= page << 8; + } + + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); +} + +/** + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function + * @chip: Pointer to the nand_chip structure + * @chip: Pointer to the nand_chip structure + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_oob(struct nand_chip *chip, + int page) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *p; + + if (mtd->writesize < PL353_NAND_ECC_SIZE) + return 0; + + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + return 0; +} + +/** + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function + * @chip: Pointer to the nand_chip structure + * @chip: Pointer to the NAND chip info structure + * @page: Page number to write + * + * Return: Zero on success and EIO on failure + */ +static int pl353_nand_write_oob(struct nand_chip *chip, + int page) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + const u8 *buf = chip->oob_poi; + + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + + pl353_nand_write_data_op(chip, buf, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); + pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + return 0; +} + +/** + * pl353_nand_read_page_raw - [Intern] read page data without ecc + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * Return: Always return zero + */ +static int pl353_nand_read_page_raw(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *p; + + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + pl353_nand_read_data_op(chip, buf, mtd->writesize, false); + p = chip->oob_poi; + pl353_nand_read_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + return 0; +} + +/** + * pl353_nand_write_page_raw - [Intern] raw page write function + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * Return: Always return zero + */ +static int pl353_nand_write_page_raw(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *p; + + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + pl353_nand_write_data_op(chip, buf, mtd->writesize, false); + p = chip->oob_poi; + pl353_nand_write_data_op(chip, p, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + return 0; +} + +/** + * nand_write_page_hwecc - Hardware ECC based page write function + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the data buffer + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to write + * + * This functions writes data and hardware generated ECC values in to the page. + * + * Return: Always return zero + */ +static int pl353_nand_write_page_hwecc(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + int eccsize = chip->ecc.size; + int eccsteps = chip->ecc.steps; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *oob_ptr; + const u8 *p = buf; + u32 ret; + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, + NAND_CMD_PAGEPROG, 0); + + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_write_data_op(chip, p, eccsize, false); + p += eccsize; + } + + pl353_nand_write_data_op(chip, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), + false); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST; + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + /* Wait till the ECC operation is complete or timeout */ + ret = pl353_wait_for_ecc_done(); + if (ret) + dev_err(xnfc->dev, "ECC Timeout\n"); + + p = buf; + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]); + if (ret) + return ret; + + /* Wait for ECC to be calculated and read the error values */ + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + return ret; + + /* Clear ECC last bit */ + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST; + + /* Write the spare area with ECC bytes */ + oob_ptr = chip->oob_poi; + pl353_nand_write_data_op(chip, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_write_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + return 0; +} + +/** + * pl353_nand_read_page_hwecc - Hardware ECC based page read function + * @chip: Pointer to the nand_chip structure + * @buf: Pointer to the buffer to store read data + * @oob_required: Caller requires OOB data read to chip->oob_poi + * @page: Page number to read + * + * This functions reads data and checks the data integrity by comparing + * hardware generated ECC values and read ECC values from spare area. + * There is a limitation in SMC controller, that we must set ECC LAST on + * last data phase access, to tell ECC block not to expect any data further. + * Ex: When number of ECC STEPS are 4, then till 3 we will write to flash + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as + * one more transfer with ECC_LAST bit set in NAND data phase register to + * notify ECC block not to expect any more data. The last block should be align + * with end of 512 byte block. Because of this limitation, we are not using + * core routines. + * + * Return: 0 always and updates ECC operation status in to MTD structure + */ +static int pl353_nand_read_page_hwecc(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int i, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + unsigned int max_bitflips = 0; + u8 *p = buf; + u8 *ecc_calc = chip->ecc.calc_buf; + u8 *ecc = chip->ecc.code_buf; + u8 *oob_ptr; + u32 ret; + + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, + NAND_CMD_READSTART, 1); + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + + for ( ; (eccsteps - 1); eccsteps--) { + pl353_nand_read_data_op(chip, p, eccsize, false); + p += eccsize; + } + + pl353_nand_read_data_op(chip, p, + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), + false); + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); + + /* Set ECC Last bit to 1 */ + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST; + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + /* Wait till the ECC operation is complete or timeout */ + ret = pl353_wait_for_ecc_done(); + if (ret) + dev_err(xnfc->dev, "ECC Timeout\n"); + + /* Read the calculated ECC value */ + p = buf; + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]); + if (ret) + return ret; + + /* Clear ECC last bit */ + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST; + + /* Read the stored ECC value */ + oob_ptr = chip->oob_poi; + pl353_nand_read_data_op(chip, oob_ptr, + (mtd->oobsize - + PL353_NAND_LAST_TRANSFER_LENGTH), false); + + /* de-assert chip select */ + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); + pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH, + false); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + /* Check ECC error for all blocks and correct if it is correctable */ + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +static int pl353_nand_exec_op_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct pl353_nfc_op nfc_op = {}; + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + unsigned long end_cmd_valid = 0; + unsigned int op_id, len; + bool reading; + u32 cmdphase_addrflags; + const struct nand_op_instr *instr = NULL; + int i; + u32 col = 0, row = 0; + u32 naddrs = 0; + u8 val; + + memset(&nfc_op, 0, sizeof(struct pl353_nfc_op)); + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (op_id) { + nfc_op.cmnds[1] = instr->ctx.cmd.opcode; + + /* + * end_cmd_valid is set when there is a + * command cycle followed by Address cycle + */ + if (naddrs) + end_cmd_valid = 1; + } else { + nfc_op.cmnds[0] = instr->ctx.cmd.opcode; + end_cmd_valid = 0; + } + + break; + + case NAND_OP_ADDR_INSTR: + i = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, + op_id); + for (; i < naddrs; i++) { + val = instr->ctx.addr.addrs[i]; + + if (i < 2) + col |= GET_ADDR(i, val); + else + row |= GET_ADDR(i - 2, val); + } + + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + nfc_op.data_instr = instr; + nfc_op.data_instr_idx = op_id; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op.rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op.rdy_delay_ns = instr->delay_ns; + break; + } + } + + instr = nfc_op.data_instr; + op_id = nfc_op.data_instr_idx; + + /* Clear interrupts */ + pl353_smc_clr_nand_int(); + + cmdphase_addrflags = ((naddrs << ADDR_CYCLES_SHIFT) | + (end_cmd_valid << END_CMD_VALID_SHIFT) | + (COMMAND_PHASE) | + (nfc_op.cmnds[1] << END_CMD_SHIFT) | + (nfc_op.cmnds[0] << START_CMD_SHIFT)); + + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) | + (0 << END_CMD_VALID_SHIFT) | + (DATA_PHASE) | + (nfc_op.cmnds[0] << END_CMD_SHIFT) | + (0x0 << ECC_LAST_SHIFT)); + + if (naddrs >= 2) { + writel_relaxed(col, xnfc->regs + cmdphase_addrflags); + writel_relaxed(row, xnfc->regs + cmdphase_addrflags); + } else { + writel_relaxed(col, xnfc->regs + cmdphase_addrflags); + } + + if (!nfc_op.data_instr) { + if (nfc_op.rdy_timeout_ms) { + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + } + return 0; + } + + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + len = nand_subop_get_data_len(subop, op_id); + + if (!reading) { + pl353_nand_write_data_op(chip, instr->ctx.data.buf.out, + len, instr->ctx.data.force_8bit); + if (nfc_op.rdy_timeout_ms) { + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + } + ndelay(nfc_op.rdy_delay_ns); + } else { + ndelay(nfc_op.rdy_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + if (pl353_wait_for_dev_ready(chip)) + return -ETIMEDOUT; + } + + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len, + instr->ctx.data.force_8bit); + } + + return 0; +} + +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)), + NAND_OP_PARSER_PATTERN(pl353_nand_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 2048), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + ); + +static int pl353_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, + op, check_only); +} + +/** + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode + * @mtd: Pointer to the mtd_info structure + * @ecc: Pointer to ECC control structure + * @ecc_mode: ondie ecc status + * + * This function initializes the ecc block and functional pointers as per the + * ecc mode + * + * Return: 0 on success or negative errno. + */ +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, + int ecc_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + int ret = 0; + + ecc->read_oob = pl353_nand_read_oob; + ecc->write_oob = pl353_nand_write_oob; + ecc->write_page_raw = pl353_nand_write_page_raw; + ecc->read_page_raw = pl353_nand_read_page_raw; + + if (ecc_mode == NAND_ECC_ON_DIE) { + ecc->write_page = pl353_nand_write_page_raw; + ecc->read_page = pl353_nand_read_page_raw; + + /* + * On-Die ECC spare bytes offset 8 is used for ECC codes + * Use the BBT pattern descriptors + */ + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + ret = pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); + if (ret) + return ret; + + } else { + ecc->mode = NAND_ECC_HW; + + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ + ecc->bytes = 3; + ecc->strength = 1; + ecc->calculate = pl353_nand_calculate_hwecc; + ecc->correct = pl353_nand_correct_data; + ecc->read_page = pl353_nand_read_page_hwecc; + ecc->size = PL353_NAND_ECC_SIZE; + ecc->read_page = pl353_nand_read_page_hwecc; + ecc->write_page = pl353_nand_write_page_hwecc; + pl353_smc_set_ecc_pg_size(mtd->writesize); + switch (mtd->writesize) { + case SZ_512: + case SZ_1K: + case SZ_2K: + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); + break; + default: + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->size = 256; + break; + } + + if (mtd->oobsize == 16) { + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); + } else if (mtd->oobsize == 64) { + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); + } else { + dev_err(xnfc->dev, "Unsupported oob Layout\n"); + ret = -ENXIO; + } + } + + return ret; +} + +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline, + const struct nand_data_interface + *conf) +{ + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + const struct nand_sdr_timings *sdr; + u32 timings[7], mckperiodps; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles. + */ + mckperiodps = NSEC_PER_SEC / xnfc->mclk_rate; + mckperiodps *= 1000; + + if (sdr->tRC_min <= 20000) + /* + * PL353 SMC needs one extra read cycle in SDR Mode 5 + * This is not written anywhere in the datasheet but + * the results observed during testing. + */ + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1; + else + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps); + + timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps); + + /* + * For all SDR modes, PL353 SMC needs tREA max value as 1, + * Results observed during testing. + */ + timings[2] = PL353_TREA_MAX_VALUE; + timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps); + timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps); + timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps); + timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps); + pl353_smc_set_cycles(timings); + + return 0; +} + +static int pl353_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); + int ret; + + if (chip->options & NAND_BUSWIDTH_16) { + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); + if (ret) { + dev_err(xnfc->dev, "Set BusWidth failed\n"); + return ret; + } + } + + if (mtd->writesize <= SZ_512) + xnfc->addr_cycles = 1; + else + xnfc->addr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + xnfc->addr_cycles += 3; + else + xnfc->addr_cycles += 2; + + ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode); + if (ret) { + dev_err(xnfc->dev, "ECC init failed\n"); + return ret; + } + + if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your NAND node, ie: + * + * label = "pl353-nand"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL, + "%s", PL353_NAND_DRIVER_NAME); + if (!mtd->name) { + dev_err(xnfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + return 0; +} + +static const struct nand_controller_ops pl353_nand_controller_ops = { + .attach_chip = pl353_nand_attach_chip, + .exec_op = pl353_nfc_exec_op, + .setup_data_interface = pl353_nfc_setup_data_interface, +}; + +/** + * pl353_nand_probe - Probe method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function initializes the driver data structures and the hardware. + * The NAND driver has dependency with the pl353_smc memory controller + * driver for initializing the NAND timing parameters, bus width, ECC modes, + * control and status information. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_probe(struct platform_device *pdev) +{ + struct pl353_nand_controller *xnfc; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *res; + struct device_node *np, *dn; + struct clk *mclk; + u32 ret, val; + + xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL); + if (!xnfc) + return -ENOMEM; + + xnfc->dev = &pdev->dev; + nand_controller_init(&xnfc->controller); + xnfc->controller.ops = &pl353_nand_controller_ops; + + /* Map physical address of NAND flash */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + xnfc->regs = devm_ioremap_resource(xnfc->dev, res); + if (IS_ERR(xnfc->regs)) + return PTR_ERR(xnfc->regs); + + chip = &xnfc->chip; + chip->controller = &xnfc->controller; + mtd = nand_to_mtd(chip); + nand_set_controller_data(chip, xnfc); + mtd->priv = chip; + mtd->owner = THIS_MODULE; + nand_set_flash_node(chip, xnfc->dev->of_node); + + np = of_get_next_parent(xnfc->dev->of_node); + mclk = of_clk_get_by_name(np, "memclk"); + if (IS_ERR(mclk)) { + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n"); + return PTR_ERR(mclk); + } + + xnfc->mclk_rate = clk_get_rate(mclk); + dn = nand_get_flash_node(chip); + ret = of_property_read_u32(dn, "nand-bus-width", &val); + if (ret) + val = 8; + + xnfc->buswidth = val; + + /* Set the device option and flash width */ + chip->options = NAND_BUSWIDTH_AUTO; + chip->bbt_options = NAND_BBT_USE_FLASH; + platform_set_drvdata(pdev, xnfc); + ret = nand_scan(chip, 1); + if (ret) { + dev_err(xnfc->dev, "could not scan the nand chip\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + return 0; +} + +/** + * pl353_nand_remove - Remove method for the NAND driver + * @pdev: Pointer to the platform_device structure + * + * This function is called if the driver module is being unloaded. It frees all + * resources allocated to the device. + * + * Return: 0 on success or error value on failure + */ +static int pl353_nand_remove(struct platform_device *pdev) +{ + struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&xnfc->chip); + struct nand_chip *chip = mtd_to_nand(mtd); + + /* Release resources, unregister device */ + nand_release(chip); + + return 0; +} + +/* Match table for device tree binding */ +static const struct of_device_id pl353_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); + +/* + * pl353_nand_driver - This structure defines the NAND subsystem platform driver + */ +static struct platform_driver pl353_nand_driver = { + .probe = pl353_nand_probe, + .remove = pl353_nand_remove, + .driver = { + .name = PL353_NAND_DRIVER_NAME, + .of_match_table = pl353_nand_of_match, + }, +}; + +module_platform_driver(pl353_nand_driver); + +MODULE_AUTHOR("Xilinx, Inc."); +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); +MODULE_LICENSE("GPL"); -- 2.17.1 ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/